Advertisement

Liquid Hydrogen as Fuel

  • Walter Peschka

Abstract

For more than a century fuels used for transportation have been almost exclusively based on hydrocarbons from oil. Today, transportation without hydrocarbon based fuels is almost inconceivable. Only in times of shortage for instance, in both the World Wars or as a consequence of the exertion of political influence by the—relatively small number of—non-European oil exporting countries does the general public become aware of the enormous dependency on oil. Paradoxically intensive efforts in the middle of the last century resulted in hardly any use for oil other than petroleum lights and for medicinal purposes.

Keywords

Test Vehicle Liquid Hydrogen Mixture Formation Nitric Oxide Emission Ground Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Marchetti: Air Transport Hydrogen, Master Key to the Energy Market. Euro-Spectra 10, 117–129 (1971).Google Scholar
  2. [2]
    C. Marchetti: Hydrogen and Energy. Chem. Econ. Eng. Rev. 5, 7–25 (1973).Google Scholar
  3. [3]
    C. Marchetti, N. Nakicenovic: The Dynamics of Energy Systems and the Logistic Substitution Model. Ar-78–1B, Int. Inst. for Appl. Systems Analysis (IASA ) (1978).Google Scholar
  4. [4]
    A. S. Manne, C. Marchetti: Hydrogen: Mechanisms and Strategies of Market Penetration. In: T. N. Veziroglu, “Hydrogen Energy”, Part P. (ed.), pp. 1193–1209. New York Plenum Press (1974).Google Scholar
  5. [5]
    C. Marchetti: The Evolution of the Energy Systems and the Aircraft Industry. In: Proc. Symp. Hydrogen in Air Transportation, DFVLR, Stuttgart (1979).Google Scholar
  6. [6]
    L. W. Jones: Liquid Hydrogen as a Fuel for the Future. Science 174, 367–370 (1971).ADSGoogle Scholar
  7. [7]
    A. Baine: LH2-Spacecraft Experience Applicable to Aircraft Operations. In: Pro., Working Symp. on Liquid Hydrogen-Fueled Aircraft. NASA-Langley Res. Center, Hampton, VA, May 15–16 (1973).Google Scholar
  8. [8]
    A. V. Cleaver: Cryogenic Fluids in the Aerospace Industry. Cryotech. 73, 107–111 (1974); see also: Proc., Ind. Gases Conf. Guildford England, IPC Sci., Technol. Press (1974).Google Scholar
  9. [9]
    I. I. Pinkel: Alternative Fuels for Aviation. Impacts Mil. Res. Dev., AGARD, Annual Meeting, pp. 31–36 (1974).Google Scholar
  10. [10]
    W. J. D. Escher, G. D. Brewer: Hydrogen: Make Sense Fuel for an American Supersonic Transport. J. Aircr. 12, 3–10 (1975).Google Scholar
  11. [11]
    A. Silverstein, E. W. Hall: Liquid Hydrogen as a Jet Fuel for High Altitude Aircraft. RME 55C28a, NACA, pp. 1–2 (1955).Google Scholar
  12. [12]
    B. E. Gammon: Preliminary Evaluation of the Air and Fuel Specific-Impulse Characteristics of Several Potential Ram-Jet Fuels, IV: Hydrogen, Methylnaphtalene and Carbon. RME 51Fo5, NACA (1951).Google Scholar
  13. [13]
    W. T. Mikolowski, L. W. Noggle: The Potential of Liquid Hydrogen as a Military Aircraft Fuel. Int. J. Hydrogen Energy 3, 449–460 (1978).Google Scholar
  14. [14]
    L K. Carson, G. W. Davis, E. F. Versaw, et al.: Study of Methane Fuel for Subsonic Transport Aircraft. NASA-CR-159320, Lockheed Calif. Corp. (1980).Google Scholar
  15. [15]
    G. D. Brewer: The Prospects for Liquid Hydrogen Fueled Aircraft. Int. J. Hydrogen Energy 7, 21–41 (1982), see also: Proc., 17th IECEC, Los Angeles (1982).Google Scholar
  16. [16]
    R. D. Witkofski: Comparison of Alternate Fuels for Aircraft. NASA-TM-701 55 (1979).Google Scholar
  17. [17]
    R. D. Witkofski: Alternate Aircraft Fuels—Prospects and Operational Implications. NASA-TM-X-74030 (1977).Google Scholar
  18. [18]
    J. F. Sloop: Liquid hydrogen as a Propulsion Fuel 1945–1959. NASA SP 44 4, Stock–No. 033–000–00707–8, U.S. Governm. Printing Office, Washington, D.C. (1978).Google Scholar
  19. [19]
    G. D. Brewer: Hydrogen Usage in Air Transportation. Int. J. Hydrogen Energy 3, 217–229 (1978).Google Scholar
  20. [20]
    W. J. D. Escher: Prospects for Liquid Hydrogen Fueled Commercial Aircraft. Escher—Foster Technol. Ass. Rep. PR-37 (1973).Google Scholar
  21. [21]
    W. J. D. Escher: Liquid Hydrogen Future Aircraft Fuel: Background, Payoff and Cryogenic Engineering Challenge. In: Adv. Cryog. Eng. 20, 70–81. New York, Plenum Press (1974).Google Scholar
  22. [22]
    G. D. Brewer, R. E. Morris: Study of LHZ Fueled Subsonic Passenger Transport Aircraft, NASA CR-144935, Lockheed -California Company, January (1976).Google Scholar
  23. [23]
    G. D. Brewer: Is LHZ the High Cost Option for Aircraft Fuel? In: Proc. 17th IECEC-Conf., Vol. 3, pp. 1191–1197, Los Angeles (1982).Google Scholar
  24. [24]
    Anon.: An Exploratory Study to Determine the Integrated Technological Air Transportation System Ground Requirements of Liquid Hydrogen Fueled Subsonic, Long-Haul Civil Air Transports. The Boeing Commercial Airplane Corp., NASACR-2699 (1976).Google Scholar
  25. [25]
    Anon.: IEA—Programme of Research and Development on the Production of Hydrogen from Water: Task III, Assessment of Potential Future Markets for the Production of Hydrogen from Water. Consolidated Final Report, pp. 38, 39. Comm. of the European Communities, Brussels (1980).Google Scholar
  26. [26]
    S. Weiss: The Use of Hydrogen for Aircraft Propulsion in View of the Fuel Crisis. NASA-TM-X-68242 (1973).Google Scholar
  27. [27]
    Anon.: Wasserstoff als Sekundärenergieträger, Vorschlag für ein Forschungs-und Entwicklungsprogramm. DFVLR-Mitt. 81–10 (1981).Google Scholar
  28. [28]
