Outlook to Future Applications

  • Walter Peschka


The use of liquid hydrogen as an energy carrier in the future strongly depends on the role which hydrogen can take in general in future energy systems. Within the scope of this book it is not possible to go in detail into the numerous publications and studies concerning hydrogen’s role in future energy systems and the arguments in this area. It is intended to provide an overview about the current state of the art of liquid hydrogen and the possible developments that can be derived from it.


Diesel Engine Propulsion System Energy Carrier Liquid Hydrogen Hydrogen Fuel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Flohn: Klimaänderung als Folge der CO2-Zunahme? Phys. Bl. 37, 184–190 (1981).Google Scholar
  2. [2]
    W. Bach, (ed.): The Carbon Dioxide Problem. Experentia 36, 767–812, 1017–1025 (1980).Google Scholar
  3. [3]
    J. Williams, (ed.): Carbon Dioxide. Climate and Society. New York, Pergamon Press (1978).Google Scholar
  4. [4]
    G. M. Woodwell, E. V. Pecan: Carbon and the Biosphere. Brookhaven Symp. in Biology No. 24, U.S. Atomic Energy Com. Div. of Technical Inf., Oak Ridge, Tenn. (1973).Google Scholar
  5. [5]
    J. S. Olson, H. A. Pfuderer, Y. H. Chan: Changes in the Global Carbon Cycle and the Biosphere.`RNL-IEIS-109. Oak Ridge, Tenn. (1978).Google Scholar
  6. [6]
    J. A. Laurmann: Impacts of CO2-Induced Climate Change, Strategic Issues and their Treatment. In: Proc. 4th World Hydrogen Energy Conf., Vol. 4, pp. 1785–1987 New York, Pergamon Press (1982).Google Scholar
  7. [7]
    B. Bolin, Ed.: The Greenhouse Effect, Climatic Change, and Ecosystems. Wiley (1986).Google Scholar
  8. [8]
    L. Margulis: Symbiosis in Cell Evolution: Life and Its Environment on the Early Earth. New York, Freeman (1981).Google Scholar
  9. [9]
    Berner et al.: The Carbon—Silicate Geochemical Cycle and Its Effect on Atmospheric Carbon Dioxide over the Past 100 Million Years. Am. J. of Sci., 283, No. 7, 641–683 (1983).Google Scholar
  10. [10]
    W. S. Broeker, G. H. Denton: The Role of Ocean—Atmosphere Reorganizations in Glacial Cycles. Geochim. Cosmochim. Acta, 53, No. 10, 2465–2501 (1989).ADSCrossRefGoogle Scholar
  11. [11]
    J. F. Kasting: Theoretical Constrainsts on Oxygen and Carbon Dioxide Concentrations in the Precambrian Atmosphere. Precambrian Res., 34, Ns. 3, 4, 205–226 (1987).Google Scholar
  12. [12]
    R. M. Zweig: Hydrogen—Prime Candidate for Solving Air Pollution Problems. In: Proc. 4th World Hydrogen Energy Conf., Vol. 4, pp. 1789–1805 New York, Pergamon Press (1982).Google Scholar
  13. [13]
    W. Häfele, H. Barnert,-W.-Sassin: Künftige… fossile Brennstoffe-Ihre Nutzung und Einbettung in moderne Energiesysteme. DFVLR-Nachrichten 35, 8–19 (1982).Google Scholar
  14. [14]
    H. Loeken: Hydrogen as Motor Fuel for Locomotives, Cars and Ships. Teknisk Ukeblad 82, 555–558, 563–565 (1935).Google Scholar
  15. [15]
    R. W. Foster, E. J. D. Escher: Hydrogen Fueled Railroad Motive Power Systems, A Feasibilit Study. Escher-Foster Techn. Ass., St. Johns, Mich. (1976).Google Scholar
  16. [16]
