Skip to main content

Thermal Insulation, Storage and Transportation of Liquid Hydrogen

  • Chapter
Liquid Hydrogen

Abstract

Hydrogen as a cryogenic liquid must be stored and transported in thermally insulated containers in order to avoid uneconomical high boil off losses. The same requirement applies for the insulation of liquid hydrogen transfer pipelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. D. Timmerhaus: Fluid Flow and Heat Transfer. In: Applied Cryogenic Engineering (R. W. Vance, W. H. Duke, eds.), pp. 104–151. New York, Wiley (1962).

    Google Scholar 

  2. J. A. Clark, R. M. Thorogood: Heat Transfer. In: Cryogenic Fundamentals (G. G. Haselden, ed.), pp. 92–197. London, Academic Press (1971).

    Google Scholar 

  3. J. A. Clark: Heat Transfer. In: Cryogenic Technology, (R. W. Vance, ed. pp. 121–195 ), New York, Wiley (1963).

    Google Scholar 

  4. H. M. Roder, R. D. McCarty, W. J. Hall: Computer Programs for Thermodynamic and Transport Properties of Hydrogen. Nat. Bureau of Standards, NBS-TN-625 (1972).

    Google Scholar 

  5. D. A. van Gundy, J. R. Uglum: Heat Transfer to an Uninsulated Surface at 20 K. In: Adv. Cryog. Eng., Vol. 7, pp. 377–384. New York, Plenum Press (1962).

    Google Scholar 

  6. R. L. Middleton, J. M. Stukey, J. T. Schell, et al.: Development of Lightweight External Insulation System for Liquid-Hydrogen Stages of the Saturn V Vehicle. In: Adv. Cryog. Eng., Vol. 10, pp. 216–223. New York, Plenum Press (1964).

    Google Scholar 

  7. J. B. Rittenhouse: Application of an adhesively Bonded Cryogenic Insulation System. NASA-TM-X-57823, NTIS (1966).

    Google Scholar 

  8. K. E. Leonhard, B. Oglin, W. F. Zimni: Determination of the Thermal Conductivity, the Specific Heat and the Weight by Volume of Insulations for Rocket Tanks Filled with Liquid Hydrogen. ELDO/ESRO Sci. Tech. Rev., Vol. 2, pp.3–28 (1967) (In French).

    Google Scholar 

  9. D. L. Dearing: Summary of the Saturn S-IV and S-IVB Liquid Hydrogen Tank Internal Insulation Development and Tehniques for Future Improvement. Bull. Int. Inst. Froid, Annexe 2, 233–246 (1965).

    Google Scholar 

  10. D. L. Dearing: Development of the Saturn S-IV and S-IVB Liquid Hydrogen Tank Internal Insulation. In: Adv. Cryog. Eng., Vol. 11, pp. 89–97. New York, Plenum Press (1966).

    Google Scholar 

  11. C. R. Lemons, C. R. Watts, O. K. Samassy: Development of Advanced Materials Composites for Use as Insulation for LH,-Tanks. McDonnel-Douglas, Astronautics Co., NASA-CR-124388, NASA-CR-123928 (1973).

    Google Scholar 

  12. J. J. McGraw: Cellular Insulation for Use with Low Temperature Liquids. US-Pat. No. 3.755. 056 (1973).

    Google Scholar 

  13. R. J. Jonke: Insulation Systems for Cryogenic Stages. Rev. Sci. Tech. CECLES/CERS 3, 17–48 (1971).

    Google Scholar 

  14. H. M. Tarid, J. C. Boissin, M. P. Segel: Thermal Insulation for Liquid Hydrogen Space Tankage. In: Adv. Cryog. Eng., Vol. 12, pp. 274–285. New York, Plenum Press (1967).

    Google Scholar 

  15. G. B. Yates: PPO Foam: Liquid Hydrogen Insulation. In: Adv. Cryog. Eng., Vol. 19, pp. 327–337. New York, Plenum Press (1974).

    Google Scholar 

  16. R. P. Reed, J. M. Arvidson, R. L. Durcholoz: Tensile Properties of Polyurethane and Polystyrene Foams from 76 to 300 K. In: Adv. Cryog. Eng., Vol. 18, pp. 184–193. New York, Plenum Press (1973).