    W. J. D. Escher, R. W. Foster, R. R. Tison, J. A. Hanson: Solar/Hydrogen Systems Assessment. DOE/JPL-955492, U.S. Dept. of Energy, Div. of Energy Storage Systems, Vols. 1, 2 (1980); see also: Int. J. Hydrogen Energy 7, 3–20 (1982).Google Scholar
  29. [29]
    J. E. Johnson: The Economics of Liquid Hydrogen Supply for Air Transportation. In: Adv. Cryog. Eng., Vol. 19, pp. 12–22. New York, Plenum Press (1973).Google Scholar
  30. [30]
    L. Prandtl: Führer durch die Strömungslehre, 3. Aufl. Braunschweig: Vieweg (1949).Google Scholar
  31. [31]
    H. Schlichting: Grenzschichttheorie, 483 S. Karlsruhe: G. Braun (1958).Google Scholar
  32. [32]
    L. Lees: The Stability of the Laminar Boundary-Layer in a Compressible Fluid. NACA-Rep. 876 (1947).Google Scholar
  33. [33]
    E. Reshotko: Drag Reduction by Cryo-Fuel. Astronaut. Aeronaut. 10, 1 (1978).Google Scholar
  34. [34]
    R. C. Mulready: Liquid Hydrogen Engines. In: Technology and Uses of Liquid Hydrogen R. G. Scott (ed.), 149–180. New York, Pergamon Press (1964).Google Scholar
  35. [35]
    D. T. Pratt, K. J. Allwine, P. C. Malte: Hydrogen as a Turbojet Engine Fuel-Technological, Economical and Environmental Impacts. In: Proc., 2nd Int. Symp. on Air Breathing Engines, Sheffield, England, Royal Aeronaut. Soc. (1974).Google Scholar
  36. [36]
    J. C. Riple, C. F. Baerst: Preliminary Studies of a Turbofan Engine and fuel System for Use with Liquid Hydrogen. In: Proc. Int. symp. Hydrogen in air Transportation, DFVLR, Stuttgart (1979).Google Scholar
  37. [37]
    A. A. Dupont: Liquid Hydrogen as a Supersonic Transport Fuel. In: Adv. Cryog. Eng., Vol. 12, pp. 1–20. New York, Plenum Press (1967).Google Scholar
  38. [38]
    J. B. Whitlow, R. J. Jr., Weber, K. C. Civinkas: Preliminary Appraisal of Hydrogen and Methane Fuels in a Mach 2.7 Supersonic Transport. NASA-TM-X-6822 (1973).Google Scholar
  39. [39]
    G. D. Brewer, R. E. Morris: Minimum Energy Liquid Hydrogen Supersonic Cruise Vehicle Study. NASA-CR-137776, Lockheed Calif. Comp. (1975).Google Scholar
  40. [40]
    G. D. Brewer: Advanced Supersonic Technology Concept Study-Hydrogen Fueled Configuration. NASA-CR-114718, Lockheed Calif. Comp. (1974).Google Scholar
  41. [41]
    R. A. Jones, P. W. Huber: Toward Scramjet Aircraft. Astronaut. Aeronaut., 2, 38–49 (1978).Google Scholar
  42. [42]
    R. J. Henery, G. Y. Anderson: Design Considerations for the Airframe-Integrated Scramjet. NASA-TM-X-2895 (1973).Google Scholar
  43. [43]
    P. J. Waltrup, G. Y. Anderson, F. D. Stull: Supersonic Combustion Ramjet (Scramjet) Engine Development in the United States. In: Proc. 3rd Symp. Fut. Airbreathing Engines, Munich: (1976). DGL-Fachbuch 6.Google Scholar
  44. [44]
    S. Z. Pinckey: International Performance for Langley Scramjet Engine Module, NASA-TM-X-740378 (1977).Google Scholar
  45. [45]
    J. V. Becker, F. S. Kirkham: Hypersonic Transports. NASA-SP-292 (1971).Google Scholar
  46. [46]
    G. D. Brewer, R. E. Morris, R. H. Lange, J. W. Moore: Study of the Application of Hydrogen Fuel to Longe-Range Subsonic Transport Aircraft. NASA-CR-1325559, Lockheed Calif. Comp. and Lockheed Georgia Comp. (1975).Google Scholar
  47. [47]
    G. D. Brewer, G. Wittlin, E. F. Versaw, et al.: Assessment of Crash Fire Hazard of LH2-Fueled Aircraft. Final Report, NASA-CR-165525 (1981).Google Scholar
  48. [48]
    G. D. Brewer, R. E. Morris, D. W. Davis, et al.: Final Report of Fuel Systems for LH2-Fueled Subsonic Transport Aircraft. NASA-CR-145319, Lockheed Calif. Comp. (1977).Google Scholar
  49. [49]
    F. M. Anthony, J. Z. Colt, R. G. Helenbrock: Development and Validation of Cryogenic Foam Insulation for LH2 Subsonic Transports. NASA-CR-3404 (1981).Google Scholar
  50. [50]
    G. R. Cunnington, Jr.: Analysis and Design of Insulation System for LH2-Fueled Aircraft. In: Proc. Int. Symp. Hydrogen in Air Transportation, DFVLR, Stuttgart (1979).Google Scholar
  51. [51]
    G. D. Brewer: Some Environmental and Safety Aspects of Using Hydrogen as a Fuel. Int. J. Hydrogen Energy 3, 461–474 (1979).ADSGoogle Scholar
  52. [52]
    J. Grobmann, C. Norgreen: Turbojet Emission, Hydrogen Versus JP. NASA-TM-X68258 (1973).Google Scholar
  53. [53]
    D. E. Broesbeck, W. R. Prince, C. C. Ciepluch: Evaluation of Hydrogen Fuel in a Full Scale Afterburner. NACA-RM-E57H06 (1957).Google Scholar
  54. [54]
    D. M. Straight, A. L. Smith, H. H. Christenson: Brief Studies of Turbojet Combustor and Fuel System Operation with Hydrogen Fuel at — 400 F. NACA-RM-E56K27a (1957).Google Scholar
  55. [55]
    A. Ferri, A. Agnone: Jet Engine Design that can Drastically Reduce Oxides of Nitrogen. AIAA-Paper, 74–160 (1974).Google Scholar
  56. [56]
    P. F. Korycinski: Air Terminals and Liquid Hydrogen Commercial Air Transports. Int. J. Hydrogen Energy 3, 231–250 (1978).Google Scholar
  57. [57]
    G. D. Brewer (ed.): LH2—Airport Requirements Study, Lock-heed Calif. Comp., NASA-CR-2700 (1976).Google Scholar
  58. [58]
    J. E. Johnson: The Economics of Liquid Hydrogen Supply for Air Transportation. In: Adv. Cryog. Eng., Vol. 19. New York, Plenum Press (1974).Google Scholar
  59. [59]
    J. A. Havens: A Description and Assessment of the SIGMET LNG-Vapor Dispersion Model Rep. CG-M-3–79, NTIS, Springfield, VA 22161 (1979).Google Scholar
  60. [60]
    D. N. Gideon, A. A. Putnam: Dispersion Hazard from Spills of LNG on Land and on Water. Cryogenics 17, 9–15 (1977).Google Scholar
  61. [61]
    N. Gifford, A. Frandkin, Jr.: An Outline of Theories of Diffusion in the Lower Layers of the Atmosphere. In: Meteorology and Atomic Energy (D. H. Slade, ed.) Rep. TID-24190, NTIS, Springfield.Google Scholar
