Comparison of Chloroplast and Mitochondrial Genome Evolution in Plants

  • Jeffrey D. Palmer
Part of the Plant Gene Research book series (GENE)


Plants are unique among eukaryotes in possessing two DNA-containing organelles—the plastid and the mitochondrion. Moreover, the green alga Chlamydomonas reinhardtii has recently been shown to contain a third extranuclear genome—that of the basal body (Hall et al., 1989). Nothing is known about the origin, phylogenetic distribution and evolution of basal body DNA, and therefore this genome will not be considered in this chapter. In contrast, we now possess a rather detailed picture of the tempo and mode of evolution of chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) in land plants. Review of this topic will form the heart of this chapter, as presented in Sects. III–V. Data for both genomes will be presented in an integrated format in order to highlight the striking contrasts in their evolution in land plants. The much more limited evolutionary data base available for algal organelle genomes will be discussed in Sect. VI. All plastid and mitochondrial genomes are of endosymbiotic, bacterial origin. However, as discussed in the next section, considerable uncertainty remains as to the precise number and nature of endosymbioses that have taken place.


Mitochondrial Genome Cytoplasmic Male Sterility Inverted Repeat Land Plant Chloroplast Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey-Serres J, Hanson DK, Fox TD, Leaver CJ (1986) Mitochondrial genome rearrangement leads to extension and relocation of the cytochrome c oxidase subunit I gene in Sorghum. Cell 47: 567–576PubMedCrossRefGoogle Scholar
  2. Baldauf SL, Palmer JD (1990) Evolutionary transfer of the chloroplast tufA gene to the nucleus. Nature 344: 262–265PubMedCrossRefGoogle Scholar
  3. Baldwin BG, Kyhos DW, Dvorák J (1990) Chloroplast DNA evolution and adaptive radiation in the Hawaiian silversword alliance (Asteraceae-Madiinae). Ann Missouri Bot Gard 77: 96–109CrossRefGoogle Scholar
  4. Bedinger P, de Hostos EL, Leon P, Walbot V (1986) Cloning and characterization of a linear 2.3 kb mitochondrial plasmid of maize. Mol Gen Genet 205: 206–212Google Scholar
  5. Bernatzky R, Mau S-L, Clarke AE (1989) A nuclear sequence associated with self-incompatibility in Nicotiana alata has homology with mitochondrial DNA. Theor Appl Genet 77: 320–324CrossRefGoogle Scholar
  6. Bland MM, Levings CS III, Matzinger DF (1986) The tobacco mitochondrial ATPase subunit 9 gene is closely linked to an open reading frame for a ribosomal protein. Mol Gen Genet 204: 8–16PubMedCrossRefGoogle Scholar
  7. Blasko K, Kaplan SA, Higgins KG, Wolfson R, Sears BB (1988) Variation in copy number of a 24-base pair tandem repeat in the chloroplast DNA of Oenothera hookeri strain Johansen. Curr Genet 14: 287–292PubMedCrossRefGoogle Scholar
  8. Boer PH, Gray MW (1988a) Transfer RNA genes and the genetic code in Chlamydomonas reinhardtii mitochondria. Curr Genet 14: 583–590PubMedCrossRefGoogle Scholar
  9. Boer PH, Gray MW (1988b) Scrambled ribosomal RNA gene pieces in Chlamydomonas reinhardtii mitochondrial DNA. Cell 55: 399–411PubMedCrossRefGoogle Scholar
  10. Bowman CM, Dyer TA (1986) The location and possible evolutionary significance of small dispersed repeats in wheat ctDNA. Curr Genet 10: 931–941CrossRefGoogle Scholar
  11. Bowman CM, Barker RF, Dyer TA (1988) In wheat ctDNA, segments of ribosomal protein genes are dispersed repeats, probably conserved by nonreciprocal recombination. Curr Genet 14: 127–136PubMedCrossRefGoogle Scholar
  12. Braun CJ, Brown GG, Levings III CS (1992) Cytoplasmic male sterility. In: Herrmann RG (ed) Cell organelles. Springer, Wien New York, pp 219–245 [Dennis ES et al (eds) Plant gene research. Basic knowledge and application]CrossRefGoogle Scholar
  13. Boynton JE, Gillham NW, Newman SM, Harris EH (1992) Organelle genetics and transformation of Chlamydomonas. In: Herrmann RG (ed) Cell organelles. Springer, Wien New York, pp 3–64 [Dennis ES et al (eds) Plant gene research. Basic knowledge and application]CrossRefGoogle Scholar
  14. Brears T, Lonsdale DM (1988) The sugar beet mitochondrial genome: a complex organisation generated by homologous recombination. Mol Gen Genet 214: 514–522CrossRefGoogle Scholar
  15. Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76: 1967–1971PubMedCrossRefGoogle Scholar
  16. Bryant DA, Stirewalt VL (1990) The cyanelle genome of Cyanophora paradoxa encodes ribosomal proteins not encoded by the chloroplast genomes of higher plants. FEBS Lett 259: 273–280PubMedCrossRefGoogle Scholar
