Advertisement

Thermal Insulation, Storage and Transportation of Liquid Hydrogen

  • Walter Peschka

Abstract

Hydrogen as a cryogenic liquid must be stored and transported in thermally insulated containers in order to avoid uneconomical high boil off losses. The same requirement applies for the insulation of liquid hydrogen transfer pipelines.

Keywords

Heat Transfer Heat Flux Thermal Insulation Liquid Helium Ball Bearing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. D. Timmerhaus: Fluid Flow and Heat Transfer. In: Applied Cryogenic Engineering (R. W. Vance, W. H. Duke, eds.), pp. 104–151. New York, Wiley (1962).Google Scholar
  2. [2]
    J. A. Clark, R. M. Thorogood: Heat Transfer. In: Cryogenic Fundamentals (G. G. Haselden, ed.), pp. 92–197. London, Academic Press (1971).Google Scholar
  3. [3]
    J. A. Clark: Heat Transfer. In: Cryogenic Technology, (R. W. Vance, ed. pp. 121–195 ), New York, Wiley (1963).Google Scholar
  4. [4]
    H. M. Roder, R. D. McCarty, W. J. Hall: Computer Programs for Thermodynamic and Transport Properties of Hydrogen. Nat. Bureau of Standards, NBS-TN-625 (1972).Google Scholar
  5. [5]
    D. A. van Gundy, J. R. Uglum: Heat Transfer to an Uninsulated Surface at 20 K. In: Adv. Cryog. Eng., Vol. 7, pp. 377–384. New York, Plenum Press (1962).Google Scholar
  6. [6]
    R. L. Middleton, J. M. Stukey, J. T. Schell, et al.: Development of Lightweight External Insulation System for Liquid-Hydrogen Stages of the Saturn V Vehicle. In: Adv. Cryog. Eng., Vol. 10, pp. 216–223. New York, Plenum Press (1964).Google Scholar
  7. [7]
    J. B. Rittenhouse: Application of an adhesively Bonded Cryogenic Insulation System. NASA-TM-X-57823, NTIS (1966).Google Scholar
  8. [8]
    K. E. Leonhard, B. Oglin, W. F. Zimni: Determination of the Thermal Conductivity, the Specific Heat and the Weight by Volume of Insulations for Rocket Tanks Filled with Liquid Hydrogen. ELDO/ESRO Sci. Tech. Rev., Vol. 2, pp.3–28 (1967) (In French).Google Scholar
  9. [9]
    D. L. Dearing: Summary of the Saturn S-IV and S-IVB Liquid Hydrogen Tank Internal Insulation Development and Tehniques for Future Improvement. Bull. Int. Inst. Froid, Annexe 2, 233–246 (1965).Google Scholar
  10. [10]
    D. L. Dearing: Development of the Saturn S-IV and S-IVB Liquid Hydrogen Tank Internal Insulation. In: Adv. Cryog. Eng., Vol. 11, pp. 89–97. New York, Plenum Press (1966).Google Scholar
  11. [11]
    C. R. Lemons, C. R. Watts, O. K. Samassy: Development of Advanced Materials Composites for Use as Insulation for LH,-Tanks. McDonnel-Douglas, Astronautics Co., NASA-CR-124388, NASA-CR-123928 (1973).Google Scholar
  12. [12]
    J. J. McGraw: Cellular Insulation for Use with Low Temperature Liquids. US-Pat. No. 3.755. 056 (1973).Google Scholar
  13. [13]
    R. J. Jonke: Insulation Systems for Cryogenic Stages. Rev. Sci. Tech. CECLES/CERS 3, 17–48 (1971).Google Scholar
  14. [14]
    H. M. Tarid, J. C. Boissin, M. P. Segel: Thermal Insulation for Liquid Hydrogen Space Tankage. In: Adv. Cryog. Eng., Vol. 12, pp. 274–285. New York, Plenum Press (1967).Google Scholar
  15. [15]