  62. [62]
    J. A. Raymer: Operation on an Aircraft Engine Using Liquefied Methane Fuel. In: Adv. Cryog. Eng., Vol. 26, pp. 1001–1006. New York, Plenum Press (1981).Google Scholar
  63. [63]
    R. D. Witkofski: Dispersion of Flammable Vapor Clounds Resulting from Large Spill of Liquid Hydrogen. NASA-TM-83131 (1981).Google Scholar
  64. [64]
    J. Fay: Unusual Fire Hazard of LNG Tanker Spills. Comb. Sci. Technol. 7, 225–237 (1973).Google Scholar
  65. [65]
    Y. Tsujikawa, M. Hirano: Effects of Precooling of Suction Air on the Performance of Liquid Hydrogen-Fueled Supersonic Aircraft Engine. Int. J. Hydrogen Energy 13, 691–700 (1988).Google Scholar
  66. [66]
    Y. Tsujikawa, H. Asakura: Optimization of the Precooler of Hydrogen Fueled Gas Turbine. J. Heat Recovery Systems 8, 433–443 (1988).Google Scholar
  67. [67]
    Y. Tsujikawa, T. Sawada: On the Utilization of Hydrogen as a Fuel for Gas Turbine. Bull—JSME 23, 1506–1513 (1980).Google Scholar
  68. [68]
    Y. Tsujikawa, Y. Tsukamoto, S. Fujii: Performance Analysis of Scramjet Engines, Bull. Univ. Osaka Prefecture A 37, 1–13 (1988).Google Scholar
  69. [69]
    Y. Tsujikawa, M. Nagaoka: Determination of Cycle Configuration of Gas Turbine and Aircraft Engines by Optimization Procedure. In: Proc., 35th ASME Int. Gas Turbine and Aeroengine Congress, June 11–14, Brussels, Belgium (1990).Google Scholar
  70. [70]
    A. A. Desoky, A. S. K. Halaf, El-Mahallawy, F. M.: Combustion Process in a Gas Turbine Combustor when using H2, NH3 and LPG Fuels. Int. J. Hydrogen Energy, 15, 203–312 (1990).Google Scholar
  71. [71]
    S. C. Lee: Turbulent Mixing of Coaxial Jets between Hydrogen and Air. Int. J. Hydrogen Energy 11, 807–816 (1986).ADSGoogle Scholar
  72. [72]
    I. Souche, A. Chatalic, B. G. Bregeon: Kinetics of OH Recombination in the Post Combustion Zone of an Atmospheric Pressure Hydrogen—Oxygen Flame. Int. J. Hydrogen Energy 14, 677–680 (1989).Google Scholar
  73. [73]
    H. P. Trinh, K. M. Isaac, Y. S. Chen: Numerical Study of Hydrogen Air Mixing Flowfield in a Typical Combustor Geometry. Int. J. Hydrogen Energy 14, 737–748 (1989).Google Scholar
  74. [74]
    A. Sotheran et al.: Some Practical Aspects of Staged Premixed, Low Emission Combustion Trans. ASME 107, 2–9 (1985).Google Scholar
  75. [75]
    H. P. Alder (ed.): Hydrogen in Air Transportation, Feasibility Study for Zürich Airport, Switzerland. Int. J. Hydrogen Energy 12, 571–586 (1987).Google Scholar
  76. [76]
    N. G. L. Jones: A Schematic Design for a HAZOP Study on a Liquid Hydrogen Filling Station. Int. J. Hydrogen Energy 9, 115–122 (1984).Google Scholar
  77. [77]
    G. D. Brewer: Hydrogen Fueled Aircraft-1983 Update. In: Recent Developments in Hydrogen Technology (K. D. Williamson, Jr., F. J. Edeskuty, eds.), Vol. 1, pp. 56–153. Cleveland Ohio, CRC Press (1986).Google Scholar
  78. [78]
    G. R. Cunnington, R. T. Parmley: Aerodynamic Surface Cooling for Laminar Flow Control for Hydrogen-Fueled Subsonic Aircraft, SAE-paper 801155 (1980).Google Scholar
  79. [79]
    G. D. Brewer: Hydrogen Aircraft Technology. Boca Raton Fa, CRC (1991).Google Scholar

Ground Transport

  1. [1]
    L. W. Jones: Liquid Hydrogen as a Fuel for the Future. Science 174, 367–370 (1971).ADSGoogle Scholar
  2. [2]
    M. R. Swain, R. R. Adt: The Hydrogen-Air Fueled Automobiles. In: Proc. 7th IECEC, paper 729217. New York, ACS (1972).Google Scholar
  3. [3]
    W. J. D. Escher: On the Higher Energy Form of Water (H2O*) in Automotive Vehicle Advanced Power Systems. In: Proc. 7th IECEC, paper 729119. New York, ACS (1972).Google Scholar
  4. [4]
    W. E. Winsche, K. C. Hoffmann, F. J. Salzano: Economics of Hydrogen Fuel for Transporation and Other Residental Application. In: Proc. 7th IECEC, paper 729215. New York, ACS (1972).Google Scholar
  5. [5]
    L. W. Jones: Liquid Hydrogen as a Fuel for Motorvehicles: A Comparison with Other systems. In: Proc. 7th Intersoc. Energy Cony. Eng. Conf. (IECEC), paper 729213. New York, ACS (1972).Google Scholar
  6. [6]
    W. F. Stewart, F. J. Edeskuty: Alternate Fuels for Transporation, Part 2: Hydrogen for the Automobile. Mech. Engineering, June 1974.Google Scholar
  7. [7]
    A. Gann: On the Application of Hydrogen as a Fuel for Automotive Vehicles. ESRO TT-132, 14, S (1973), DLR-Mitt.73–22,’Ober die Verwendùng von Wasserstoff als Treibstoff für Automobile, DFVLR (1973).Google Scholar
  8. [8]
    T. Ohta: Liquid Hydrogen as Engine Fuel. Cryog. Eng. (Tokyo) 8, 52–58 (1973).Google Scholar
  9. [9]
    L. O. Williams: Hydrogen Powered Automobiles Must Use.Liquid Hydrogen. Cryogenics 13, 693–698 (1973).Google Scholar
  10. [10]
    Neuen Kraftstoffen auf der Spur—Alternative Kraftstoffe für Kraftfahrzeugen, Wasserstoff. pp. 285–578, Bonn: BM FT, Referat für Öffentlichkeitsarbeit (1974). ISBN 3–8725–3–0992.Google Scholar
  11. [11]
    W. Peschka: Wasserstoff als Alternativkraftstoff im Kraftfahrzeug. Int. Verkehrswesen 32, 447–453 (1980).Google Scholar
  12. [12]
    D. R. Cloyd, W. J. Murphy: Handling Hazardous Materials. NASA-SP-5032 (1965).Google Scholar
  13. [13]
    K. C. Hoffmann et al.: Metal Hydrides as a Source of Fuel for Vehicular Propulsion. In: Proc., Int. Automotive Eng. Congr., Paper 690232, Detroit, Mich. (1969).Google Scholar
  14. [14]
    R. H. Wiswall, Jr., J. J. Reilly: Metal Hydrides for Energy Storage. In: Proc., 7th IECEC, Paper 729210. New York, ACS (1972).Google Scholar
  15. [15]
