Advertisement

Safe Handling of Liquid Hydrogen

  • Walter Peschka

Abstract

The safe handling of hydrogen is currently state of the art in the industrial and commercial field [1–6]. Furthermore, within the scope of the U.S. space programs, liquid hydrogen is produced, transported, stored and expended in large amounts [7–10]. As a result of positive experience, liquid hydrogen can be compared with the alternative liquid energy carriers methane (LNG) and other low boiling hydrocarbons like gasoline for example, with respect to its behavior regarding handling and accidents [11]. According to current experience all three energy carriers mentioned have certain technical safety characteristics which in this regard does not lead to a preference of any one over the other (Fig. 125). Energy carriers have different risks for different areas of application and require detailed safety inspections for each. It must be considered that new application areas could also create new technical safety problems. In contrast to the use of hydrogen in the industrial and commercial fields, in the fields of transportation, distribution and commerce it is necessary to carry out technical safety inspections in a manner similar to the other energy carriers. The positive experience with town gas, which contains a high percentage of hydrogen, as well as with liquid hydrogen within the scope of the space programs and also with automotive vehicles used to demonstrate the applicability of liquid hydrogen in transportation, does not reveal any insurmountable technical safety problems.

Keywords

Hydrogen Embrittlement Energy Carrier Liquid Hydrogen Safe Handling Storage Vessel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. P. Schödel: Hydrogen—a Safety Risk. In: Hydrogen as an Energy Vector. EC-EUR 6085, Brussels, October 1978.Google Scholar
  2. [2]
    W. Bartknecht: Explosionen. Berlin Heidelberg New York, Springer (1978).Google Scholar
  3. [3]
    B. Lewis, G. von Elbe: Combustion, Flames and Explosion of Gases, 2nd ed. New York, Academic Press (1961).Google Scholar
  4. [4]
    Anon.: Standard for Gaseous Hydrogen at Consumer Sites. Compr. Gas Ass. (CGA)—Pamphlet G-5. 1 (1965).Google Scholar
  5. [5]
    R. G. Zalosh, T. P. Short: Compilation and Analysis of Hydrogen Accidents. Rep. Dep. of Energy (DOE), Contract No. EE-77-C-02–4442 (1977).Google Scholar
  6. [6]
    R. G. Zalosh, T. P. Short, Comparative Analysis of Hydrogen Fire and Explosion Incidents. Rep. Factory Mutual Res. Corp. March 1978.Google Scholar
  7. [7]
    G. J. Caras: Prevention, Detection and Suppression of Hydrogen Explosions in Aerospace Vehicles. NASA-CR-78268 (1966).Google Scholar
  8. [8]
    W. E. Baker, J. J. Kulesz: Workbook for Predicting Pressure Wave and Fragment Effects of Exploding Propellant Tanks and Gas Storage Vessels. NASA-CR-134906 (1975).Google Scholar
  9. [9]
    Anon.: Hydrogen Safety Manual. NASA-N-75–72909 (1958).Google Scholar
  10. [10]
    P. M. Ordin: Review of Hydrogen Accidents and Incidents in NASA Operations. NASA-TM-X-71565 (1974).Google Scholar
  11. [11]
    J. Hord: Is Hydrogen Safe? NBS-Technical Note 690, 34 p. (1976). See also: NBS-Monograph 168, Selected Properties of Hydrogen, 292 p. (1981).Google Scholar
  12. [12]
    Anon.: Wasserstoffversprödung. Ergebnisse des Forschungs-u. Entwicklungsprogramms “Korrosion und Korrosionsschutz”. DECHEMA 1 (1974–1977).Google Scholar
  13. [13]
    R. L. Mills, F. J. Edeskuty: Hydrogen Embrittlement of Cold-Worked Metals. Chem. Eng. Progr. 52, 477–480 (1956).Google Scholar
  14. [14]
    M. E. Smith: Hydrogen Embrittlement of Metals—a Bibliography with Abstracts. Rep. FCR-1964, NTIS/PS-75/049, January 1975.Google Scholar
  15. [15]
    R. L. Mills, F. J. Edeskuty: Tests for Hydrogen Embrittlement of Steels Used in the Tank Farm Cylinder. Los Alamos Sci. Lab., Note: LA-3602 (1966).Google Scholar
  16. [16]