    R. T. Alpaugh, W. J. Escher, R. W. Foster, M. Novil: Hydrogen-Fueled Railroad Motive Power Systems. A North American View. In: Proc., 2nd World Hydrogen Energy Conf., Vol. 4, pp. 1793–1827 New York, Pergamon Press (1978).Google Scholar
  17. [17]
    B. A. Steinberg, D. S. Scott: A Systems Analysis Comparing Conventional and Hydrogen Powered Rail Locomotives. In: Proc. 17th IECEC, Paper 829372, pp. 1178–1183, Los Angeles (1982).Google Scholar
  18. [18]
    W. D. Van Vorst, R. L. Wolley: Hydrogen Fueled Surface Transportation. In: Hydrogen: Its Technology and Implications Vol. 4: (K. E. Cox., K. D. Williamson, eds.). Boca Raton, Florida, CRC-Press (1979).Google Scholar
  19. [19]
    T. Ishigohka: A Conceptual Design of a Hydrogen Fueled Magnetically Levitated Superconducting High-Speed Train. In: Proc., 4th World Hydrogen Energy Conf., Vol. 3, pp. 1095–1104 New York, Pergamon Press (1982).Google Scholar
  20. [20]
    H. W. Carhart, W. A. Affens, B. D. Boss, et al.: Hydrogen as a Navy Fuel, Special Study. Naval Res. Lab., Washington, D. C., NRL-7754, NTIS (1974).Google Scholar
  21. [21]
    C. F. Sindt: Transmission of Hydrogen. In: Selected Topics of Hydrogen Fuel (J. Hard, ed.). NBS-Spec. Publ. 419, (1975).Google Scholar
  22. [22]
    E. Quandt: Investigation of Hydrogen Fueled Naval Vehicles. In: Hydrogen Energy, Part B ( T. M. Veziroglu, ed.). New York, Plenum Press (1974).Google Scholar
  23. [23]
    A. E. Ford: Hydrogen Fueled Turbine Boat Demonstration. SAE-paper 770797, September (1977).Google Scholar
  24. [24]
    E. N. Cart, Jr., et al.: Alternative Energy Sources for Nonhighway Transportation. U.S. Dept. of Energy (DOE), Transportation Energy Conservation Div., Washington, D. C. (1977).Google Scholar
  25. [25]
    H. Silla: Possible Future Maritime Fuels. Webb Inst. of Naval Architecture, Glen Glove, N. A. (1977).Google Scholar
  26. [26]
    Anon.: Alternate Fuels for Maritime Use. National Academy of Sci., Maritime Res. Board, Washington, D. C. (1980).Google Scholar
  27. [27]
    J. P. Archibald: Hydrogen Fueled Ships. In: Proc., Int. Conf. on Alternate Energy Sources, Miami Beach (1980); see also: Alternative Energy Sources 3 T. N. Veziroglu, ed.). Vol. 5, Berlin Heidelberg. New York, Springer (1983).Google Scholar
  28. [28]
    R. C. Fooks: Some Important Factors in LNG-Tanker Design Selection. In: Adv. Cryog. Eng., Vol. 19, pp. 269–275 New York, Plenum Press (1973).Google Scholar
  29. [29]
    A. Patuhov: Status Report on LNG Tanker Design, Adv. Cryog. Eng., Vol. 19, pp. 282–291. New York, Plenum Press (1973).Google Scholar
  30. [30]
    J. L. Howard: Near-Team Trends in LNG-Tankships Design. In: Adv. Cryog. Eng., Vol. 19, pp. 276–281. New York, Plenum Press (1973).Google Scholar
  31. [31]
    C. F. Kollbrunner, H. Stauber: Unerschöpfliche saubere Wasser-und Energiequellen in Grönland. Inst. für bauwissenschaftliche Forschung, Heft 25. Zürich, Leemann (1973).Google Scholar
  32. [32]
    V. Bundschuh: Nutzung der Gletschereisenergie. In: Energiequellen für morgen? Teil 6: Nutzung der Wasserenergie. Programmstudie im Auftrag des BMFT, Arbeitsgemeinschaft der Großforschungseinrichtungen (AGF/ASA), Nr. ASAZE/03/75 (1975).Google Scholar
  33. [33]