    G. B. Yates: PPO Foam: Liquid Hydrogen Insulation. In: Adv. Cryog. Eng., Vol. 19, pp. 327–337. New York, Plenum Press (1974).Google Scholar
  16. [16]
    R. P. Reed, J. M. Arvidson, R. L. Durcholoz: Tensile Properties of Polyurethane and Polystyrene Foams from 76 to 300 K. In: Adv. Cryog. Eng., Vol. 18, pp. 184–193. New York, Plenum Press (1973).Google Scholar
  17. [17]
    H. Klezath: Wärmisolierung von Speicherbehältern für tiefsiedende Flüssigkeiten. Erdöl-Erdgas 85, 145–149 (1969).Google Scholar
  18. [18]
    C. L. Johnson, D. J. Holiweger: Some Heat Transfer Considerations in Non-Evacuated Cryogenic Powder Insulation. Adv. Cryog. Eng., Vol. 11, pp. 77–88. New York, Plenum Press (1966).Google Scholar
  19. [19]
    R. B. Scott: Insulation. In: Cryogenic Engineering, pp. 142–214. New York, van Nostrand (1959).Google Scholar
  20. [20]
    R. H. Kropschot: Low-Temperature Insulation. In: Applied Cryogenic Engineering, pp. 152–169. New York, Wiley (1963).Google Scholar
  21. [21]
    R. B. Jacobs: Thermal Insulation, Storage, Transport und Transfer of Liquid Hydrogen. In: Technology and Uses of Liquid Hydrogen (R. B. Scott, ed.) pp. 106–148. New York, Pergamon Press (1964).Google Scholar
  22. [22]
    R. H. Kropschot: Insulation Technology. In: Cryogenic Technology (R. W. Vance, ed.), pp. 239–250. New York, Wiley (1963).Google Scholar
  23. [23]
    W. Molnar: Insulation. In Cryogenic Fundamentals (G. G. Haselden, ed.) pp. 199–236. London, Academic Press (1971).Google Scholar
  24. [24]
    M. Knudsen: Ann. d. Physik 31, 205 (1910);MATHGoogle Scholar
  25. M. Knudsen: Ann. d. Physik 32, 809 (1910);ADSMATHGoogle Scholar
  26. M. Knudsen: Ann. d. Physik 33, 1435 (1910);ADSGoogle Scholar
  27. M. Knudsen: Ann. d. Physik 34, 593 (1911);ADSMATHGoogle Scholar
  28. M. Knudsen: Ann. d. Physik 6, 149 (1930).Google Scholar
  29. [25]
    R. J. Corrucini: Gaseous Heat Conduction at Low Pressures and Temperatures. Vacuum 7, 8 (1957).Google Scholar
  30. [26]
    C. Gerthsen: Physik. Berlin Heidelberg, New York, Springer (1966).Google Scholar
  31. [27]
    M. Weitz: Theorie und Praxis der Vakuumtechnik. Braunschweig, Vieweg (1965).Google Scholar
  32. [28]
    R. H. Kropschot, W. Burgers: Perlite for Cryogenic Insulation. In: Adv. Cryog. Eng., Vol. 8, pp. 221–229. New York, Plenum Press (1963).Google Scholar
  33. [29]
    B. J. Hunter, R. H. Kropschot, J. E. Schrodt, M. M. Fulk: Metal Powder Additives in Evacuated Powder Insulation. In: Adv. Cryog. Eng., Vol. 5, pp. 146–156. New York, Plenum Press (1960).Google Scholar
  34. [30]
    B. L. Knight, K. D. Timmerhaus, R. H. Kropschot: Analysis of Thermal Diffusity Evaluation under Transient Conditions for Powder Insulation. In: Adv. Cryog. Eng., Vol. 18, pp. 112–117. New York, Plenum Press (1973).Google Scholar
  35. [31]
    G. R. Cunnington: Apparent Thermal Conductivity of Uncoated Microsphere Cryogenic Insulation. In: Adv. Cryog. Eng., Vol. 21, pp. 263–271. New York, Plenum Press (1976).Google Scholar
  36. [32]
    G. R. Cunnington, C. L. Tien: Heat Transfer in Microsphere Cryogenic Insulation. In: Adv. Cryog. Eng., Vol. 18, pp. 103–111. New York, Plenum Press (1973).Google Scholar