  17. Calie PJ, Hughes KW (1987) The consensus land plant chloroplast gene order is present, with two alterations, in the moss Physcomitrella patens. Mol Gen Genet 208: 335–341CrossRefGoogle Scholar
  18. Carlson JE, Erickson LR, Kemble RJ (1986) Cross hybridization between organelle RNAs and mitochondrial and chloroplast genomes in Brassica. Curr Genet 11: 161–163CrossRefGoogle Scholar
  19. Cozens AL, Walker JE (1987) The organization and sequence of the genes for ATP synthase subunits in the cyanobacterium Synechococcus 6301. J Mol Biol 194: 359–383PubMedCrossRefGoogle Scholar
  20. Curtis SE, Clegg MT (1984) Molecular evolution of chloroplast DNA sequences. Mol Biol Evol 1: 291–301PubMedGoogle Scholar
  21. Dawson AJ, Hodge TP, Isaac PG, Leaver CJ, Lonsdale DM (1986) Location of the genes for cytochrome oxidase subunits I and II, apocytochrome b, a-subunit of the F1 ATPase and the ribosomal RNA genes on the mitochondrial genome of maize (Zea mays L.) Curr Genet 10: 561–564CrossRefGoogle Scholar
  22. Day A, Ellis THN (1985) Deleted forms of plastid DNA in albino plants from cereal anther culture. Curr Genet 9: 671–678CrossRefGoogle Scholar
  23. Deng X-W, Wing RA, Gruissem W (1989) The chloroplast genome exists in multimeric forms. Proc Natl Acad Sci USA 86: 4156–4160PubMedCrossRefGoogle Scholar
  24. de Heij HT, Lustig H, van Ee JH, Vos YJ, Groot GSP (1985) Repeated sequences on mitochondrial DNA of Spirodela oligorhiza. Plant Mol Biol 4: 219–224CrossRefGoogle Scholar
  25. dePamphilis CW, Palmer JD (1989) Evolution and function of plastid DNA: a review with special reference to nonphotosynthetic plants. In: Boyer CD, Shannon JC, Hardison RC (eds) Physiology, biochemistry, and genetics of nongreen plastids. American Society of Plant Physiologists, Rockville, MD, pp 182–202Google Scholar
  26. dePamphilis CW, Palmer JD (1990) Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348: 337–339PubMedCrossRefGoogle Scholar
  27. Dewey RE, Levings CS III, Timothy DH (1986) Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm. Cell 44: 439–449PubMedCrossRefGoogle Scholar
  28. Douglas SE, Durnford DG, Morden CW (1990) Nucleotide sequence of the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from Cryptomonas sp.: evidence supporting the polyphyletic origin of plastids. J Phycol 26: 500–508Google Scholar
  29. Downie SR, Palmer JD (1991) Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. In: Soltis P, Soltis D, Doyle JJ (eds), Molecular systematics of plants Chapman and Hall, London, pp 14–35Google Scholar
  30. Ellis THN, Day A (1986) A hairpin plastid genome in barley. EMBO J 5: 2769–2772PubMedGoogle Scholar
  31. Evrard JL, Kuntz M, Straus NA, Weil J-H (1988) A class-I intron in a cyanelle tRNA gene from Cyanophora paradoxa: phylogenetic relationship between cyanelles and plant chloroplasts. Gene 71: 115–122PubMedCrossRefGoogle Scholar
  32. Fain SR, Druehl LD, Bailie DL (1988) Repeat and single copy sequences are differentially conserved in the evolution of kelp chloroplast DNA. J Phycol 24: 292–302Google Scholar
  33. Fauron C, Havlik M (1989) The maize mitochondrial genome of the normal type and the cytoplasmic male sterile type T have very different organization. Curr Genet 15: 149–154CrossRefGoogle Scholar
  34. Fauron C, Havlik M, Lonsdale D, Nichols L (1989) Mitochondrial genome organization of the maize cytoplasmic male sterile type T. Mol Gen Genet 216: 395–401CrossRefGoogle Scholar
  35. Fearnley IM, Runswick MJ, Walker JE (1989) A homologue of the nuclear coded 49 kd subunit of bovine mitochondrial NADH-ubiquinone reductase is coded in chloroplast DNA. EMBO J 8: 665–672PubMedGoogle Scholar
  36. Fejes E, Masters BS, McCarty DM, Hauswirth WW (1988) Sequence and transcriptional analysis of a chloroplast insert in the mitochondrial genome of Zea mays. Curr Genet 13: 509–515PubMedCrossRefGoogle Scholar
  37. Folkerts O, Hanson MR (1989) Three copies of a single recombination repeat occur on the 443 kb mastercircle of the Petunia hybrida 3704 mitochondrial genome. Nucleic Acids Res 17: 7345–7357PubMedCrossRefGoogle Scholar
  38. Gibbs SP (1981) Chloroplasts of some groups may have evolved from endosymbiotic eukaryotic algae. Ann NY Acad Sci 361: 193–207PubMedCrossRefGoogle Scholar
  39. Gillham NW, Boyriton JE, Harris EH (1991) Transmission of plastid genes. In: Vasil IK (ed) Molecular biology of plastids and the photosynthetic apparatus. Academic Press, New York, pp 55–92 [Bogorad L, Vasil IK (eds) Cell culture and somatic cell genetics of plants, vol 7A]Google Scholar