    J. J. Reilly, R. H. Wiswall, Jr.: The Formation and Properties of Iron-Titanium Hydride. Inorg. Chem. 13, 218–222 (1974).Google Scholar
  16. [16]
    J. J. Reilly, R. H. Wiswall, Jr.: The Reaction of Hydrogen with Alloys of Magnesium and Nickel. Inorg. Chem. 7, 2254 (1968).Google Scholar
  17. [17]
    H. Buchner: The Hydrogen/Hydride Energy Concept. In: Proc., 2nd World Hydrogen Energy Conf., Vol. 4, pp. 1749–1792 (1978)Google Scholar
  18. J. Töpler, O. Bernauer, H. Buchner: The Use of Hydrides in Motor Vehicles. J. Less Common Metals 74, 385–399 (1980)Google Scholar
  19. H. Buchner: Perspectives for Metal Hydride Technology. Prog. Energy Combust. Sci. 6, 331–346 (1980).ADSGoogle Scholar
  20. [18]
    H. Buchner: Energiespeicherung in Metallhydriden (Innovative Energietechnik). Wien New York, Springer (1982).Google Scholar
  21. [19]
    O. Sultan, M. Shaw: Study of Automotive Storage of Hydrogen Using Recyclable Liquid Chemical Carriers. TEC-75/003, ERDA, Ann Arbor (1975).Google Scholar
  22. [20]
    M. Taube, P. Taube: Liquid Organic Carrier for Hydrogen as Automobile Fuel. EIR Würenlingen Re. (1979), see also: Int. J. Hydrogen Energy 8, 213–227 (1983).Google Scholar
  23. [21]
    W. Justi, A. Winsel: Kalte Verbrennung. Wiesbaden, Franz Steiner (1962).Google Scholar
  24. [22]
    W. Vielstich: Brennstoffelemente. Weinheim, Verlag Chemie (1965).Google Scholar
  25. [23]
    K. V. Kordesch: In: Handbook of Fuel Cell Technology, N. J. Englewood Cliffs (C. Berger, ed.). Prentice Hall (1968).Google Scholar
  26. [24]
    H. Dietz, H. Jahnke, H. Reber: Forschungsarbeiten über elektrochemische Energieequellen. Bosch Tech. Ber. 3, August 1971.Google Scholar
  27. [25]
    H. V. Dören, K. J. Euler: Brennstoffelemente. VARTA Fachbuchreihe, Bd. 6, Düsseldorf: VDI-Verlag (1971).Google Scholar
  28. [26]
    H. G. Plust: Aktuelle Probleme bei elektrischen Antriebssystemen für Straßenfahrzeuge. ATZ 13, Hefte 9 und 11 (1971).Google Scholar
  29. [27]
    H. Weh: Problematik der Energiespeicher und des elektrischen Antriebs. ATZ 76, Heft 6 (1974).Google Scholar
  30. [28]
    J. G. Finegold, W. D. Van Vorst: Engine Performance with Gasoline and Hydrogen Fuels, A Comparative Study. In: Proc., The Hydrogen Economy (Miami) Energy (THEME)-Conf. 1974.Google Scholar
  31. [29]
    F. Sturm: Kraftgasverwendung im Luftschiff “Graf Zeppelin”. Zeitschr. d. Vereins Deutscher Ingenieure (VDI ), September 1929.Google Scholar
  32. [30]
    K. H. Weil: The Hydrogen I.C. Engine—Its Origins and Future in the Emerging Energy-Transportation-Environment System. In: Proc., 7th Intersoc. Energy Conversion Engineering Conf., pp. 1355–1363. New York, ACS (1972).Google Scholar
  33. [31]
    Anon.: Use of Hydrogen for Driving Engines, Tests in Holland. Genie Civil 72, 224 (1918).Google Scholar
  34. [32]
    H. R. Ricardo: Further Notes on Fuel Research. In: Proc. Inst. Automobile Engrs. 18, 327–341 (1924).Google Scholar
  35. [33]
    A. F. Burstall: Experiments on the Behavior of Various Fuels in a High-Speed Internal Combustion Engine. In: Proc., Inst. Automot. Engrs. 22, 358–371 (1927).Google Scholar
  36. [34]
    R. A. Erren, W. H. Campbell: Hydrogen from Off-peak Power—a Possible Commercial Fuel. Chem. Trade J. 92, 328–339 (1933).Google Scholar
  37. [35]
    R. A. Erren, W. H. Campbell: Hydrogen: A Commercial Fuel for I. C. Engines and other Purposes. J. Inst. of Fuel (Great Britain) 12, 281 (1933).Google Scholar
  38. [36]
    R. A. Erren: Der Erren-Wasserstoffmotor. ATZ, 41, Heft 19, 523 (1939).Google Scholar
  39. [37]
    H. C. Gerrish, H. H. Foster: Hydrogen as an Auxiliary Fuel in Compression-Ignition Engines. NACA Rep. No. 535 (1935).Google Scholar
  40. [38]
    M. Oehmichen: Wasserstoff als Motortreibmittel. Deutsche Kraftfahrtforschung, Heft 68 (1942).Google Scholar
  41. [39]
    R. O. King, W. A. Wallace, B. Mahapatra: The Hydrogen Engine and the Nuclear Theory of Ignition. Can. J. Res. F. 26, 264 (1948).Google Scholar
  42. [40]
    R. O. King, M. Rand: Oxidation, Decomposition, Ignition and Detonation of Fuel Vapors and Gases. 27: Hydrogen Engine, Can. J. Technol. 33, 445–469 (1955).Google Scholar
  43. [41]
    R. G. Murray, R. J. Schoeppel, C. L. Gray: The Hydrogen Engine in Perspective. In: Proc., 7th IECEC, Paper 729217. New York, ACS (1982).Google Scholar
  44. [42]
    R. E. Billings, F. E. Lynch: History of Hydrogen Fueled Internal Combustion Engines. Publ. No. 73001, Technology Appl. Center, Univ. New Mexico, Albuquerque, N. M., April 1973.Google Scholar
  45. [43]
    H. S. Homan, P. T. C. De Boer, W. J. McLean: The Effect of Fuel Injection on NOx Emissions and Undesirable Combustion for Hydrogen-Fueled Piston Engines. Int. J. Hydrogen Energy 8, 131–146 (1983).Google Scholar
  46. [44]
    P. C. T. De Boer, W. J. McLean, H. S. Homann: The Performance and Emissions of Hydrogen-Fueled Internal Combustion Engines. Int. J. Hydrogen Energy 1, 153 (1976).Google Scholar
  47. [45]
    P. N. Blumberg: Nitric Oxide Emissions from Stratified Charge Engines: Prediction and Control. Combust. Sci. Technol. 8, (1973).Google Scholar
  48. [46]
    H. K. Newhall: Combustion Process Fundamentals and Combustion Chamber Design for Low Emissions. SAE Trans. paper 75100 (1975).Google Scholar
  49. [47]
    R. R. Adt, Jr., M. R. Swain, J. M. Pappas: Hydrogen Engine Performance Project. U.S. Dept. of energy (DOE), Second Annual Report, Contr. No. EC-77CO3–1212, 1980. See further DOE/CS/31212–1. Washington DC., May 1983.Google Scholar
  50. [48]