  37. [33]
    C. L. Tien, G. R. Cunnington: Recent Advances in High performance Cryogenic Thermal Insulation. Cryogenics 12, 419–421 (1972).Google Scholar
  38. [34]
    Al L. Nayak, C. L. Tien: Thermal Conductivity of Microsphere Cryogenic Insulation. In: Adv. Cryog. Eng., Vol. 21, pp. 251–262. New York, Plenum Press (1976).Google Scholar
  39. [35]
    P. Petersen: The Heat-tight Vessel. Swedish Technical Research Council Rep., No. 706 (1951); see also: Satryck ur TVF 29, 4 (1958).Google Scholar
  40. [36]
    R. H. Kropshot: Low Temperature Insulation. In: Applied Cryogenic Engineering, pp. 152–169. New York, Wiley (1962).Google Scholar
  41. [37]
    W. Frost: Heat Transfer at Low Temperatures. New York, Plenum Press (1975).Google Scholar
  42. [38]
    R. P. Caren, G. R. Cunnington: Heat Transfer in Multilayer Insulation Systems. Chem. Eng. Progr., No 87, Vol. 64, pp. 67–81 (1968).Google Scholar
  43. [39]
    P. E. Glaser: Multilayer Insulation for Large Vessels Used in Transporting and Storing Cryogenic Liquids. Mech. Eng. 87, 23–27 (1965).Google Scholar
  44. [40]
    K. Kutzner, F. Schmidt, I. Wietzke: Radiative and Conductive Heat Transmission Through Superinsulations Experimental Results for Aluminium Coated Plastic Foils. Cryogenics 13, 396–404 (1973).Google Scholar
  45. [41]
    E. M. Sparrow, R. D. Cess: Radiation Heat Transfer. Bemond, Calif: Brooks/ Cole (1963).Google Scholar
  46. [42]
    R. M. Coston: Handbook of Thermal Design Data for Multilayer Insulation Systems, Vol. 2. Lockheed Missiles and Space Co., Sunnyvale, Calif. Rep. NASA-CR 87485 (1967).Google Scholar
  47. [43]
    F. Ruccia, R. Hinckley: The Surface Emittance of Vacuum-metallized Polyester Films. In: Adv. Cryog. Eng., Vol. 12, pp. 218–227. New York, Plenum Press (1967).Google Scholar
  48. [44]
    G. Bell, et al.: Thermal Performance of Multilayer Insulation applied to Small Cryogenic Tankage. In: Adv. Cryog. Eng., Vol. 22. New York, Plenum Press (1977).Google Scholar
  49. [45]
    F. E. Swalley, C. D. Nevins: Practical Problems in Design of High-performance Multilayer Insulation System for Cryogenic Stages. In: Adv. Cryog. Eng., Vol. 10, pp. 208–215. New York, Plenum Press (1965).Google Scholar
  50. [46]
    R. M. Coston, T. C. Nast: Experimental Evaluation of the Equations and Parameters Governing Flow Through Multilayer Insulations During Evacuation. In: Adv. Cryog. Eng., Vol. 11, pp. 56–64. New York, Plenum Press (1966).Google Scholar
  51. [47]
    G. C. Vliet, R. M. Costen: Thermal Energy Transport Parallel to the Laminations in Multilayer Insulation. In: Adv. Cryog. Eng., Vol. 13, pp. 671–679. New York, Plenum Press (1968).Google Scholar
  52. [48]
    D. O. Murray: Degradation of Multilayer Insulation Systems by Penetrations. Adv. Cryog. Eng., Vol. 13, pp. 680–689.Google Scholar
  53. [49]
    T. C. Nast: Effective Purging of High Performance Multilayer Insulation Systems. Adv. Cryog. Eng., Vol. 11, pp. 49–55. New York, Plenum Press (1966).Google Scholar
  54. [50]