  40. Grabau E, Havlik M, Gesteland R (1988) Chimeric organization of two genes for the soybean mitochondrial ATPase subunit 6. Curr Genet 13: 83–89PubMedCrossRefGoogle Scholar
  41. Gray MW (1989a) The evolutionary origins of organelles. Trends Genet 5: 294–299PubMedCrossRefGoogle Scholar
  42. Gray MW (1989b) Origin and evolution of mitochondrial DNA. Annu Rev Cell Biol 5: 25–50PubMedCrossRefGoogle Scholar
  43. Gray MW (1991) The origin and evolution of plastid genomes and genes. In: Vasil IK (ed) Molecular biology of plastids and the photosynthetic apparatus. Academic Press, New York, pp 303–330 [Bogorad L, Vasil IK (eds) Cell culture and somatic cell genetics of plants, vol 7A]Google Scholar
  44. Gray MW, Boer PH (1988) Organization and expression of algal (Chlamydomonas reinhardtii) mitochondrial DNA. Philos Trans R Soc Lond [Biol] 319: 135–147CrossRefGoogle Scholar
  45. Gray MW, Cedergren R, Abel Y, Sankoff D (1989) On the evolutionary origin of the plant mitochondrion and its genome. Proc Natl Acad Sci USA 86: 2267–2271PubMedCrossRefGoogle Scholar
  46. Gualberto JM, Wintz H, Weil J-H, Grienenberger J-M (1988) The genes coding for subunit 3 of NADH dehydrogenase and for ribosomal protein S12 are present in the wheat and maize mitochondrial genomes and are co-transcribed. Mol Gen Genet 215: 118–127PubMedCrossRefGoogle Scholar
  47. Gunderson JH, Elwood H, Ingold A, Kindle K, Sogin ML (1987) Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. Proc Natl Acad Sci USA 84: 5823–5827PubMedCrossRefGoogle Scholar
  48. Hall JL, Ramanis Z, Luck DJL (1989) Basal body/centriolar DNA: molecular genetic studies in Chlamydomonas. Cell 59: 121–132PubMedCrossRefGoogle Scholar
  49. Hallick RB (1989) Proposals for the naming of chloroplast genes. II. Update to the nomenclature of genes for thylakoid membrane polypeptides. Plant Mol Biol Rep 7: 266–275CrossRefGoogle Scholar
  50. Hallick RB, Buetow DE (1989) Chloroplast DNA. In: Buetow DE (ed) The biology of Euglena, vol 4. Academic Press, New York, pp 351–414Google Scholar
  51. Herrmann RG, Possingham JV (1980) Plastid DNA—the plastome. In: Reinert J (ed) Results and problems in cell differentiation: the chloroplast. Springer, New York Berlin Heidelberg, pp 45–96Google Scholar
  52. Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C-R, Meng B-Y, Li Y-Q, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217: 185–194PubMedCrossRefGoogle Scholar
  53. Howe CJ (1985) The endpoints of an inversion in wheat chloroplast DNA are associated with short repeated sequences containing homology to att-lambda. Curr Genet 10: 139–145PubMedCrossRefGoogle Scholar
  54. Hsu CL, Mullin BC (1989) Physical characterization of mitochondrial DNA from cotton. Plant Mol Biol 13: 467–468PubMedCrossRefGoogle Scholar
  55. Hudson GS, Mason JG, Holton TA, Koller B, Cox GB, Whitfeld PR, Bottomley W (1987) A gene cluster in the spinach and pea chloroplast genomes encoding one CF1 and three CF0 subunits of the H+-ATP synthase complex and the ribosomal protein S2. J Mol Biol 196: 283–298PubMedCrossRefGoogle Scholar
  56. Hudson GS, Holton TA, Whitfeld PR, Bottomley W (1988) Spinach chloroplast rpoBC genes encode three subunits of the chloroplast RNA polymerase. J Mol Biol 200: 639–654PubMedCrossRefGoogle Scholar
  57. Joyce PBM, Gray MW (1989) Chloroplast-like transfer RNA genes expressed in wheat mitochondria. Nucleic Acids Res 17: 5461–5476PubMedCrossRefGoogle Scholar
  58. Joyce PBM, Spencer DF, Gray MW (1988) Multiple sequence rearrangements accompanying the duplication of a tRNAPro gene in wheat mitochondrial DNA. Plant Mol Biol 11: 833–843CrossRefGoogle Scholar
  59. Kemble RJ, Mans RJ, Gaby-Laughnan S, Laughnan JR (1983) Sequences homologous to episomal mitochondrial DNAs in the maize nuclear genome. Nature 304: 744–747CrossRefGoogle Scholar
  60. Kohchi T, Yoshida T, Komano T, Ohyama K (1988a) Divergent mRNA transcription in the chloroplast psbB operon. EMBO J 7: 885–891PubMedGoogle Scholar
  61. Kohchi T, Ogura Y, Umesono K, Yamada Y, Komano T, Ozeki H, Ohyama K (1988b) Ordered processing and splicing in a polycistronic transcript in liverwort chloroplasts. Curr Genet 14: 147–154PubMedCrossRefGoogle Scholar
  62. Kolodner R, Tewari KK (1979) Inverted repeats in chloroplast DNA from higher plants. Proc Natl Acad Sci USA 76: 41–45PubMedCrossRefGoogle Scholar
  63. Kück U (1989) The intron of a plastid gene from a green alga contains an open reading frame for a reverse transcriptase-like enzyme. Mol Gen Genet 218: 257–265PubMedCrossRefGoogle Scholar
  64. Kück U, Choquet Y, Schneider M, Dron M, Bennoun P (1987) Structural and transcription analysis of two homologous genes for the P700 chlorophyll a-apoproteins in Chlamydomonas reinhardii: evidence for in vivo trans-splicing. EMBO J 6: 2185–2195PubMedGoogle Scholar