    Google Scholar 

  17. H. Klezath: Wärmisolierung von Speicherbehältern für tiefsiedende Flüssigkeiten. Erdöl-Erdgas 85, 145–149 (1969).

    Google Scholar 

  18. C. L. Johnson, D. J. Holiweger: Some Heat Transfer Considerations in Non-Evacuated Cryogenic Powder Insulation. Adv. Cryog. Eng., Vol. 11, pp. 77–88. New York, Plenum Press (1966).

    Google Scholar 

  19. R. B. Scott: Insulation. In: Cryogenic Engineering, pp. 142–214. New York, van Nostrand (1959).

    Google Scholar 

  20. R. H. Kropschot: Low-Temperature Insulation. In: Applied Cryogenic Engineering, pp. 152–169. New York, Wiley (1963).

    Google Scholar 

  21. R. B. Jacobs: Thermal Insulation, Storage, Transport und Transfer of Liquid Hydrogen. In: Technology and Uses of Liquid Hydrogen (R. B. Scott, ed.) pp. 106–148. New York, Pergamon Press (1964).

    Google Scholar 

  22. R. H. Kropschot: Insulation Technology. In: Cryogenic Technology (R. W. Vance, ed.), pp. 239–250. New York, Wiley (1963).

    Google Scholar 

  23. W. Molnar: Insulation. In Cryogenic Fundamentals (G. G. Haselden, ed.) pp. 199–236. London, Academic Press (1971).

    Google Scholar 

  24. M. Knudsen: Ann. d. Physik 31, 205 (1910);

    MATH  Google Scholar 

  25. M. Knudsen: Ann. d. Physik 32, 809 (1910);

    ADS  MATH  Google Scholar 

  26. M. Knudsen: Ann. d. Physik 33, 1435 (1910);

    ADS  Google Scholar 

  27. M. Knudsen: Ann. d. Physik 34, 593 (1911);

    ADS  MATH  Google Scholar 

  28. M. Knudsen: Ann. d. Physik 6, 149 (1930).

    Google Scholar 

  29. R. J. Corrucini: Gaseous Heat Conduction at Low Pressures and Temperatures. Vacuum 7, 8 (1957).

    Google Scholar 

  30. C. Gerthsen: Physik. Berlin Heidelberg, New York, Springer (1966).

    Google Scholar 

  31. M. Weitz: Theorie und Praxis der Vakuumtechnik. Braunschweig, Vieweg (1965).

    Google Scholar 

  32. R. H. Kropschot, W. Burgers: Perlite for Cryogenic Insulation. In: Adv. Cryog. Eng., Vol. 8, pp. 221–229. New York, Plenum Press (1963).

    Google Scholar 

  33. B. J. Hunter, R. H. Kropschot, J. E. Schrodt, M. M. Fulk: Metal Powder Additives in Evacuated Powder Insulation. In: Adv. Cryog. Eng., Vol. 5, pp. 146–156. New York, Plenum Press (1960).

    Google Scholar 

  34. B. L. Knight, K. D. Timmerhaus, R. H. Kropschot: Analysis of Thermal Diffusity Evaluation under Transient Conditions for Powder Insulation. In: Adv. Cryog. Eng., Vol. 18, pp. 112–117. New York, Plenum Press (1973).

    Google Scholar 

  35. G. R. Cunnington: Apparent Thermal Conductivity of Uncoated Microsphere Cryogenic Insulation. In: Adv. Cryog. Eng., Vol. 21, pp. 263–271. New York, Plenum Press (1976).

    Google Scholar 

  36. G. R. Cunnington, C. L. Tien: Heat Transfer in Microsphere Cryogenic Insulation. In: Adv. Cryog. Eng., Vol. 18, pp. 103–111. New York, Plenum Press (1973).

    Google Scholar 

  37. C. L. Tien, G. R. Cunnington: Recent Advances in High performance Cryogenic Thermal Insulation. Cryogenics 12, 419–421 (1972).

    Google Scholar 

  38. Al L. Nayak, C. L. Tien: Thermal Conductivity of Microsphere Cryogenic Insulation. In: Adv. Cryog. Eng., Vol. 21, pp. 251–262. New York, Plenum Press (1976).

