Advertisement

Liquid Hydrogen as a Rocket Propellant

  • Walter Peschka

Abstract

For the final velocity u of a rocket related to the launching system with a launch mass m 0, mass m at the final velocity u and exhaust velocity v relative to the vehicle the following applies
$$\frac{{{m}_{0}}}{m}={{e}^{u/v}}$$
(118)
.

Keywords

Combustion Chamber Rocket Engine Liquid Hydrogen Specific Impulse Final Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. B. Schönberger: Rocket Experiments with Hydrogen and Oxygen. Weltraumfahrt 4, 80–81 (1950).Google Scholar
  2. [2]
    J. L. Sloop: Liquid Hydrogen as a Propulsion Fuel. The NASA History Series, BASA–SP–4404, TL 785558, Stock Number 033–000–00707–8 (1978).Google Scholar
  3. [3]
    J. Dardare: Propulsion by Liquid Oxygen and Liquid Hydrogen, Review. Pure Appl. Cryogenics 5, 135–157 (1966).Google Scholar
  4. [4]
    D. Hurden: Cryogenic Liquids for Rocket Engines. Inst. Refrig. Proc. 55, 147–165 (1958).Google Scholar
  5. [5]
    J. L. Sloop: Cold Propellants for Hot Performance. Astronautics 3, 28–30, 96–97 (1958).Google Scholar
  6. [6]
    O. S. Silliams et al.: Liquid Rockets in Perspective. Part 1: Developments in the 1960s. Astronautics and Aeronautics, March 1976. Part 2: Propulsion for the 1970s and 1980s. Astronautics and Aeronautics, April 1976.Google Scholar
  7. [7]
    R. C. Mulready: Liquid Hydrogen Engines. In: Technology and Uses of Liquid Hydrogen (R. B. Scott, ed.), pp. 149–180. New York, Pergamon Press (1964).Google Scholar
  8. [8]
    F. W. Kirby: Space Shuttle Main Engine Program Status. AIAA Preprint 73–1177, November 1973.Google Scholar
  9. [9]
    R. Salkeld: Mixed Mode Propulsion for the Space Shuttle. Astronautics and Aeronautics, August 1971.Google Scholar
  10. [10]
    D. R. Sanchini, F. M. Kirby: The Future Look in Rocket Engines. Amer. Astronaut. Soc. Paper, pres. 11th Goddard Memorial Symposium, March 1973.Google Scholar
  11. [11]
    E. Sänger, I. Bredt: Über einen Raketenantrieb für Fernbomber. Deutsche Luftfahrtforschung VM 3538 (August 1944), vgl. ferner: Sänger, E., Raketen-Flugtechnik. München, Oldenburg (1933).Google Scholar
  12. [12]
    W. R. Dornberger: The Rocket Propelled Commercial Airliner. Univ. Minn. Inst. of Techn. Res. Rep. No. 135, November 1956.Google Scholar
  13. [13]
    R. Salkeld: Orbital Rocket Airplanes, a Fresh Perspective. Astronautics and Aeronautics, April 1976.Google Scholar
  14. [14]
    P. Bono: Pegasus-A Design, Concept for a V.I.P. Orbital/Global Rocket Transport. SAE National Aeronautics and Space Engineering Meeting, SAE paper No. 760687, Los Angeles, Calif., October 1964.Google Scholar
  15. [15]
    S. Z. Pickney: Internal Performance Predictions for Langley Scramjet Engine Module. NASA-TM-X-74038 (1977).Google Scholar
  16. [16]
    R. A. Jones, W. Huber: Toward Scamjet Aircraft. Astronautics and Aeronautics, February 1978.Google Scholar
  17. 1171.
    W. Peschka: Über die Verwendung von atomarem Wasserstoff als Treibstoff für Flüssigkeitsraketen. In: Proc., 9th Int. Astronaut. Congr., pp. 137–147. Wien, Springer (1959).Google Scholar
  18. [18]
    R. Hess: Atomic Hydrogen. ESRO-TT-42, 1974, siehe auch: Atomarer Wasserstoff, DFVLR-Forschungsbericht, DLR-73–74 (1973).Google Scholar
  19. [19]
    R. Hess: Atomic Hydrogen Stabilization by High Magnetic Fields and Low Temperatures. In: Adv. Cryog. Eng., Vol. 18, pp.427–434. New York, Plenum Press (1973).Google Scholar
  20. [20]
    R. W. H. Webeler: Behaviour of Atomic H in Solid HZ from 0.2 to 0.8 K. NASATMX-71732 (1975).Google Scholar
  21. [21]
    G. Rosen: Upper Bound on the Equilibrium Concentration of Atomic H in Solid Hz. Phys. Letts. 61 A, 1063 (1977).ADSGoogle Scholar
  22. [22]
    W. Peschka, G. Sänger, G. A. Hietkamp: Results of Experiments with Spin-Stabilized Hydrogen and Hydrogen Compounds. J. Physique 41, 165–176 (1980).CrossRefGoogle Scholar