  65. Kuhsel MG, Strickland R, Palmer JD (1990) An ancient group I intron shared by eubacteria and chloroplasts. Science 250: 1570–1573PubMedCrossRefGoogle Scholar
  66. Lavin M, Doyle JJ, Palmer JD (1990) Evolutionary significance of the loss of the chloroplast DNA inverted repeat in the Leguminosae subfamily Papilionoideae. Evolution 44: 390–402CrossRefGoogle Scholar
  67. Leible MB, Berger S, Schweiger H-G (1989) The plastome of Acetabularia mediterranea and Batophora oerstedii: Inter-and intraspecific variability and physical properties. Curr Genet 15, 355–361CrossRefGoogle Scholar
  68. Leon P, Walbot V, Bedinger P (1989) Molecular analysis of the linear 2.3 kb plasmid of maize mitochondria: apparent capture of tRNA genes. Nucleic Acids Res 17: 4089–4099Google Scholar
  69. Levings CS III, Brown GG (1989) Molecular biology of plant mitochondria. Cell 56: 171–179PubMedCrossRefGoogle Scholar
  70. Li N, Hedberg M, Cattolico RA (1991) Chloroplast DNA heterogeneity in Monodus sp. (Eustigmatophyta). Curr Genet 20: 157–159CrossRefGoogle Scholar
  71. Lidholm J, Szmidt AE, Hällgren J-E, Gustafsson P (1988) The chloroplast genomes of conifers lack one of the rRNA-encoding inverted repeats. Mol Gen Genet 212: 6–10CrossRefGoogle Scholar
  72. Loiseaux-de Goër SL, Markowicz Y, Dalmon J, Audren H (1988) Physical maps of the two circular plastid DNA molecules of the brown alga Pylaiella littoralis (L.) Kjellm. Curr Genet 14: 155–162CrossRefGoogle Scholar
  73. Lonsdale DM (1989) The plant mitochondrial genome. In: Marcus A (ed) Molecular biology. Academic Press, New York, pp 230–295 [Stumpf PK, Conn EE (eds) The biochemistry of plants, vol 15]Google Scholar
  74. Lonsdale DM, Grienenberger JM (1992) The mitochondrial genomes of plants. In: Herrmann RG (ed) Cell organelles. Springer, Wien New York, pp 183–218 [Dennis ES et al (eds) Plant gene research. Basic knowledge and application]CrossRefGoogle Scholar
  75. Lonsdale DM, Hodge TP, Fauron CM-R (1984) The physical map and organisation of the mitochondrial genome from the fertile cytoplasm of maize. Nucleic Acids Res 12: 9249–9261PubMedCrossRefGoogle Scholar
  76. Lonsdale DM, Brears T, Hodge TP, Melville SE, Rottmann WH (1988) The plant mitochondrial genome: Homologous recombination as a mechanism for generating heterogeneity. Philos Trans R Soc Lond [Biol] 319: 149–163CrossRefGoogle Scholar
  77. Makaroff CA, Palmer JD (1987) Extensive mitochondrial specific transcription of the Brassica campestris mitochondrial genome. Nucleic Acids Res 15: 5141–5156PubMedCrossRefGoogle Scholar
  78. Makaroff CA, Palmer JD (1988) Mitochondrial DNA rearrangements and transcriptional alterations in the male-sterile cytoplasm of Ogura radish. Mol Cell Biol 8: 1474–1480PubMedGoogle Scholar
  79. Makaroff CA, Apel IJ, Palmer JD (1989) The atp6 coding region has been disrupted and a novel reading frame generated in the mitochondrial genome of cytoplasmic male-sterile radish. J Biol Chem 264: 11706–11713PubMedGoogle Scholar
  80. Manhart JR, Palmer JD (1990) The gain of two chloroplast tRNA introns marks the green algal ancestors of land plants. Nature: 345: 268–270PubMedCrossRefGoogle Scholar
  81. Manhart JR, Kelly K, Dudock BS, Palmer JD (1989) Unusual characteristics of Codium vulgare chloroplast DNA revealed by physical and gene mapping. Mol Gen Genet 216: 417–421PubMedCrossRefGoogle Scholar
  82. Manhart JR, Hoshaw RW, Palmer JD (1990) Unique chloroplast genome in Spirogyra maxima revealed by physical and gene mapping. J Phycol 26: 490–494CrossRefGoogle Scholar
  83. Maréchal-Drouard L, Weil J-H, Guillemaut P (1988) Import of several tRNAs from the cytoplasm into the mitochondria in bean Phaseolus vulgaris. Nucleic Acids Res 16: 4777–4788PubMedCrossRefGoogle Scholar
  84. Maréchal-Drouard L, Neuburger M, Guillemaut P, Douce R, Weil J-H, Dietrich A (1990) A nuclear-encoded potato (Solanum tuberosum) mitochondrial tRNALeu and its cytosolic counterpart have identical nucleotide sequences. FEBS Lett 262: 170–172PubMedCrossRefGoogle Scholar
  85. Markowicz Y, Goër SL, Mache R (1988) Presence of a 16S rRNA pseudogene in the bimolecular plastid genome of the primitive brown alga Pylaiella littoralis. Evolutionary implications. Curr Genet 14: 599–608PubMedCrossRefGoogle Scholar
  86. Matsubayashi T, Wakasugi T, Shinozaki K, Yamaguchi-Shinozaki K, Zaita N, Hidaka T, Meng B-Y, Ohto C, Tanaka M, Kato A, Maruyama T, Sugiura M (1987) Six chloroplast genes (nadh A-F) homologous to human mitochondrial genes encoding components of the respiratory chain NADH dehydrogenase are actively expressed: determination of the splice sites in nadhA and nadhB pre-mRNAs. Mol Gen Genet 210: 385–393PubMedCrossRefGoogle Scholar