    J. W. Price: Measuring the Gas Pressure within a High-performance Insulation Blanket. In: Adv. Cryog. Eng., Vol. 13, L-1, pp. 662–670. New York, Plenum Press (1968).Google Scholar
  55. [51]
    R. G. Scurlock, B. Sault: Development of Multilayer Insulation with Thermal Conductivities below 0.1 µW cm -K -1. Cryogenics 16, 303–311 (1976).Google Scholar
  56. [52]
    J. A. Paivanas, O. P. Roberts, D. I. J. Wang: Multishielding—An Advanced Super-insulation Technique. In: Adv. Cryog. Eng., Vol. 10, pp. 197–207. New York, Plenum Press (1965).Google Scholar
  57. [53]
    G. A. Bell, T. C. Nast, R. K. Wedel: Thermal Performance of Multilayer Insulation Applied to Small Cryogenic Tankage. In: Adv. Cryog. Eng., Vol. 21, pp. 272–282. New York, Plenum Press (1976).Google Scholar
  58. [54]
    A. R. Urbach, R. N. Herring: Long-term Helium Dewar for Space Experiments. In: Proc., 6th Int. Cryog. Eng. Conf., pp. 154–156 (1974).Google Scholar
  59. [55]
    W. F. Stewart: Operating Experience with a Liquid Hydrogen Fueled Buick and Refueling System. In: Proc., 4th Int. Hydrogen Energy Conf., Pasadena (June 1982), Vol. 3, pp. 1071–1093. New York, Pergamon Press (1982).Google Scholar
  60. [56]
    L. R. Niendorf, S. C. Choksi: Ultra-efficient Insulation System for Solid Cryogen Coolers. In: Adv. Cryog. Eng., Vol. 12, pp. 286–299. New York, Plenum Press (1967).Google Scholar
  61. [57]
    F. J. Edeskuty, K. D. Williamson, Jr.: Storage and Handling of Cryogens. In: Adv. Cryog. Eng., Vol. 17, pp. 56–68. New York, Plenum Press (1972).Google Scholar
  62. [58]
    M. P. Segel: Experimental Study of Phenomena of Stratification and Pressurization of Liquid Hydrogen. In: Adv. Cryog. Eng., Vol. 10, pp. 308–313. New York, Plenum Press (1964).Google Scholar
  63. [59]
    B. W. Birmingham, E. H. Brown, C. R. Class, A. F. Schmidt: Vessels for the Storage and Transport of Liquid Hydrogen-Research paper 2757, J. Res. Nat. Bur. Stand., A 58, 243–253 (1957).Google Scholar
  64. [60]
    D. H. Liebenberg, R. W. Stokes, F. J. Edeskuty: Chilldown and Storage Losses of Large Liquid Hydrogen Storage Dewars. In: Adv. Cryog. Eng., Vol. 11, pp. 554–560. New York, Plenum Press (1966).Google Scholar
  65. [61]
    P. D. Fuller, J. N. McLagan: Storage and Transfer of Cryogenic Fluids. In: Applied Cryogenic Engineering (R. W. Vance, W. M. Duke, eds.). Section 1: Cryogenic Storage Vessels and Transport Trailers, pp. 215–237, Sect. 2: Transfer Lines, pp. 238–254. New York, Wiley (1962).Google Scholar
  66. [62]
    F. J. Edeskuty: Nuclear Propulsion. In: Cryogenic Technology (R. W. Vance, ed.) pp. 352–374. New York, Wiley (1963).Google Scholar
  67. [63]
    C. F. Sind: Transmission of Hydrogen_ In: Topics on Hydrogen Fuel (J. Hard, ed.), NBS-Sec. Publ. 419 (1975).Google Scholar
  68. [64]
    R. B. Jacobs: Long Distance Transfer of Liquefied Gases. In: Proc., 2nd Cryog. Eng. Conf., Boulder, Co., 1956. Nat. Bureau of Stand (1957).Google Scholar
  69. [65]
    A. J. Croft: 14 Meter Liquid Hydrogen Line. Cryogenics 10, 167–168 (1970).Google Scholar
  70. [66]
    J. Stuchly: Internally Insulated Cryogenic Pipelines. In: Adv. Cryog. Eng., Vol. 21, pp. 531–537. New York, Plenum Press (1976).Google Scholar