    M. R. Swain, J. M. Pappas, R. R. Adt, Jr., W. J. D. Escher: Hydrogen-Fueled Automotive Engine Experimental Testing to Provide an Initial Design-Data Base. In: Alternate Fuels, SP-480, SAE-paper 810350, 163–180 (1981).Google Scholar
  51. [49]
    K. Lohner, H. Müller: Gemischbildung und Verbrennung im Ottomotor (Die Verbrennungskraftmaschine Bd. 6 ). Wien: Springer (1967).Google Scholar
  52. [50]
    F. A. F. Schmidt: Verbrennungskraftmaschinen. Wien, Springer (1967).Google Scholar
  53. [51]
    C. A. McCarley, W. D. Van Vorst: Electronic Fuel Injection Techniques for Hydrogen Powered I.C. Engines. I.t. J. Hydrogen Energy 5, 179–204 (1980).Google Scholar
  54. [52]
    F. Pischinger, M. Schaffrath: Untersuchungen an einem Wasserstoffmotor und Maßnahmen zur Prozeßverbesserung. ATZ 78, 445 (1976).Google Scholar
  55. [53]
    K. W. Drexl, H. P. Holzt: Untersuchungen über die Gemischbildung und Verbrennung im Wasserstoffmotor. Entwicklungslinien in der Kraftfahrzeugtechnik. Köln: Verlag TÜV Rheinland (1977).Google Scholar
  56. [54]
    S. Furuhama: Two Stroke Hydrogen Injection Engine. Tech. Note. Int. J. Hydrogen Energy 4, 571–576 (1979).Google Scholar
  57. [55]
    J. G. Finegold: Hydrogen: Primary or Supplementary Fuel for Automotive Engines. Int. J. Hydrogen Energy 3, 83–104 (1978).Google Scholar
  58. [56]
    M. Leiker: Die Gasmaschine. Wien, Springer (1953).Google Scholar
  59. [57]
    D. Downs, A. D. Walsh, R. W. Wheeler: A Study of the Reactions that Lead to Knock in the Spark Ignition Engine. Phil. Trans. Roy. Soc. London A 243, 463–524 (1951).ADSGoogle Scholar
  60. [58]
    R. O. King, S. V. Hayes, A. B. Allan, et al.: The Hydrogen Engine: Combustion Knock and the Related Flame Velocity. Trans. E.I.C. 2, 143–148 (1958).Google Scholar
  61. [59]
    K. Binder, G. Withalm: Mixture Formation and Combustion in Interaction with the Hydrogen Storage Technology. In: Proc. 3rd World Hydrogen Energy Conf., Tokyo, Vol. 2, pp. 1103–1117. Oxford, Pergamon Press (1980).Google Scholar
  62. [60]
    A. H. Gathercole, J. P. Bindon, L. W. Roberts: Detonation Limited Air Fuel Ratios in a Conventional High Speed Spark Ignition Engine Fueled with Hydrogen. In: Proc., South Afr. Conf. in Transportation, Univ. of Cape Town (1979).Google Scholar
  63. [61]
    M. A. Gammie, J. P. Bindon: The Effect of Mixture Strength and Spark Advance on Detonation Intensity in a Small Squish-Chambered Hydrogen Fueled Spark-Ignition Engine. In: Proc., 3rd World Hydrogen Energy Conf., Tokyo, Vol. 2, pp. 1001–1014 Oxford, Pergamon Press (1980).Google Scholar
  64. [62]
    S. Furuhama, M. Hiruma, Y. Enemoto: Development of a Liquid Hydrogen Car. Int. J. Hydrogen Energy 3, 61–81 (1978).Google Scholar
  65. [63]
    W. Peschka: Liquid Hydrogen as a Vehicular Fuel—A Challenge for Cryogenic Engineering. In: Proc., 4th. World Hydrogen Energy Conf., Vol. 3, pp. 1053–1070 New York, Pergamon Press (1982)Google Scholar
  66. W. Peschka: Liquid Hydrogen as a Vehicular Fuel—A Challenge for Cryogenic Engineering. Int. J. Hydrogen Energy 9, 515–525 (1984).Google Scholar
  67. [64]
    C. Carpetis: Comparison of the Expenses Required for the Onboard Fuel Storage Systems of Hydrogen Powered Vehicles. Int. J. Hydrogen Energy 7, 61–78 (1982).ADSGoogle Scholar
  68. [65]
    W. Peschka: Wasserstoff als Alternativkraftstoff im Kraftfahrzeug. Int. Verkehrswesen 32, 447–453 (1980).Google Scholar
  69. [66]
    W. Peschka: Liquid Hydrogen for Automotive Vehicles-Experimental Results. ASME-Paper No. 81-HT-83 (1981).Google Scholar
  70. [67]
    J. J. Donelly, Jr., W. C. Greayer, R. J. Nichols, W. J. D. Escher, et al.: Hydrogen-Powered Versus Battery-Powered Automobiles. Int. J. Hydrogen Energy 4, 411–444 (1979).ADSGoogle Scholar
  71. [68]
    K. V. Kordesch: City Car with H2-Air Fuel Cell/Lead Battery (One Year Operating Experience). In: Proc., 6th IECEC, Boston, Mass., Paper No. 719015 (1971).Google Scholar
  72. [69]
    C. E. Winter, W. L. Morgan: General Motors Electro Van. J. Soc. Autom. Engrs., paper 670182, Detroit (1967); see also: C. Marks, E. A. Rishavy, F. A. Wyczalek, SAE-Paper 670176, Automotive Engineering Congr., Detroit, Mich., January 8–13 (1967).Google Scholar
  73. [70]
    Anon.: Proceedings of the Fuel Cell in Transporation Applications Workshop, August 15–17 (1977), Los Alamos Sci. Lab., LA-7279-C (1978), see also: Application Scenario for Fuel Cells in Transportation, I.A.-7634-MS (1979).Google Scholar
  74. [71]
    P. L. Underwood, P. B. Dieges: Hydrogen and Oxygen Combustion for Pollution Free Operation of Existing Standard Automotive Engines. In: Proc., 6th IECEC, SAE-Paper 719046 (1971).Google Scholar
  75. [72]
    N. E. Morgan, W. D. Morath: Development of a Hydrogen—Oxygen I.C. Engine Space Power System. NASA Rep. by Vickers, July 1965.Google Scholar
  76. [73]
    R. E. Billings: Hydrogen Storage for Automobiles Using Cryogenics and Metal Hydrids. In: Proc., The Hydrogen Economy Energy ( THEME)-Conf., Miami (1974).Google Scholar
  77. [74]
    W. F. Stewart, F. J. Edeskuty, K. D. Williamson, H. M. Lutgen: Operating Experience with a Liquid Hydrogen Fueled Vehicle. Los Alamos Sci. Lab., LA-UR-74–1637. See also: In: Adv. Cryog. Eng., Vol. 20, pp. 82–89. New York, Plenum Press (1974).Google Scholar
  78. [75]
    J. G. Finegold, W. D. Van Vorst, et al.: The UCLA Hydrogen Car: Design, Construction and Performance. Trans. SAE 730507 (1973).Google Scholar
  79. [76]
    A. F. Bush, W. D. Van Vorst: The UCLA Hydrogen Car. In: Adv. Cryog. Eng., Vol. 19, pp. 23–27. New York, Plenum Press (1974).Google Scholar