    World Energy Conference 1980: In: Proc., World Energy Conference Munich (1980).Google Scholar
  34. [34]
    A. J. Stewart, J. H. Springer, T. J. Doyle: Effectiveness of Superconducting Electric Drives. Naval Eng. J. 91, No. 2 April (1979).Google Scholar
  35. [35]
    B. Gamble, T. A. Keim: Superconducting Generator Design for Airborne Application. In: Adv. Cryog. Eng., Vol. 25, pp. 127–136. New York, Plenum Press (1979).Google Scholar
  36. [36]
    H. Künkler H.: Air Precooling before Compression Effect on the Air Breathing Engine of a Space-Craft Launch Vehicle. 5th Annual DGLR Meeting, DGLR, Köln, NTIS (1972).Google Scholar
  37. [37]
    R. Hancox: Fusion Reactors: 1969–80. Nucl. Fusion 20, 1064–1968 (1980).CrossRefGoogle Scholar
  38. [38]
    R. E. Kidder: Laser Driven Isentropic Hollow-Shell Implosion: The Problem of Ignition. Nucl. Fusion 19, 223–234 (1979).ADSCrossRefGoogle Scholar
  39. [39]
    F. ‘Winterberg: The Possibilit of Precessing a Dense Thermonuclear Plasma by an Intense field Emission Discharge, Phys. Rev. 174, 212–220 (1968).CrossRefGoogle Scholar
  40. [40]
    G. Yonas, J. W. Poukey, K. R. Prestwick, et al.: Electron Beam Focussing and Application to Pulsed Fusion. Nucl. Fusion 14, 731–740 (1974).ADSCrossRefGoogle Scholar
  41. [41]
    Sh. A. Goldstein, R. Lee: Focussed Intense Ion Beams Using Self-Pinched Relativistic Electron Beams. Phys. Lev. Letts. 35, 1079–1082 (1973).ADSCrossRefGoogle Scholar
  42. [42]
    P. A. Miller, R. I. Butler, M. Conan, et al.: Propagation of Pinched Electron Beams for Pellet Fusion. Phys. Rev. Letts. 39, 92–98 (1977).ADSCrossRefGoogle Scholar
  43. [43]
    J. A. Nation, R. N. Sudan (eds.): In: Proc., 2nd Int. Conf. High Power Electron and Ion Beam Research and Technology, Cornell Univ., Ithaka, Lab of Plasma Studies (1977).Google Scholar
  44. [44]
    J. D. Johnson, R. N. Sudan: High Power Ion Diodes for Inertial Confinement Fusion Experiments. Sandia Labs., Albuquerque, N. M., Rep. RS-5244/1003 (1978).Google Scholar
  45. [45]
    G. A. Moses, R. Spencer: Compact Electron Beam or Light-Ion Beam Fusion Reactor Cavity Design using Non-Spherical Blast Waves. Nucl. Fusion 19, 1386–1389 (1979).ADSCrossRefGoogle Scholar
  46. [46]
    G. Yonas: Developments in Sandia Laboratories Particle Beam Fusion Programme, Plasma Physics and Contr. Nucl. Fusion Res. Proc. 7th Int. Conf., Innsbruck (1978).Google Scholar
  47. [47]
    J. S. Humphries, Jr.: Intense Pulses Ions Beams for Fusion Applications. Nucl. Fusion 20, 154 (1989), see also: Physics Today, 21, 231, December (1980).Google Scholar
  48. [48]
    Anon.: Untersuchungen zur Eignung von Schwerionenstrahlen für den Trägheitseinschluß. Ges. Für Schwerionenforschung, GSI-Bericht, Darmstadt, Juni (1980).Google Scholar
  49. [49]
    R. F. Post: Direct Conversion of Fusion Energy to Electricity, paper 709004. In: Proc. 5th Intersoc. Energy Cony. Eng. Conf. (IECEC), Las Vegas, Nev. (1970).Google Scholar
  50. [50]
    W. Peschka: Hochtemperatur Energiesysteme unter Verwendung von Plasmareak- toren und induktiven magnetoplasmadynamischen Wandlern. DLR-FB-67–59, DFVLR-Ber. (1967); see also: W. Peschka, Some Notes on Future Inductive MPD-Converters with Controlled Nuclear Fusion. Proc., 5th IECEC (1970).Google Scholar