    C. W. Keller: Fiberglass Supports for Cryogenic Tanks. NASA-Lewis Res. C., NASA-CR-120937, Lockheed Missiles and Space Co., Sunnyvale, Calif., Rep. No. LMSC-D281476, October 1972.Google Scholar
  17. [17]
    C. A. Hall, D. E. Spond: Low Thermal Flux Glassfiber/Metall Vessels for LH2 Storage Systems. In: (T. N. Veziroglu, ed.) Hydrogen Energy, Part A. New York, Plenum Press (1974).Google Scholar
  18. [18]
    G. Hartwig: Low-Temperature Properties of Epoxy Resins and Composites. In: Adv. Cryog. Eng., Vol. 24, pp. 63–75. New York, Plenum Press (1978).Google Scholar
  19. [19]
    R. E. Schramm, M. B. Kasen: Static Tensile Properties of Boron-Aluminium and Boron-Epoxy Composites at Cryogenic Temperatures. In: Adv. Cryog. Eng., Vol. 22, 205–213 New York, Plenum Press (1978).Google Scholar
  20. [21]
    E. I. Augsburger, W. Dietsche, H. Kinder, J. Becker: Thermal Conductivity of Several Fibre-Reinforced Composites between 2 K and 300 K. Cryogenics 20, 666 (1980).CrossRefGoogle Scholar
  21. [22]
    Z. G. Khim: Testing of Fiberglass-Reinforced Polyester Composites. In: Adv. Cryog. Eng., Vol. 26, pp. 280–285. New York, Plenum Press (1980).Google Scholar
  22. [23]
    M. B. Kasen, R. E. Schramm: Current Status of Standardized Nonmetallic Cryogenic Laminates. In: Adv. Cryog. Eng., Vol. 28, pp. 271–278. New York, Plenum Press (1982).Google Scholar
  23. [24]
    D. J. Radcliffe, H. M. Rosenberg: The Thermal Conductivity of Glass-Fibre and Carbon-Fibre/Epoxy Composites from 2 K to 80 K. Cryogenics 22,245–249 (1982).CrossRefGoogle Scholar
  24. [25]
    J. V. Gauchel, J. L. Olinger, D. C. Lupton: Characterization of Glass-Reinforced Composites for Cryogenic Applications. In: Adv. Cryog. Eng., Vol. 28, pp. 211–222. New York, Plenum Press (1982).Google Scholar
  25. [26]
    S. S. Wang, E. S. M. Chim: Degradation of Fiber-Reinforced Composite Materials at Cryogenic Temperatures. In: Adv. Cryog. Eng., Vol. 28, pp. 191–210. New York, Plenum press (1982).Google Scholar
  26. [27]
    G. Hartwig: Reinforced Polymers at low Temperatures. In: Adv. Cryog. Eng., Vol. 28, pp. 179–190. New York, Plenum Press (1982).Google Scholar
  27. [28]
    A. Khalil, K. S. Han: Mechanical and Thermal Properties of Glass-Fiber Reinforced Composites at Cryogenic Temperatures. In: Adv. Cryog. Eng., Vol. 28, pp. 143–252. New York, Plenum Press (1982).Google Scholar
  28. [29]
    R. O. Voth: Safety at Hydrogen Pressure Gauges. In: Adv. Cryog. Eng., Vol. 17, pp. 182–188. New York, Plenum Press (1972).Google Scholar
  29. [30]
    F. J. Edeskuty, R. Reider, K. D. Williamson, Jr.: Safety. In: (G. Haselden, ed.) Cryogenic Fundamentals. London New York, Academic press (1971).Google Scholar
  30. [31]
    D. B. Chelton: Safety in the Use of Liquid Hydrogen. In: (R. B. Scott, ed.) Technology and Uses of Liquid Hydrogen. New York, Pergamon Press (1964).Google Scholar
  31. [32]
    J. Hord: Explosion Criteria for Liquid Hydrogen Test Facilities. NBS-Rep. 10734, 1972.Google Scholar
  32. [33]
    J. C. Aydelott, C. M. Spruckler: Venting of Liquid Hydrogen Tankage. NASA-TN-D5263, 1969.Google Scholar
  33. [34]
    R. M. Neary: Handling Cryogenic Fluids. Nat. Fire Prot. Ass. Quart. 54, 63–70 (1970).Google Scholar
  34. [35]
    F. J. Edeskuty, K. D. Williamson, Jr.: Storage and Handling of Cryogens. In: Adv. Cryog. Eng., Vol. 17, p. 56–68 New York, Plenum Press (1972).Google Scholar
  35. [36]
    F. J. Edeskuty, R. Reider: Liquefied Hydrogen Safety. Los Alamos Sci. Lab., Rep. LA-DC-9569 (1968).Google Scholar
  36. [37]
    W. W. Connolly: Practical Safety Standard for Commercial Handling of Liquefied Hydrogen. In: Adv. Cryog. Eng., Vol. 12, pp. 192–197. New York, Plenum Press (1967).Google Scholar
  37. [38]
    D. S. Allan: Safety Aspects of Liquid Hydrogen. SAE-Paper 994B (1965).CrossRefGoogle Scholar
  38. [39]
    L. H. Cassutt, F. E. Maddocks, W. A. Sawyer: Study of Hazards in Storage and Handling of Liquid Hydrogen. In: Adv. Cryog. Eng., Vol. 5, pp. 55–61. New York, Plenum Press (1960).Google Scholar