  87. Mayes SR, Cook KM, Barber J (1990) Nucleotide sequence of the second psbG gene in Synechocystis 6803. Possible implications for psbG function as a NAD(P)H dehydrogenase subunit gene. FEBS Lett 1: 49–54CrossRefGoogle Scholar
  88. Meng B-Y, Tanaka M, Wakasugi T, Ohme M, Shinozaki K, Sugiura M (1988) Cotranscription of the genes encoding two P700 chlorophyll a apoproteins with the gene for ribosomal protein CS14: determination of the transcriptional initiation site by in vitro capping. Curr Genet 14: 395–400PubMedCrossRefGoogle Scholar
  89. Milligan BG, Hampton J, Palmer JD (1989) Dispersed repeats and structural reorganization in subclover chloroplast DNA. Mol Biol Evol 6: 355–368PubMedGoogle Scholar
  90. Misonou T, Ishihara J, Pak JY, Nitta T (1989) Restriction endonuclease analysis of chloroplast and mitochondrial DNAs from Bryopsis (Derbesiales, Chlorophyta). Phycologia 28: 422–428CrossRefGoogle Scholar
  91. Moore LJ (1990) The nature and extent of intraspecific variation in chloroplast DNAs of sexually isolated populations of Pandorina morum Bory. PhD Thesis, Brown University, Providence Rhode Island, USAGoogle Scholar
  92. Moore LJ, Coleman AW (1989) The linear 20 kb mitochondrial genome of Pandorina morum (Volvocaceae, Chlorophyta). Plant Mol Biol 13: 459–465PubMedCrossRefGoogle Scholar
  93. Morden CW, Golden SS (1991) Sequence analysis and phylogenetic reconstruction of the genes encoding the large and small subunits of ribulose-1,5-bisphosphate carbox-lyase/oxygenase from the chlorophyll b-containing prokaryote Prochlorothrix hollandica. J Mol Evol 32: 379–395PubMedCrossRefGoogle Scholar
  94. Murata N, Miyao M, Hayashida N, Hidaka T, Sugiura M (1988) Identification of a new gene in the chloroplast genome encoding a low-molecular-mass polypeptide of photosys-tem II complex. FEBS Lett 235: 283–288CrossRefGoogle Scholar
  95. Nivison HT, Hanson MR (1989) Identification of a mitochondrial protein associated with cytoplasmic male sterility in Petunia. Plant Cell 1: 1121–1130PubMedCrossRefGoogle Scholar
  96. Nixon PJ, Gounaris K, Coomber SA, Hunter CN, Dyer TA, Barber J (1989) psbG is not a photosystem two gene but may be an ndh gene. J Biol Chem 264: 14129–14135PubMedGoogle Scholar
  97. Nugent JM, Palmer JD (1988) Location, identity, amount and serial entry of chloroplast DNA sequences in crucifer mitochondrial DNAs. Curr Genet 14: 501–509PubMedCrossRefGoogle Scholar
  98. Ogihara Y, Terachi T, Sasakuma T (1988) Intramolecular recombination of chloroplast genome mediated by short direct-repeat sequences in wheat species. Proc Natl Acad Sci USA 85: 8573–8577PubMedCrossRefGoogle Scholar
  99. Ohto C, Torazawa K, Tanaka M, Shinozaki K, Sugiura M (1988) Transcription of ten ribosomal protein genes from tobacco chloroplasts: a compilation of ribosomal protein genes found in the tobacco chloroplast genome. Plant Mol Biol 11: 589–600CrossRefGoogle Scholar
  100. Ohyama K (1992) Organization and expression of genes of plastid chromosomes from non-angiospermous land plants and green algae. In: Herrmann RG (ed) Cell organelles. Springer, Wien New York, pp 137–163 [Dennis ES et al (eds) Plant gene research. Basic knowledge and application]CrossRefGoogle Scholar
  101. Ohyama K, Fukuzawa H, Kohchi T, Sano T, Sano S, Shirai H, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1988) Structure and organization of Marchantia polymorpha chloroplast genome I. Cloning and gene identification. J Mol Biol 203: 281–298PubMedCrossRefGoogle Scholar
  102. Oppermann T, Hong T-H, Surzycki SJ (1989) Chloroplast and nuclear genomes of Chlamydomonas reinhardtii share homology with Escherichia coli genes for DNA replication, repair and transcription. Curr Genet 15: 39–46PubMedCrossRefGoogle Scholar
  103. Padmanabhan P, Green B (1978) The kinetic complexity of Acetabularia chloroplast DNA. Biochim Biophys Acta 521: 67–73PubMedGoogle Scholar
  104. Palmer JD (1983) Chloroplast DNA exists in two orientations. Nature 301: 92–93CrossRefGoogle Scholar
  105. Palmer JD (1985a) Comparative organization of chloroplast genomes. Annu Rev Genet 19: 325–354PubMedCrossRefGoogle Scholar
  106. Palmer JD (1985b) Evolution of chloroplast and mitochondrial DNA in plants and algae. In: Maclntyre RJ (ed) Monographs in evolutionary biology: molecular evolutionary genetics Plenum, New York, pp 131–240Google Scholar