  51. [51]
    W. Peschka: Neue Energiesysteme für die Raumfahrt. München: Goldmann (1972).Google Scholar
  52. [52]
    C. Carpetis, W. Peschka: Untersuchung der Wasserstoffspeicherung mit Kryoadsorbern. Abschlußbericht Projekt FA-057–76 EHC. EG-Kommission, Brüssel (1978).Google Scholar
  53. [53]
    C. Carpetis: A System Consideration of Alternative Hydrogen Storage Facilities for Estimation of Storage Costs. Int. J. Hydrogen Energy 5, 423–439 (1980).ADSCrossRefGoogle Scholar
  54. [54]
    C. Carpetis: Estimation of Storage Costs for Large Hydrogen Storage Facilities. Int. J. Hydrogen Energy 7, 191–205 (1982).ADSCrossRefGoogle Scholar
  55. [55]
    C. Carpetis: Storage, Transport and Distribution of Hydrogen. In: Hydrogen as an Energy Carrier (C. J. Winter, J. Nitsch eds.). pp. 249–289, Berlin Heidelberg, New York Tokyo, Springer (1988).CrossRefGoogle Scholar
  56. [56]
    F. Lawaczeck: Storage of Surplus Electrical Energy as Hydrogen. Tek. Tidskr. 31, 395–401; 32, 407–412 (1929).Google Scholar
  57. [57]
    J. Hord, (ed.): Selected Topics on Hydrogen Fuel. NBS Spec. Publ. 419, 208 (1975).Google Scholar
  58. [58]
    L. A. Booth, J. D. Balcomb, F. J. Edeskuty: Combined Nuclear and Hydrogen Economy: A Long-Term Solution to the World’s Energy Problems. In: Proc., 8th IECEC-Con£, A. H. Smith, (ed.): pp. 396–403. Amer. New York, Amer. Inst. of Aeron. and Astron. (1973).Google Scholar
  59. [59]
    T. S. Jayadevaiah, S. C. Chin: Economics of a Hydrogen Storage Peaking Power Plant. ASME paper No. 74-WA/PW R-6 (1974).Google Scholar
  60. [60]
    F. J. Salzano, E. A. Cherniayski, et al.: Role of Hydrogen in Electric Energy Storage. In: Hydrogen Energy, Part B ( T. N. Veziroglu, ed.). New York, Plenum Press (1975).Google Scholar
  61. [61]
    C. J. Kippenhan, R. C. Corlett: Hydrogen-Energy Storage for Electrical Utility Systems. In: Hydrogen Energy, Part B. ( T. N. Veziroglu, ed.). New York, Plenum Press (1975).Google Scholar
  62. [62]
    J. P. Ackerman, J. J. Barghausen, L. E. Link: Assessment Study of Devices for the Generation of Electricity from Stored Hydrogen. Argonne Nat. Lab. Rep., ANL-75–71, December (1975).Google Scholar
  63. [63]
    W. R. Parrish: Economic Study of Electrical Peaking Alternatives. In: Hydrogen Energy, Part 5, ( T. N. Veziroglu, ed.). New York, Plenum Press (1975).Google Scholar
  64. [64]
    W. R. Parrish: Hydrogen in the Electrical Utility Industry. In: Selected Topics on Hydrogen Fuel, NBS Spec. Publ. 419 (1975).Google Scholar
  65. [65]
    W. J. Escher, et al.: A Non-Polluting Noiseless Engine for Powerplant Applications with Specific Orientation to a High Speed Ground Transportation Systems. Rocketdyne, RIP-13, Canoga Park, Calif. (1970).Google Scholar
  66. [66]
    R. M. Reese, A. D. Carmichael: Cycle for the Propulsion of Deep Submersibles. 6th IECEC, pp. 563–576. New York, SAE (1971).Google Scholar
  67. [67]
    H. Wojkowski, W. Schnurnberger, H. J. Sternfeld: Abschätzung erzielbarer Wirkungsgrade und Kosten bei der Verstromung von Wasserstoff. EG–Abschlußbericht zu FA 404–78–7, EHD, Brüssel (1981).Google Scholar
  68. [68]