  80. [77]
    W. Peschka, C. Carpetis: Cryogenic Hydrogen Storage and Refueling for Automobiles. Int. J. Hydrogen Energy 5, 619–626 (1980).Google Scholar
  81. [78]
    W. F. Stewart Liquid Hydrogen as an Automotive Fuel. Adv. Cryog. Eng., Vol. 25, pp. 822–830. New York, Plenum Press (1980).Google Scholar
  82. [79]
    W. F. Stewart: Liquid Hydrogen Fueled Buick. Los Alamos Sci. Lab. Rep. LA-8605-MS, November 1980.Google Scholar
  83. [80]
    W. Peschka, F. J. Edeskuty, W. F. Stewart: Liquid Hydrogen Storage and Refueling for Automotive Applications. In: Proc. 3rd Miami Int. Conf. on Alternative Energy Sources. December 15–18, Miami Beach, Florida (1980). See also: Alternative Energy Sources 3 (T. N. Veziroglu, ed.), Vol. 5, pp. 407–418. Berlin Heidelberg New York, Springer (1983).Google Scholar
  84. [81]
    S. Furuhama, Y. Kobayashi, M. Iida: A LH, Engine Fuel System on Board Cold GH, Injection Into Two Stroke Engine with LHZ-Pump, ASME-Paper No. 81-HT-81.Google Scholar
  85. [82]
    W. Peschka: Operating Characteristics of a LH2-Fueled Automotive Vehicle and of a Semi-Automatic Refueling Station. Int. J. Hydrogen Energy 7, 661–670 (1982).Google Scholar
  86. [83]
    S. Furuhama, Y. Kobayashi: A Liquid Hydrogen Car with a Two Stroke Direct Injection Engine and LH2-Pump. Int. J. Hydrogen Energy 7, 809–820 (1982). See also: SAE-Paper 820349 (1982).Google Scholar
  87. [84]
    S. Furuhama, Y. Kobayashi: Development of Hot-Surface-Ignition Hydrogen Injection Two Stroke Engine. In: Proc., 4th. World Hydrogen Energy Conf., Pasadena, Vol. 3, pp. 1009–1020. New York, Pergamon Press (1982).Google Scholar
  88. [85]
    W. J. D. Escher: The Hydrogen Fueled Internal Combustion Engine, A Technical Survey of Contemporary U.S. Projects. Escher-Foster Ass. ETA-Rep. PR-51, St. Johns Mich. (1975).Google Scholar
  89. [86]
    W. J. D. Escher: Survey of Liquid Hydrogen Container Techniques for Highway Vehicle Fuel System Application. Escher-Foster Techn., St. Johns, Mich., DOE-Rep. No. HCP/M2752–01, Novermber (1978).Google Scholar
  90. [87]
    W. J. D. Escher: Hydrogen as an Automotive Fuel: Worldwide Update. Escher-Foster Technology Inc. Rep., St. Johns, Mich. (1982).Google Scholar
  91. [88]
    H. May D. Gwinner: Möglichkeiten der Verbesserung von Abgasemissionen und Energieverbrauch bei Wasserstoff-Benzin-Mischbetrieb, MTZ, No. 4 (1981); see also: Possibilities of Improving Exhaust Emissions and Energy Consumption in Mixed Hydrogen—Gasoline Operation. Int. J. Hydrogen Energy 8, 121–130 (1983).Google Scholar
  92. [89]
    W. Peschka, C. Carpetis: A System Consideration of the Tank for Liquid Hydrogen Fueled Vehicles and the Resulting Tank Concept for a Passenger Car. In: Proc., 1st World Hydrogen Energy Conf., Miami Beach (1976).Google Scholar
  93. [90]
    W F. Stewart: Operating Experience with a Liquid Hydrogen Fueled Buick and Refueling System, Hydrogen Energy Process. In: Proc., 4th World Hydrogen Energy Conf., Vol. 3, pp. 1071–1093. New York, Pergamon Press (1982);Google Scholar
  94. W F. Stewart: Operating Experience with a Liquid Hydrogen Fueled Buick and Refueling System, Hydrogen Energy Process. Int. J. Hydrogen Energy 9, 525–539 (1984).Google Scholar
  95. [91]
    W. F. Stewart: Experimental Investigation of Liquid Hydrogen Vehicle Onboard Storage and Refueling System. Los Alamos National Lab. Final Report, US Dept. of Energy (DOE), July 1982.Google Scholar
  96. [92]
    W. F. Stewart, F. J. Edeskuty: Liquid Hydrogen as a Vehicular Fuel. Mech. Eng. 24, 24–29 (1981).Google Scholar
  97. [93]
    W. F. Stewart, W. J. D. Escher: Liquid-Hydrogen Automotive Onboard Storage and Servicing System Project: A Progress Report. In: Alternate Fuels. SP 480, 181–188, SAE-Paper 810351 (1981).Google Scholar
  98. [94]
    M. Ikegami, K. Miwa, M. Shioji: A Study of Hydrogen Fueled Compression Ignition Engines. Int. J. Hydrogen Energy 7, 341–354 (1982).Google Scholar
  99. [95]
    K. Enemoto, S. Furuhama, Y. Kobayashi: Ignitability of Hydrogen Air Mixtures by Hot Surfaces and Hot Gases. In: Proc., 3rd World Hydrogen Energy Conf., Vol. 2, pp. 1149–1164. New York, Pergamon Press (1980).Google Scholar
  100. [96]
    M. Ikegami, K. Miwa, M. Shioji: A Study of Hydrogen Fueled Diesel-Combustion. Prep. of Japan Soc. of Mech. Engrs., Paper No. 750–15 (1975); see also: Proc., 3rd World Hydrogen Energy Conf., Vol. 2, pp. 969–984. New York, Pergamon Press (1980).Google Scholar
  101. [97]
    H. Tanabe, M. Ohnishi, G. T. Sato, et al.: Experimental Study of the Transient Hydrogen Jet Using a Fast Response Probe. In: Proc., 3rd World Hydrogen Energy Conf., Vol. 2, pp. 985–1000. New York, Pergamon Press (1982).Google Scholar
  102. [98]
    H. Tanabe, T. Sorihashi, N. Suzuki, et al.: Experimental Study on the Transient Hydrogen Jet. In: Proc. 4th World Hydrogen Energy Conf., Vol. 3, pp. 1115–1128. New York, Pergamon Press (1982).Google Scholar
  103. [99]
    L. O. Williams, D. E. Spond: A Storage Tank for Vehicular Storage of Liquid Hydrogen. Appl. Energy 6, 98–112 (1980).ADSGoogle Scholar
  104. [100]
    C. A. McCarley, W. D. Van Vorst: Electronic Fuel Injection Technique for Hydrogen Powered I.C. Engines. I.t. J. Hydrogen Energy 5, 178–204 (1980).Google Scholar
  105. [101]
    W. Drexl, H. Holzt, M. Gutmann: Characteristics of a Single Cylinder Hydrogen Fueled I.C. Engine Using Various Mixture Formation Methods. Daimler-Benz AG, Central Research (1976).Google Scholar
  106. [102]