  71. [67]
    R. S. Thurston, J. D. Rogers, V. J. Skoglund: Pressure Oscillations Induced by Forced Convection Heating of Dense Hydrogen. In: Adv. Cryog. Eng., Vol. 12, pp. 438–451. New York, Plenum Press (1967).Google Scholar
  72. [68]
    W. G. Flieder, W. J. Smith, K. R. Wetmore: Flexibility Considerations for Design of Cryogenic Transfer Lines. In: Adv. Cryog. Eng., Vol. 5, pp. 111–119. New York, Plenum Press (1960).Google Scholar
  73. [69]
    W. G. Steward: Transfer Line Surge. In: Adv. Cryog. Eng., Vol. 10, pp. 313–323. New York, Plenum Press (1965).Google Scholar
  74. [70]
    R. S. Thurston: Probing Experiments on Pressure Oscillations in Two Phase and Supercritical Hydrogen with Forced Convection Heat Transfer. In: Adv. Cryog. Eng., Vol. 10, pp. 305–312. New York, Plenum Press (1965).Google Scholar
  75. [71]
    J. C. Burke, W. R. Byrnes, A. H. Post, F. E. Ruccia: Pressurized Cooldown of Cryogenic Transfer Lines. In: Adv. Cryog. Eng., Vol. 4, pp. 378–394. New York, Plenum Press (1964).Google Scholar
  76. [72]
    J. C. Bronson, F. J. Edeskuty, et al.: Problems in Cooldown of Cryogenic Systems. In: Adv. Cryog. Eng., Vol. 7, pp. 198–205. New York, Plenum Press (1960).Google Scholar
  77. [73]
    O. Baker: Design of Pipe Lines for Simultaneous Flow of Oil and Gas. The Oil and Gas J. 53, 185–195 (1954).Google Scholar
  78. [74]
    K. Srinivasan, R. Seshagiri, M. V. Krishna Murthy: Analytical and Experimental Investigations on Cooldown of Short Cryogenic Transfer Lines. Cryogenics 14, 489–494 (1974).Google Scholar
  79. [75]
    C. S. Beard: Cryogenic Valves, a Survey. Cryog. Eng. News 2, 62–68 (1967).Google Scholar
  80. [76]
    A. E. Biermann, R. C. Kohl: Preliminary Study of a Piston Pump for Cryogenic Fluids. NASA-Memo 3/6/59E, Lewis Res. C. (1959).Google Scholar
  81. [77]
    T. A. Carter, Jr.: Pumps for Liquid Hydrogen. Cryog. Tech. 3, 173–175 (1967).Google Scholar
  82. [78]
    W. H. Knuth, J. Farquhar, B. K. Lindley: Design Study of Modification of M 1 Liquid Hydrogen Turbopumps for Use in Nuclear Reactor Test Facility. NASA-CR-54422 (1965).Google Scholar
  83. [79]
    J. Farquhar, B. K. Lindley: Hydraulic Design of M 1 Liquid Hydrogen Turbopumps. NASA-CR-54822 (1966).Google Scholar
  84. [80]
    G. H. Ribble, Jr., G. E. Turney: Experimental Study of Low Speed Operating Characteristics of a Liquid Hydrogen Centrifugal Turbopump. NASA-TM-X-1861, August (1969).Google Scholar
  85. [81]
    H. P. Stinson, R. J. Strickland: Experimental Findings from Zero Tank Net Positive Suction Head Operation of the J-2 Hydrogen Pump. NASA-TN-D-6824, August (1972).Google Scholar
  86. [82]
    K. P. Martin, R. B. Jacobs, R. J. Hardy: Performance of Pumps with Liquefied Gases. In: Adv. Cryog. Eng., Vol. 2, pp. 295–302. New York, Plenum Press (1960).Google Scholar
  87. [83]
    I. S. Pearsall: Supercavitating Pumps for Cryogenic Liquids. Cryogenics 12, 422–426 (1972).Google Scholar
  88. [84]