    D. E. Wright, A. D. Lucci, J. Campbell, J. C. Lee: Hydrogen Turbine Power Conversion System Assessment. NASA-CR-135298, RI/RD 77–252, April (1978).Google Scholar
  69. [69]
    R. S. Colladay: Thermal Feasibility of Using Methane or Hydrogen Fuel for Direct Cooling of a First Stage Turbine Stator. NASA-TN-D-6042, NTIS (1970).Google Scholar
  70. [70]
    G. Stärk, W. BeBlein, et al.: Untersuchungen der Partikelemission von Dieselmotoren auf direkt wirkende Mutagenität. MTZ 44, 263–267 (1983).Google Scholar
  71. [71]
    R. W. Foster, W. J. D. Escher: A Project Plan for Implementing a Hydrogen Fueled-Hydrogen Transport Rail System. E: F Technology Inc. St. Johns, Mich. (1983).Google Scholar
  72. [72]
    J. M. Smith, L. D. Nichols, G. R. Seikel: NASA-Lewis H2–02 MHD-Program. In: Proc., 14th Symp. on Engineering Aspects of Magnetohydrodynamics, paper III, 7 (1974).Google Scholar
  73. [73]
    B. A. Steinberg, D. S. Scott: Hydrogen vs. Diesel Fueled Locomotives: A Techno-Economic Appraisal. Int. J. Hydrogen Energy, 9, No. 1 /2, 101–108 (1984).CrossRefGoogle Scholar
  74. [74]
    H. J. Sternfeld, P. Heinrich: A Demonstration plant for the Hydrogen/Oxygen Spinning Reserve. Int. J. Hydrogen Energy, 14, No. 10, 703–716 (1989).CrossRefGoogle Scholar
  75. [75]
    K. Kordesch, Ch. Gruber et al.: Fuel Cell Research and Development Projects in Austria. Int. J. Hydrogen Energ, 14, No. 12, 915–925 (1989).CrossRefGoogle Scholar
  76. [76]
    F. N. Lin, W. I. Moore, S. W. Walker: Economics of Liquid Hydrogen from Water Electrolysis. Int. J. Hydrogen Energy, 10, No. 12, 811–816 (1985).CrossRefGoogle Scholar
  77. [77]
    M. A. K. Lodhi: Power Potential from Ocean Currents for Hydrogen Production. Int. J. Hydrogen Energy, 13, No. 3, 151–172 (1988).MathSciNetCrossRefGoogle Scholar
  78. [78]
    G. D. Brewer: Advanced Supersonic Technology Concept Study—Hydrogen Fueled Configuration, NASA CR-14 49 35, Lockheed California Company (1976).Google Scholar
  79. [79]
    F. Suttrop: Überschallverbrennung; Zweck und eigene Versuchseinrichtungen, WGLR-Jahrbuch, pp. 366–376 (1963).Google Scholar
  80. [80]
    R. S. Stolarski: The Antarctic Ozone Hole. Sci. Am. pp. 20–26 (1988).Google Scholar
  81. [81]
    J. F. Kasting et al.: How Climate Evolved on the Terrestrial Planets. Sci. Am., pp. 46–53 (1988).Google Scholar
  82. [82]
    S. Walmsley, J. Wilson: HOTOL—A Cryogenic Materials Challenge, Adv. in Cryogenic Engineering, Vol. 34. New York, Plenum Press (1988).Google Scholar
  83. [83]
    R. R. Barthelemy: The National Aero-Space Plane Program. In: Proc. Symp. on National Aero-Space Plane and Space Applications, pp. 1–7, Hawaii: Hawaii Natural Energy Institute, Univ. of Hawaii 1990Google Scholar
  84. [84]
    Th. Wierzbanowski, J. G. Amstrong.: The Flight Test Program for the Hydrogen Powered NASP/X-30 Research Aircraft. In: Proc. Symp. on National Aero-Space Plane and Space Applications, pp. 21–33, Hawaii: Natural Energy Institute, Univ. of Hawaii 1990Google Scholar

Copyright information

© Springer-Verlag/Wien 1992

Authors and Affiliations

  • Walter Peschka
    • 1
  1. 1.Deutsche Forschungsanstalt für Luft- und Raumfahrt e.V.StuttgartBundesrepublik Deutschland

Personalised recommendations