    C. A. McCarley: Development of a High Speed Injection Valve for Electronic Hydrogen Fuel Injection. In: Proc., 3rd World Hydrogen Energy Conf., Vol. 2, pp. 1119–1134. New York, Pergamon Press (1980).Google Scholar
  107. [103]
    K. Suzuki, Y. Uchiyama, J. Hama: Research of Hydrogen Fueled Spark Ignition Engine. In: Proc., 3rd World Hydrogen Energy Conf., Vol. 2, 1027–1040. New York, Pergamon Press (1980).Google Scholar
  108. [104]
    H. L. Minkin, H. F. Hobart, I. Warshwawski: Performance of Turbine-Type Flowmeters in Liquid Hydrogen. Cryogenic Eng. News 3, 16–20 (1968).Google Scholar
  109. [105]
    H. F. Hobart, H. L. Minkin, I. Warshwawski: Life Test of Small Turbine-Type Flowmeters in Liquid Hydrogen. NASA-Lewis Res. Center, NASA-TN-D-7323 and E-7371 (1983).Google Scholar
  110. [106]
    W. E. Keller: Cryogenic Instrumentation of and above Liquid Hydrogen Temperature-Present and Future. In: Adv. Cryog. Eng. Vol. 18, pp. 189–301. New York, Plenum Press (1973).Google Scholar
  111. [107]
    Anon.: Liquid Hydrogen Flow by NMR Technique. Instrum. Control Syst. 39, 87 (1966).Google Scholar
  112. [108]
    P. M. Ordin: Review of Hydrogen Accidents and Incidents in NASA-Operation. NASA-TM-X-71565 (1974), see also: Proc., 9th IECEC (1974).Google Scholar
  113. [109]
    E. F. Johnson: Fire Protection Development in LNG-Fueled Vehicle Operation. Fire J. 66, No. 6, 231–245 (1972).Google Scholar
  114. [110]
    D. Shooter, A. Kalekar: The Benefits and Risks Associated with Gaseous Fueled Vehicles. Rep. to the Massachusetts Turnpike Authority, Arthur D. Little Case 7440–2, May 1972.Google Scholar
  115. [111]
    J. M. Arvidson, J. Hord, D. B. Mann: Efflux of Gaseous Hydrogen or Methane Fuels from the Interior of an Automobile. NBS-Tech. Note 666 (1975).Google Scholar
  116. [112]
    J. G. Finegold, W. D. Van Vorst: Crash Test of Liquid Hydrogen Automobile. In: Proc., 1st World Hydrogen Energy Conference, Vol. 3. Miami Beach, Clean Energy Res. Inst. (1976).Google Scholar
  117. [113]
    W. Peschka: Hydrogen Combustion in Tommorrow’s Energy Technology. Int. J. Hydrogen Energy 12, 481–500 (1987).ADSGoogle Scholar
  118. [114]
    W. Peschka: The Status of Handling and Storage Techniques for Liquid Hydrogen in Motor Vehicles. Int. J. Hydrogen Energy 12, 735–764 (1987).Google Scholar
  119. [115]
    T. Krepec, T. Giannacopoulos, D. Miele: New Electronically Controlled Hydrogen-Gas Injection Development and Testing. Int. J. Hydrogen Energy 12, 855–862 (1987).Google Scholar
  120. [116]
    S. Furuhama: Hydrogen Engine Systems for Land Vehicles. Int. J. Hydrogen Energy 14, 907–914 (1989).Google Scholar
  121. [117]
    W. Peschka: Liquid Hydrogen-Cryofuel in Ground Transportation. In: Adv. Cryog. Eng., Vol. 31, pp. 1035–1046. New York, Plenum Press (1986).Google Scholar
  122. [118]
    S. Furuhama, T. Fukuma: Liquid Hydrogen Fueled Diesel Automobile with Liquid Hydrogen Pumps. In: Adv. Cryog. Eng. 31, 1047–1056. New York, Plenum Press (1986).Google Scholar
  123. [119]
    R. E. Knowlton: Safety in New Uses of Hydrogen Energy. In: Adv. Cryog. Eng. 31, 1057–1062. New York, Plenum Press (1986).Google Scholar
  124. [120]
    W. Peschka: Liquid Hydrogen for Automotive Vehicles—Status and Development in Germany. In: Cryogenic Processes and Equipment, ASME, pp. 97–104 (1984).Google Scholar
  125. [121]
    S. Furuhama, T. Fukuma, T. Kashima: Liquid Hydrogen Fuel Supply System for Hot Surface Ignition Turbocharged Engine. In: Cryogenic Processes and Equipment, ASME, pp. 105–114 (1984).Google Scholar
  126. [122]
    W. F. Stewart: Refueling Considerations for Liquid-Hydrogen Fueled Vehicles. In: Cryogenic Processes and Equipment, ASME, pp. 115–122 (1984).Google Scholar
  127. [123]
    R. E. Knowlton: The Safety of Hydrogen as a Ground Transportation Fuel. In: Cryogenic Processes and Equipment, ASME, pp. 123–130 (1984).Google Scholar
  128. [124]
    A. L. Bain, R. R. Tison, R. J. Sprafka: Hydrogen Fueled-Hydrogen Transport Rail System-NASA Proposal. In: Cryogenic Processes and Equipment, ASME, pp. 131–136 (1984).Google Scholar
  129. [125]
    W. Peschka: Flüssiger Wasserstoff als Motorenkraftstoff der Zukunft. Maschinenwelt und Elektrotechnik 43, No. 8/9, 1–10 (1988).Google Scholar
  130. [126]
    R. D. Mc. Carty, J. Hord, H. M. Roder: Selected Properties of Hydrogen. NBS Monograph 168 (1981).Google Scholar
  131. [127]
    S. J. Collocott: Cryogenic Liquid Level Monitor Using a Frequency to Voltage Converter. Cryogenics 23, 327–328 (1983).Google Scholar
  132. [128]
    D. Hagedorn, D. Leroy, P. Dullenkopf: Monitor for the Quality Factor in Two-Phase Helium Flow Using a Low Temperature Oscillator. In: Adv. Cryog. Eng. 31, 1295–1307. New York, Plenum Press (1986).Google Scholar
  133. [129]
    J. Hord (ed.): Selected Topics on Hydrogen Fuel, NBSIR 75–803, Chapter 5: Instrumentation for Cryogenic Hydrogen Fuel, Chapter 1: H2-Fueled Automobiles (1975).Google Scholar
  134. [130]
    Y. Rotenberg: Numerical Simulation of Self Pressurization in a Small Cryogenic Tank. In: Adv. Cryog. Eng., Vol. 31, pp. 963–971. New York, Plenum Press (1986).Google Scholar
  135. [131]
    T. Krepec, T. Tebelis, C. Kwok: Fuel Control Systems for Hydrogen Fueled Automotive Combustion Engines—A Prognosis. Int. J. Hydrogen energy 9, 109–114 (1984).Google Scholar
  136. [132]
    S. Furuhama, Y. Kobayashi: Development of a Hot-surface-ignition Hydrogen Injection Two-stroke Engine. Int. J. Hydrogen Energy 9, 205–214 (1984).Google Scholar
  137. [133]