    J. F. Di Stefano, G. H. Caine: Cavitation Characteristics of Tank-mounted Cryogenic Pumps and their Predicted Performance under Reduced Gravity. In: Adv. Cryog. Eng., Vol. 7, pp. 277–290. New York, Plenum Press (1962).Google Scholar
  89. [85]
    A. G. Cryomec, J. E. Tornare, K. Bofinger: Pumpeneinlaufkranz, Europ. Pat. EP 0 317 687 Al (1989).Google Scholar
  90. [86]
    G. H. Caine, L. Schäfer, D. Burgeson: Pumping of Liquid Hydrogen. Adv. Cryog. Eng., Vol. 4, pp. 241–254. New York, Plenum Press (1960).Google Scholar
  91. [87]
    M. Morpurgo: Design and Construction of a Pump for Liquid Helium. Cryogenics 17, 91–93 (1977).Google Scholar
  92. [88]
    C. F. Goltzmann: High Pressure Liquid Hydrogen and Helium Pumps. Adv. Cryog. Eng., Vol. 5, pp. 289–298. New York, Plenum Press (1960).Google Scholar
  93. [89]
    A. G. Cryomec, J. E. Tornare, K. Bofinger, Cl. Tschopp: Pumpe für kryogene Fluiden. Europ. Pat. EP 0 174 269 A3, 1984, US Pat. No. 4, 639, 197.Google Scholar
  94. [90]
    P. R. Ludtke, D. E. Daney, W. G. Steward: Performance of a Small Centrifugal Pumps in the I and He II. In: Adv. in Cryog. Eng., Vol. 33, pp. 515–524. New York, Plenum Press (1988).Google Scholar
  95. [91]
    P. M. McConnel: Liquid Helium Pumps, NBSIR 73–316, NBS, Boulder, Colorado (1973).Google Scholar
  96. [92]
    P. R. Ludke: Performance Characteristics of a Liquid Helium Pump. NBSIR 75–816, NBS, Boulder, Colorado (1975).Google Scholar
  97. [93]
    W. G. Steward: Centrifugal Pumps for Superfluid Helium. Cryogenics 26 (1986).Google Scholar
  98. [94]
    P. Kittel: Liquid Helium Pumps for in Orbit Transfer Cryogenics 27 (1987).Google Scholar
  99. [95]
    P. N. McNail, J. E. Engloud, R. H. Knoll: Design, Development, and Test of Shuttle/Centour G— Prime Cryogenic Tankage Protection Systems. In: Adv. Cryog. Eng., Vol. 33, pp. 341–348. New York, Plenum Press (1988).Google Scholar
  100. [96]
    H. W. Scibbe: Bearings and Seals for Cryogenic Fluids. NASA-TM-X-52415 (1968).Google Scholar
  101. [97]
    D. E. Brewe, H. H. Coe, H. W. Scibbe: Cooling Studies with High Speed Ball Bearings Operating in Cold Hydrogen Gas. ASLE-Trans., 12, No. 1, 66–76 (1969).Google Scholar
  102. [98]
    H. H. Coe, D. E. Brewe, H. W. Scibbe: Cooling Requirements of Ball Bearings Lubricated by Glass-Fiber-Filled PTFE Retainers in Cold Hydrogen Gas. NASA-TN-D-5607, 26 pp, February 1970.Google Scholar
  103. [99]
    W. A. Wilson, K. B. Martin, J. A. Brennan, et al.: Evaluation of Ball Bearing Separator Materials Operating Submerged in Liquid Nitrogen. Trans. ASLE 4, 50–58 (1962).Google Scholar
  104. [100]
    D. B. Chelton, J. A. Brennan, L. E. Scott: Dry Gas Operation of Ball Bearings at Cryogenic Temperatures. In: Adv. Cryog. Eng., Vol. 7, pp. 273–276. New York, Plenum Press (1960).Google Scholar
  105. [101]
    D. E. Brewe, D. W. Wisander, H. W. Scibbe: Performance of 40-millimeter Bore Bearings with Lead and Lead-alloy Retainers in Liquid Hydrogen at 192 Million DN. NASA-Lewis-Res. C., Tech. Note, NASA-TN-D-6091. November (1982).Google Scholar
  106. [102]
    R. B. Jacobs: Prediction of Symptoms of Cavitation. J. Res. NBS, 65C, 156, July/September (1961).Google Scholar
  107. [103]