  107. Palmer JD (1991) Plastid chromosomes: structure and evolution. In: Vasil IK (ed) Molecular biology of plastids and the photosynthetic apparatus. Academic Press, New York, pp 5–53 [Bogorad L, Vasil IK (eds) Cell culture and somatic cell genetics of plants, vol 7A]Google Scholar
  108. Palmer JD, Shields CR (1984) Tripartite structure of the Brassica campestris mitochondrial genome. Nature 307: 437–440CrossRefGoogle Scholar
  109. Palmer JD, Herbon LA (1986) Tricircular mitochondrial genomes of Brassica and Raphanus: reversal of repeat configurations by inversion. Nucleic Acids Res 14: 9755–9764PubMedCrossRefGoogle Scholar
  110. Palmer JD, Herbon LA (1987) Unicircular structure of the Brassica hirta mitochondrial genome. Curr Genet 11: 565–570PubMedCrossRefGoogle Scholar
  111. Palmer JD, Herbon LA (1988) Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J Mol Evol 28: 87–97PubMedCrossRefGoogle Scholar
  112. Palmer JD, Boynton JE, Gillham NW, Harris EH (1985) Evolution and recombination of the large inverted repeat in Chlamydomonas chloroplast DNA. In: Arntzen C, Bogorad L, Bonitz S, Steinback K (eds) Molecular biology of the photosynthetic apparatus. Cold Spring Harbor Laboratory, New York, pp 269–278Google Scholar
  113. Palmer JD, Nugent JM, Herbon LA (1987a) Unusual structure of geranium chloroplast DNA: a triple-sized repeat, extensive gene duplications, multiple inversions and new repeat families. Proc Natl Acad Sci USA 84: 769–773PubMedCrossRefGoogle Scholar
  114. Palmer JD, Osorio B, Aldrich J, Thompson WF (1987b) Chloroplast DNA evolution among legumes: loss of a large inverted repeat occurred prior to other sequence rearrangements. Curr Genet 11: 275–286CrossRefGoogle Scholar
  115. Palmer JD, Jansen RK, Michaels H, Manhart J, Chase MW (1988a) Phylogenetic analysis of chloroplast DNA variation. Ann Missouri Bot Gard 75: 1180–1218CrossRefGoogle Scholar
  116. Palmer JD, Osorio B, Thompson WF (1988b) Evolutionary significance of inversions in legume chloroplast DNAs. Curr Genet 14: 65–74CrossRefGoogle Scholar
  117. Pratje E, Vahrenholz C, Bühler S, Michaelis G (1989) Mitochondrial DNA of Chlamydomonas reinhardtii: the ND4 gene encoding a subunit of NADH dehydrogenase. Curr Genet 16: 61–64PubMedCrossRefGoogle Scholar
  118. Quetier F, Lejeune B, Delorme S, Falconet D, Jubier MF (1985) Molecular form and function of the wheat mitochondrial genome. In: van Vloten-Doting L, Groot G, Hall T (eds) Molecular form and function of the plant genome. Plenum, New York, pp 413–420Google Scholar
  119. Robertson D, Boynton JE, Gillham NW (1990) Cotranscription of the wild-type chloroplast atpE gene encoding the CF1/CF0 epsilon subunit with the 3′ half of the rps7 gene in Chlamydomonas reinhardtii and characterization of frameshift mutations in atpE. Mol Gen Genet 221: 155–163PubMedCrossRefGoogle Scholar
  120. Rodermal SR, Bogorad L (1987) Molecular evolution and nucleotide sequences of the maize plastid genes for the alpha subunit of CF1 (atpA) and the proteolipid subunit of CF0 (atpH). Genetics 116: 127–139Google Scholar
  121. Rothenberg M, Hanson MR (1987) Different transcript abundance of two divergent ATP synthase subunit 9 genes in the mitochondrial genome of Petunia hybrida. Mol Gen Genet 209: 21–27PubMedCrossRefGoogle Scholar
  122. Saalaoui E, Litvak S, Araya A (1990) The apocytochrome b from an alloplasmic line of wheat (T. aestivum, cytoplasm-T. Timopheevi) exists in two differently expressed forms. Plant Sci 66: 237–246CrossRefGoogle Scholar
  123. Sangaré A, Lonsdale DM, Weil J-H, Grienenberger J-M (1989) Sequence analysis of the tRNATyr and tRNALys genes and evidence for the transcription of a chloroplast-like tRNAMet in maize mitochondria. Curr Genet 16: 195–201PubMedCrossRefGoogle Scholar
  124. Schantz R, Bogorad L (1988) Maize chloroplast genes ndhD, ndhE and psaC. Sequences, transcripts and transcript pools. Plant Mol Biol 11: 239–247CrossRefGoogle Scholar
  125. Schardl CL, Lonsdale DM, Pring DR, Rose KR (1984) Linearization of maize mitochondrial chromosomes by recombination with linear episomes. Nature 310: 292–296CrossRefGoogle Scholar
  126. Schardl CL, Pring DR, Lonsdale DM (1985) Mitochondrial DNA rearrangements associated with fertile revenants of S-type male-sterile maize. Cell 43: 361–368PubMedCrossRefGoogle Scholar
  127. Schilling EE, Jansen RK (1989) Restriction fragment analysis of chloroplast DNA and the systematics of Viguiera and related genera (Asteraceae: Heliantheae). Amer J Bot 76: 1769–1778CrossRefGoogle Scholar
  128. Schuster W, Brennicke A (1986) Pseudocopies of the ATPase α-subunit gene in Oenothera mitochondria are present on different circular molecules. Mol Gen Genet 204: 29–35CrossRefGoogle Scholar