    K. S. Varde, G. M. Frame: A Study of Combustion and Engine Performance Using Electronic Hydrogen Fuel Injection. Int. J. Hydrogen Energy 9, 327–332 (1984).Google Scholar
  138. [134]
    W. Peschka: Liquid Hydrogen as a Vehicular Fuel—A Challenge for Cryogenic Engineering. Int. J. Hydrogen Energy 9, 515–523 (1984).Google Scholar
  139. [135]
    W. F. Stewart: Operating Fueled Buick and Refueling System. Int. J. Hydrogen Energy 9, 525–538 (1984).Google Scholar
  140. [136]
    B. Bogdanovic: Magnesium Hydride: A Homogeneous-catalysed Synthesis and Its Use in Hydrogen Storage. Int. J. Hydrogen Energy 9, 937–943 (1984).Google Scholar
  141. [137]
    M. Taube, D. Rippin, W. Knecht, et al.: A Prototype Truck Powered by Hydrogen from Organic Liquid Hydrides. Int. J. Hydrogen Energy 10, 595–600 (1985).Google Scholar
  142. [138]
    K. S. Varde, G. A. Frame: Development of a High-Pressure Hydrogen Injection for SI Engine and Results of Engine Behaviour. Int. J. Hydrogen Energy 10, 743–748 (1985).Google Scholar
  143. [139]
    W. Peschka, W. Nieratschker: Experience and Special Aspects on Mixture Formation of an Otto-Engine Converted for Hydrogen Operation. Int. J. Hydrogen Energy 11, 653–660 (1986).Google Scholar
  144. [140]
    W. Peschka: Liquid Hydrogen Fueled Automotive Vehicles in Germany—Status and Development. Int. J. Hydrogen Energy 11, 721–728 (1986).Google Scholar
  145. [141]
    H. Braes, N. Regar, W. Strobl: Drive Systems to Protect the Environment. Automotive Technology International, pp. 249–255, MCI CP 66/8/88 (1988).Google Scholar
  146. [142]
    N. Regar, W. Strobl, R. Heuser: Pkw-Antriebe mit Elektro-und Wasserstoffspeicher (Stand der Entwicklungen und Perspektiven). In: Proc. 2. Aachener Kolloqium, Fahrzeug-und Motorentechnik, pp. 463–483 (1989).Google Scholar
  147. [143]
    J. E. Blackford, P. Halford, D. H. Tantam: Expanders and Pumps. In: Cryogenic Fundamentals (G. G. Haselden, ed.), pp. 403–489. London, Academic Press (1971).Google Scholar
  148. [144]
    K. P. Martin, R. B. Jacobs, R. J. Hardy: Performance of Pumps with Liquefied Gases. In: Adv. Cryog. Eng. 2, 295–302. New York, Plenum Press (1960).Google Scholar
  149. [145]
    G. H. Caine, L. Schäfer, D. Burgeson: Pumping of Liquid Hydrogen. In: Adv. Cryog. Eng. 4, 241–254. New York, Plenum Press (1960).Google Scholar
  150. [146]
    C. F. Goltzmann: High Pressure Liquid Hydrogen and Helium Pumps. In: Adv. Cryog. Eng. 5, 289–298. New York, Plenum Press (1960).Google Scholar
  151. [147]
    S. C. Collins: Hydrogen-Helium Liquefier. Paper A2, pp. 8–11. In: Adv. Cryog. Eng., Proc., 1956. CEC Boulder, Co. New York, Plenum Press (1960).Google Scholar
  152. [148]
    S. C. Collins: Helium Liquefier. Science, 116, 282–299 (1952).ADSGoogle Scholar
  153. [149]
    A. G. Cryomec: Supercharger, Europ. Patent 0174269 A3, (1987), US Patent No. 4, 639, 197.Google Scholar
  154. [150]
    S. A. Socsil: Tiefsttemperaturpumpe für Flüssiggas. Ecublens, Lausanne, P 28 44 719. 0 (1977).Google Scholar
  155. [151]
    R. H. Hinds: The Musashi 7. Int. J. Hydrogen Energy 12, 427–429 (1987).Google Scholar
  156. [152]
    M. A. Deluchi: Hydrogen Vehicles: An Evaluation of Fuel Storage, Performance, Safety, Environmental Impacts, and Cost. Int. J. Hydrogen Energy 14, 81–130 (1989).Google Scholar
  157. [153]
    A. H. Seilly: Colenoid Actuators—A New Concept in Extremely Fast Acting Solenoids. SAE-paper 810462 (1981).Google Scholar
  158. [154]
    M. Takiguchi, S. Furuhama: Combustion Improvement of Liquid Hydrogen Engine for Medium Duty Trucks. SAE-Techn. paper 870535 (1987).Google Scholar
  159. [155]
    M. Takiguchi, T. Pichainarong, T. Matsushita, S. Furuhama, Characteristics of Combustion Pressure Vibration in Hydrogen Fuel Injection Hot Surface Ignition Engine. SAE Techn. Paper 871611 (1987).Google Scholar
  160. [156]
    W. Peschka, G. Schneider: Kapazitive Füllstandanzeigen für LH2-Kraftfahrzeugtanks. In: Proc. 14. DKV-Jahrestagung, Deutscher Kälte-und Klimatechnischer Verein, pp. 107–118 (1988).Google Scholar
  161. [157]
    Y. Rotenberg, M. Burrows, R. Mc Neil: Vibration Effects on Boil-off Rate from a small Liquid Hydrogen Tank. Int. J. Hydrogen Energy 11, 729–736 (1986).ADSGoogle Scholar
  162. [158]
    T. Krepec, T. Giannacopoulos, D. Miele: New Electronically Controlled Hydrogen-Gas Injector Development and Testing. Int. J. Hydrogen Energy 12, 855–862 (1987).Google Scholar
  163. [159]
    B. Bogdanovic, B. Spliethoff: Active Mgt-Mg-Systems for Hydrogen Storage. Int. J. Hydrogen Energy 12, 863–874 (1987).Google Scholar
  164. [160]
    S. Furuhama, T. Fukuma: High Output Power Hydrogen Engine with High Pressure Fuel Injection, Hot Surface Ignition and Turbocharging. Int. J. Hydrogen Energy 11, 399–407 (1986).Google Scholar
  165. [161]
    W. Peschka: Liquid Hydrogen Reciprocating Pumps for Automotive Application. In: Adv. Cryog. Eng. 35, 1783–1790. New York, Plenum Press (1990).Google Scholar
  166. [162]
    W. F. Stewart: Hydrogen as a Vehicular Fuel. In: Recent Developments in Hydrogen Technology (K. D. Williamson, Jr., ed.), Vol. 2, pp. 69–146. Cleveland Ohio, CRC Press (1986).Google Scholar
  167. [163]
    G. Withalm, W. Gelse: The Mercedes Benz Hydrogen Engine for Application in a Fleet Vehicle. In: Proc., 6th World Hydrogen Energy Conf., Vol. 3, pp. 1185–1198. Oxford, Pergamon Press (1986).Google Scholar

Copyright information

© Springer-Verlag/Wien 1992

Authors and Affiliations

  • Walter Peschka
    • 1
  1. 1.Deutsche Forschungsanstalt für Luft- und Raumfahrt e.V.StuttgartBundesrepublik Deutschland

Personalised recommendations