  23. [23]
    I. L. Kerrebrock, R. V. Meghreblian: An Analysis of Vortex Tubes for Combined Gas–Phase Fission Heating and Separation of the Fissionable Material. ORNL, CF–57–11–3 (1959).Google Scholar
  24. [24]
    N. Grey: A Gaseous-Core Nuclear Rocket Utilizing Hydrodynamic Containment of Fissionable Material. ARS-Preprint 848/59.Google Scholar
  25. [25]
    F. Winterberg: Die Erreichung von Ausströmgeschwindigkeiten bis 20,000 m/s durch isotherme Expansion in Kernraketen. In: Proc., 9th Int. Astronaut. Congr. Wien, Springer (1959).Google Scholar
  26. [26]
    R. G. Ragsdale: NASA Research on the Hydrodynamics of the Gaseous Vortex Reactor. NASA-TN-D-288 (1960).Google Scholar
  27. [27]
    R. V. Meghreblian: Gaseous Propulsion Reactors. Nucleonics 19, 95–99 (1961).Google Scholar
  28. [28]
    D. F. Spencer: The Plasma Core –Reactor. NASA–Contract NaSw–6, Tech, Rep. No. 32–1–4, JPL (1961).Google Scholar
  29. [29]
    W. Peschka: Kernenergie und Wärmeübergang durch Strahlung. Astronautica Acta 8,278–302 (1962).Google Scholar
  30. [30]
    R. A. Gross, K. O. Kessey: Magnetohydrodynamics Species Separation in a Gaseous Nuclear Rocket. AIAA J. 2, 126–134 (1964).CrossRefGoogle Scholar
  31. [31]
    Anon: Research on Uranium Plasmas and Their Technological Application. NASA-SP-236, 421 pp (1971).Google Scholar
  32. [32]
    C. Roman Ward: High Temperature UF6 RF Plasma Experiments Applicable to Uranium Plasma Core Reactors. NASA Contr. NASI-14329, Contar. Rep. 159159, UTC (1979).Google Scholar
  33. [33]
    G. H. McLafferty, H. E. Bauer: Studies of Specific Nuclear Light Bulb and Open-Cycle Vortex Stabilized Gaseous Nuclear Rocket Engines. NASA-CR-1030 (1968).Google Scholar
  34. [34]
    G. M. McLafferty: Survey of Advanced Concepts in Nuclear Propulsion. J. Spacecraft 5, 1121–1128 (1968).CrossRefGoogle Scholar
  35. [35]
    M. L. Thorpe: Radio Frequency Plasma Simulation of Gas-Core Reactor. J. Spacecraft 6, 923–928 (1969).CrossRefGoogle Scholar
  36. [36]
    W. Peschka: Hochtemperatur-Energiesysteme unter Verwendung von Plasmareaktoren und induktiven magnetoplasmadynamischen Wandlern. DLR-FB-67–59 (1967).Google Scholar
  37. [37]
    R. W. Bussard, R. D. De Lauer: Nuclear Rocket Propulsion. New York, McGraw Hill (1958).Google Scholar
  38. [38]
    F. J. Edeskuty: Liquid Hydrogen in Nuclear Rocket Testing. LA-DC-7170, Los Alamos Sci. Lab., 32 pp. NTIS (1965).CrossRefGoogle Scholar
  39. [39]
    E. F. Hammel: Cryoengineering in the Nuclear Rocket Program. In: Adv. Cryog. Eng., Vol. 9, pp. 11–19. New York, Plenum Press (1964).Google Scholar
  40. [40]
    F. J. Edeskuty, J. B. Henshall, J. R. Bartlit: Cryogenic Applications in the Nuclear Rocket Program.Google Scholar
  41. [41]
    W. E. Keller: Worldwide Cryogenics—U.S., Cryogenics at the Los Alamos Scientific Laboratory. Cryogenics 20,547–556 (1980).CrossRefGoogle Scholar
  42. [42]
    L. C. Corrington: The Nuclear Rocket-Program—Its Status and Plan. J. Spacecraft 8, 465–470 (1960).Google Scholar
  43. [43]
    R. E. Schreiber: Kiwi Tests Pay Way to Rover. Nucleonics 19, 77–79 (1961).Google Scholar
  44. [44]
    S. V. Gunn, C. Dunn: Feed Systems for Phoebus Reactor Experiments. J. Spacecraft 7, 769–777 (1969).CrossRefGoogle Scholar
  45. [45]
    W. E. Durkee, F. B. Damerval: Nuclear Rocket Experimental Engine Test Results. J. Spacecraft 7, 1397–1401 (1970).CrossRefGoogle Scholar
  46. [46]
    W. Peschka: Neue Energiesysteme für die Raumfahrt. Munchen, Goldmann (1972).Google Scholar
  47. [47]
    F. Suttrop: Überschallverbrennung; Zweck und eigene Versuchseinrichtungen, WGLR-Jahrbuch, pp. 366–376 (1963).Google Scholar

Copyright information

© Springer-Verlag/Wien 1992

Authors and Affiliations

  • Walter Peschka
    • 1
  1. 1.Deutsche Forschungsanstalt für Luft- und Raumfahrt e.V.StuttgartBundesrepublik Deutschland

Personalised recommendations