  129. Schuster W, Brennicke A (1987a) Plastid, nuclear and reverse transcriptase sequences in the mitochondrial genome of Oenothera: is genetic information transferred between organelles via RNA? EMBO J 6: 2857–2863PubMedGoogle Scholar
  130. Schuster W, Brennicke A (1987b) Plastid DNA in the mitochondrial genome of Oenothera: intra-and interorganellar rearrangements involving part of the plastid ribosomal cistron. Mol Gen Genet 210: 44–51CrossRefGoogle Scholar
  131. Schuster W, Brennicke A (1988) Interorganellar sequence transfer: plant mitochondrial DNA is nuclear, is plastid, is mitochondrial. Plant Sci 54: 1–10CrossRefGoogle Scholar
  132. Schuster W, Wissinger B, Unseld M, Brennicke A (1990) Transcripts of the NADH-dehydrogenase subunit 3 gene are differentially edited in Oenothera mitochondria. EMBO J 9: 263–269PubMedGoogle Scholar
  133. Schweiger H-G, de Groot EJ, Leible MB, Tymms MJ (1986) Conservative and variable features of the chloroplast genome of Acetabularia. In: Akoyunoglou G, Senger H (eds) Regulation of chloroplast differentiation. AR Liss, New York, pp 467–476 (Plant biology series, vol 2)Google Scholar
  134. Shimada H, Sugiura M (1989) Pseudogenes and short repeated sequences in the rice chloroplast genome. Curr Genet 16: 293–301PubMedCrossRefGoogle Scholar
  135. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng B-Y, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5: 2043–2049PubMedGoogle Scholar
  136. Shirzadegan M, Christey M, Earle ED, Palmer JD (1989) Rearrangement, amplification, and assortment of mitochondrial DNA molecules in cultured cells of Brassica campestris. Theor Appl Genet 77: 17–25CrossRefGoogle Scholar
  137. Siculella L, Palmer JD (1988) Physical and gene organization of mitochondrial DNA in fertile and male sterile sunflower. CMS associated alterations in structure and transcription of the atpA gene. Nucleic Acids Res 16: 3787–3799PubMedCrossRefGoogle Scholar
  138. Siemeister G, Hachtel W (1989) A circular 73 kb DNA from the colourless flagellate Astasia longa that resembles the chloroplast DNA of Euglena: restriction and gene map. Curr Genet 15: 435–441CrossRefGoogle Scholar
  139. Small I, Issac PG, Leaver CJ (1987) Stoichiometric differences in DNA molecules containing the atp A gene suggest mechanisms for the generation of mitochondrial genome diversity in maize. EMBO J 6: 865–869PubMedGoogle Scholar
  140. Small ID, Suffolk R, Leaver CJ (1989) Evolution of plant mitochondrial genomes via substoichiometric intermediates. Cell 58: 69–76PubMedCrossRefGoogle Scholar
  141. Steinmuller K, Ley AC, Steinmetz AA, Sayre RT, Bogorad L (1989) Characterization of the ndhC-psbG-ORF 151/159 operon of maize plastid DNA and of the cyanobacterium Synechocystis sp. PCC6803. Mol Gen Genet 216: 60–69PubMedCrossRefGoogle Scholar
  142. Stern DB, Lonsdale DM (1982) Mitochondrial and chloroplast genomes of maize have a 12-kilobase DNA sequence in common. Nature 299: 698–702PubMedCrossRefGoogle Scholar
  143. Stern DB, Palmer JD (1984a) Recombination sequences in plant mitochondrial genomes: diversity and homologies to known mitochondrial genes. Nucleic Acids Res 12: 6141–6157PubMedCrossRefGoogle Scholar
  144. Stern DB, Palmer JD (1984b) Extensive and widespread homologies between mitochondrial DNA and chloroplast DNA in plants. Proc Natl Acad Sci USA 81: 1946–1950PubMedCrossRefGoogle Scholar
  145. Stern DB, Palmer JD (1986) Tripartite mitochondrial genome of spinach: physical structure, mitochondrial gene mapping, and locations of transposed chloroplast DNA sequences. Nucleic Acids Res 14: 5651–5666PubMedCrossRefGoogle Scholar
  146. Stern DB, Palmer JD, Thompson WF, Lonsdale DM (1983) Mitochondrial DNA sequence evolution and homology to chloroplast DNA in angiosperms. In: Goldberg RB (ed) Plant molecular biology. AR Liss, New York, pp 467–477Google Scholar
  147. Strauss SH, Palmer JD, Howe GT, Doerksen AH (1988) Chloroplast genomes of two conifers lack an inverted repeat and are extensively rearranged. Proc Natl Acad Sci USA 85: 3898–3902PubMedCrossRefGoogle Scholar
  148. Sugiura M (1989) The chloroplast chromosomes in land plants. Annu Rev Cell Biol 5: 51–70PubMedCrossRefGoogle Scholar
  149. Takaiwa F, Sugiura M (1982) Nucleotide sequence of the 16S–23S spacer region in an rRNA gene cluster from tobacco chloroplast DNA. Nucleic Acids Res 10: 2665–2676PubMedCrossRefGoogle Scholar
  150. Tanaka M, Obokata J, Chunwongse J, Shinozaki K, Sugiura M (1987) Rapid splicing and stepwise processing of a transcript from the psbB operon in tobacco chloroplasts: Determination of the intron sites in petB and petD. Mol Gen Genet 209: 427–431PubMedCrossRefGoogle Scholar