    J. E. Blackford, P. Halford, D. H. Tantam: Expanders and Pumps. In: Cryogenic Fundamentals (G. G. Haselden, ed.), pp. 403–489. London, Academic Press (1971).Google Scholar
  108. [104]
    C. F. Sindt: A Summary of the Characterization Study of Slush Hydrogen. Cryogenics No. 5, 372–380 (1970).Google Scholar
  109. [105]
    R. D. McCarty, J. Hord, H. M. Roder: Selected Properties of Hydrogen, NBS-Monograph 168, U.S. Government Printing Office (1981).Google Scholar
  110. [106]
    C. F. Sindt, P. R. Ludtke, D. E. Daney: Slush Hydrogen Fluid Characterization and Instrumentation. NBS-Tech. Note No. 377, 65 pp. (1969).Google Scholar
  111. [107]
    R. Schraewer, W. Daus: Herstellung und Förderung von Wassertoffmatsch. Forschungsbericht NT 200 des BMFT (1974).Google Scholar
  112. [108]
    Q. S. Shu, R. W. Fast, H. L. Hart: Theory and Techniques for Reducing the Effect of Cracks in Multilayer Insulation from Room Temperature to 77 K. In: Adv. Cryog. Eng., Vol. 33, pp. 291–298. New York, Plenum Press (1988).Google Scholar
  113. [109]
    Q. S. Shu, R. W. Fast, H. L. Hart: Crack Covering Patch Technique to Reduce the Heat Flux from 77 K to 4, 2 K through Multilayer Insulation. In: Adv. Cryog. Eng., Vol. 33, pp. 299–304. New York, Plenum Press (1988).Google Scholar
  114. [110]
    P. R. Ludtke, P. J. Storch: Survey of Instrumentation for Slush Hydrogen Systems, National Institute for Standards and Technology (NIST), NASP Report 1054, March (1989).Google Scholar
  115. [111]
    P. Ordin: Hydrogen Safety Standard, NASA TMX-42454, NASA CR-182200, NASA Headquarters. Washington D.C., October 1988.Google Scholar
  116. [112]
    N. Squires et al.: Gelation, Hydrodynamics, and Heat Transfer Aspects of Gelled Cryogenic Propellants, A Progress Report, Part 1: Experiment. Grant No. NAG 3–850, Dept. of Mechanical Engineering and Applied Mechanics. The University of Michigan, Ann Arbor, MI, May 1989.Google Scholar
  117. [113]
    D. E. Daney, V. D. Arp, R. O. Voth: Hydrogen Slush Production with a Large Auger. In: Adv. Cryog. Eng., Vol. 35B, pp. 1767–1776. New York, Plenum Press (1990).Google Scholar
  118. [114]
    E. C. Cady, T. L. Flaska, P. K. Worell: In-Tank Thermodynamics of Slush Hydrogen for the National Aerospace Plane. In: Adv. Cryog. Eng., Vol. 35B, pp. 1755–1766. New York, Plenum Press (1990).Google Scholar
  119. [115]
    W. Peschka: Liquid Hydrogen Reciprocating Pumps for Automotive Application. In: Adv. Cryog. Eng., Vol. 35B, pp. 1783–1790. New York, Plenum Press (1990).Google Scholar
  120. [116]
    De Witt, R. L., Hardy, T. L., Whalen, M. V., Richter, G. P., Tomcik, T. M.: Background, Current Status, and prognosis of the Ongoing Slush Hydrogen Technology Development Program for the NASP. In: Proc. Symp. on National Aero-Space Plane and Space Applications, pp. 69–85, Hawaii: Hawaii Natural Energy Institute, Univ. of Hawaii 1990Google Scholar

Copyright information

© Springer-Verlag/Wien 1992

Authors and Affiliations

  • Walter Peschka
    • 1
  1. 1.Deutsche Forschungsanstalt für Luft- und Raumfahrt e.V.StuttgartBundesrepublik Deutschland

Personalised recommendations