  39. [40]
    J. Asse: Liquefied Hydrogen Safety. Review. J. Amer. Soc. Saf. Eng. 14, 18–23 (1969).Google Scholar
  40. [41]
    Anon.: On an Investigation of Hazards Associated with the Storage and Handling of Liquid Hydrogen. Final Rep. C-61002, Contract No. AF18 (600). 1678, Arthur D. Little Inc., DDC Access. No. AD 324194, March 1960.Google Scholar
  41. [42]
    M. G. Zabetakis, D. S. Burgess: Research on the Hazards Associated with the Production and Handling of Liquid Hydrogen. WADC Tech. Rep. 60–141, December 1961, See also: U.S. Dept. of Interior, Bureau of Mines Rep. RI 5707 (1961).Google Scholar
  42. [43]
    M. G. Zabetakis, A. L. Furno, G. J. Martindill: Explosion Hazards of Liquid Hydrogen. In: Adv. Cryog. Eng., Vol. 6, pp. 185–194. New York, Plenum Press (1961).Google Scholar
  43. [44]
    M. G. Zabetakis, A. L. Furno, H. G. L. Perlee: Hazards in Using Liquid Hydrogen in Bubble Chambers. Bureau of Mines Rep. No. 6309 (1963).Google Scholar
  44. [45]
    M. G. Zabetakis: Flammability Characteristics of Combustible Gases and Vapors. Bureau of Mines Bul. (1965).Google Scholar
  45. [46]
    L. E. Bollinger, M. C. Fong, J. A. Laughrey, R. Edse: Experimental and Theoretical Studies on the Formation of Detonation Waves in Variable Geometric Tubes. NASA-TN-D1983 (1963).Google Scholar
  46. [47]
    R. D. Witkofski, J. E. Chirivella: Experimental and Analytical Analyses of the Mechanisms Governing the Dispersion of Flammable Flouds Formed by Liquid Hydrogen Spills. In: Proc. 4th World Hydrogen Energy Conf., Vol. 4, 1659–1674. New York, Pergamon Press (1982);Google Scholar
  47. see also: R. D. Witkofski, J. E. Chirivella: Int. J. Hydrogen Energy 9, 425–436 (1984).CrossRefGoogle Scholar
  48. [48]
    D. S. Burgess, M. G. Zabetakis: Fire and Explosion Hazards Associated with Liquefied Natural Gas. N 63–18682, available from NASA Sci. and Tech. Inf. Facility (1972).Google Scholar
  49. [49]
    E. M. Drake: Vapor Dispersion from Spills on LNG on Land. In: Adv. Cryog. Eng., Vol. 20, pp. 134–142. New York Plenum Press (1974).Google Scholar
  50. [50]
    J. Hord (ed.): Selected Topics on Hydrogen Fuel. NBS-Spec. Publ. SP 419 (1975).Google Scholar
  51. [51]
    T. L. Bowen: Investigation of Hazards Associated with Using Hydrogen as a Military Fuel. Naval Ship Res. and Dev. Center, rep. 4541, Bethesda, MD (1975).Google Scholar
  52. [52]
    Anon.: An Approach to Liquefied Natural Gas (LNG). Safety and Environmental Control Research. U.S. Dept. of Energy (DOE), DOE/EV-0002 (1978).Google Scholar
  53. [53]
    J. Hord: Hydrogen Safety: An Annotated Bibliography of Regulations, Standards and Guidelines. Int. J. Hydrogen Energy 5, 579–584 (1980).CrossRefGoogle Scholar
  54. [54]
    J. R. Bartlitt: Hydrogen Isotope Processing in Fusion Power Application. In: Recent Developments in Hydrogen Technology, Vol. 1. pp. 19–54, Cleveland, CRC Press (1986).Google Scholar
  55. [55]
    M. Berman: Hydrogen Behaviour and Nuclear Safety. In: K. D. Williamson Jr., F. J. Edeskuty, eds.): Recent Developments in Hydrogen Technology. Vol. 2, pp. 35–68. Cleveland, CRC Press (1986).Google Scholar
  56. [56]
    F. J. Edeskuty, J. J. Haugh, R. T. Thompson: Safety Aspects of Large Scale Combustion of Hydrogen. In: Proc. 6th World Hydrogen Energy Conf., Vol. 1, pp. 147–158. Pergamon Press (1986).Google Scholar
  57. [57]
    F. J. Edeskuty, W. F. Stewart: Slush Hydrogen Safety. 81p, Los Alamos National Lab. Rep. LA-UR-91–672, 1991 to be published also as chapt. 12 in P. M. Ordin: Hydrogen Safety Handbook, NASA Report, in preparation, 1991Google Scholar

Copyright information

© Springer-Verlag/Wien 1992

Authors and Affiliations

  • Walter Peschka
    • 1
  1. 1.Deutsche Forschungsanstalt für Luft- und Raumfahrt e.V.StuttgartBundesrepublik Deutschland

Personalised recommendations