  151. Tsai C-H, Strauss SH (1989) Dispersed repetitive sequences in the chloroplast genome of Douglas-fir. Curr Genet 16: 211–218PubMedCrossRefGoogle Scholar
  152. Turmel M, Bellemare G, Lemieux C (1987) Physical mapping of differences between the chloroplast DNAs of the interfertile algae Chlamydomonas eugametos and Chlamydomonas moewusil Curr Genet 11: 543–552CrossRefGoogle Scholar
  153. Turmel M, Lemieux B, Lemieux C (1988) The chloroplast genome of the green alga Chlamydomonas moewusii: localization of protein-coding genes and transcriptionally active regions. Mol Gen Genet 214: 412–419PubMedCrossRefGoogle Scholar
  154. Turner S, Burger-Wiersma T, Giovannoni SJ, Mur LR, Pace NR (1989) The relationship of a prochlorophyte Prochlorothrix hollandica to green chloroplasts. Nature 337: 380–382PubMedCrossRefGoogle Scholar
  155. Tymms MJ, Schweiger H-G (1985) Tandemly repeated nonribosomal DNA sequences in the chloroplast genome of an Acetabularia mediterranea strain. Proc Natl Acad Sci USA 82: 1706–1710PubMedCrossRefGoogle Scholar
  156. Waddle JA, Schuster AM, Lee KW, Meints RH (1990) The mitochondrial genome of an exsymbiotic Chlorella-like green alga. Plant Mol Biol 14: 187–195PubMedCrossRefGoogle Scholar
  157. Wahleithner JA, Wolstenholme DR (1988) Ribosomal protein S14 genes in broad bean mitochondrial DNA. Nucleic Acids Res 16: 6897–6913PubMedCrossRefGoogle Scholar
  158. Wahleithner JA, Macfarlane JL, Wolstenholme DR (1990) A sequence encoding a maturase-related protein in a group II intron of a plant mitochondrial nad1 gene. Proc Natl Acad Sci USA 87: 548–552PubMedCrossRefGoogle Scholar
  159. Ward BL, Anderson RS, Bendich AJ (1981) The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell 25: 793–803PubMedCrossRefGoogle Scholar
  160. Whatley JM, Whatley FR (1981) Chloroplast evolution. New Phytol 87: 233–247CrossRefGoogle Scholar
  161. Whittier RF, Sugiura M (1992) Plastid chromosomes from vascular plants—genes. In: Herrmann RG (ed) Cell organelles. Springer, Wien New York, pp 164–182 [Dennis ES et al (eds) Plant gene research. Basic knowledge and application]CrossRefGoogle Scholar
  162. Willey DL, Gray JC (1989) Two small open reading frames are co-transcribed with the pea chloroplast genes for the polypeptides of cytochrome b-559. Curr Genet 15: 213–220PubMedCrossRefGoogle Scholar
  163. Wolfe KH (1989) Rates of nucleotide substitution in higher plants and mammals. PhD Thesis, University of Dublin, DublinGoogle Scholar
  164. Wolfe KH, Sharp PM (1988) Identification of functional open reading frames in chloroplast genomes. Gene 66: 215–222PubMedCrossRefGoogle Scholar
  165. Wolfe KH, Li W-H, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84: 9054–9058PubMedCrossRefGoogle Scholar
  166. Wolfe KH, Sharp PM, Li W-H (1989) Rates of synonymous substitution in plant nuclear genes. J Mol Evol 29: 208–211CrossRefGoogle Scholar
  167. Xu MQ, Käthe SD, Goodrich-Blair H, Nierzwicki-Bauer SA, Shub DA (1990) The prokaryotic origin of a chlorophast intron: a self-splicing group I intron in the gene for tRNAleu UAA of cyanobacteria. Science 250: 1566–1570PubMedCrossRefGoogle Scholar
  168. Yamada T, Shimaji M (1987) Splitting of the ribosomal RNA operon on chloroplast DNA from Chlorella ellipsoidea. Mol Gen Genet 208: 377–383.CrossRefGoogle Scholar
  169. Yao WB, Meng B-Y, Tanaka M, Sugiura M (1989) An additional promoter within the protein-coding region of the psbD-psbC gene cluster in tobacco chloroplast DNA. Nucleic Acids Res 17: 9583–9591PubMedCrossRefGoogle Scholar
  170. Young EG, Hanson MR (1987) A fused mitochondrial gene associated with cytoplasmic male sterility is developmentally regulated. Cell 50: 41–49PubMedCrossRefGoogle Scholar
  171. Zhou D-X, Quigley F, Massenet O, Mache R (1989) Cotranscription of the S10-and spc-like operons in spinach chloroplasts and identification of three of their gene products. Mol Gen Genet 216: 439–445PubMedCrossRefGoogle Scholar
  172. Zurawski G, Clegg MT (1987) Evolution of higher-plant chloroplast DNA-encoded genes: Implications for structure-function and phylogenetic studies. Annu Rev Plant Physiol 38: 391–418CrossRefGoogle Scholar
  173. Zurawski G, Clegg MT, Brown AHD (1984) The nature of nucleotide sequence divergence between barley and maize chloroplast DNA. Genetics 106: 735–749PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1992

Authors and Affiliations

  • Jeffrey D. Palmer
    • 1
  1. 1.Department of BiologyIndiana UniversityBloomingtonUSA

Personalised recommendations