    Google Scholar 

  39. P. Petersen: The Heat-tight Vessel. Swedish Technical Research Council Rep., No. 706 (1951); see also: Satryck ur TVF 29, 4 (1958).

    Google Scholar 

  40. R. H. Kropshot: Low Temperature Insulation. In: Applied Cryogenic Engineering, pp. 152–169. New York, Wiley (1962).

    Google Scholar 

  41. W. Frost: Heat Transfer at Low Temperatures. New York, Plenum Press (1975).

    Google Scholar 

  42. R. P. Caren, G. R. Cunnington: Heat Transfer in Multilayer Insulation Systems. Chem. Eng. Progr., No 87, Vol. 64, pp. 67–81 (1968).

    Google Scholar 

  43. P. E. Glaser: Multilayer Insulation for Large Vessels Used in Transporting and Storing Cryogenic Liquids. Mech. Eng. 87, 23–27 (1965).

    Google Scholar 

  44. K. Kutzner, F. Schmidt, I. Wietzke: Radiative and Conductive Heat Transmission Through Superinsulations Experimental Results for Aluminium Coated Plastic Foils. Cryogenics 13, 396–404 (1973).

    Google Scholar 

  45. E. M. Sparrow, R. D. Cess: Radiation Heat Transfer. Bemond, Calif: Brooks/ Cole (1963).

    Google Scholar 

  46. R. M. Coston: Handbook of Thermal Design Data for Multilayer Insulation Systems, Vol. 2. Lockheed Missiles and Space Co., Sunnyvale, Calif. Rep. NASA-CR 87485 (1967).

    Google Scholar 

  47. F. Ruccia, R. Hinckley: The Surface Emittance of Vacuum-metallized Polyester Films. In: Adv. Cryog. Eng., Vol. 12, pp. 218–227. New York, Plenum Press (1967).

    Google Scholar 

  48. G. Bell, et al.: Thermal Performance of Multilayer Insulation applied to Small Cryogenic Tankage. In: Adv. Cryog. Eng., Vol. 22. New York, Plenum Press (1977).

    Google Scholar 

  49. F. E. Swalley, C. D. Nevins: Practical Problems in Design of High-performance Multilayer Insulation System for Cryogenic Stages. In: Adv. Cryog. Eng., Vol. 10, pp. 208–215. New York, Plenum Press (1965).

    Google Scholar 

  50. R. M. Coston, T. C. Nast: Experimental Evaluation of the Equations and Parameters Governing Flow Through Multilayer Insulations During Evacuation. In: Adv. Cryog. Eng., Vol. 11, pp. 56–64. New York, Plenum Press (1966).

    Google Scholar 

  51. G. C. Vliet, R. M. Costen: Thermal Energy Transport Parallel to the Laminations in Multilayer Insulation. In: Adv. Cryog. Eng., Vol. 13, pp. 671–679. New York, Plenum Press (1968).

    Google Scholar 

  52. D. O. Murray: Degradation of Multilayer Insulation Systems by Penetrations. Adv. Cryog. Eng., Vol. 13, pp. 680–689.

    Google Scholar 

  53. T. C. Nast: Effective Purging of High Performance Multilayer Insulation Systems. Adv. Cryog. Eng., Vol. 11, pp. 49–55. New York, Plenum Press (1966).

    Google Scholar 

  54. J. W. Price: Measuring the Gas Pressure within a High-performance Insulation Blanket. In: Adv. Cryog. Eng., Vol. 13, L-1, pp. 662–670. New York, Plenum Press (1968).

    Google Scholar 

  55. R. G. Scurlock, B. Sault: Development of Multilayer Insulation with Thermal Conductivities below 0.1 µW cm -K -1. Cryogenics 16, 303–311 (1976).

    Google Scholar 

  56. J. A. Paivanas, O. P. Roberts, D. I. J. Wang: Multishielding—An Advanced Super-insulation Technique. In: Adv. Cryog. Eng., Vol. 10, pp. 197–207. New York, Plenum Press (1965).

    Google Scholar 

  57. G. A. Bell, T. C. Nast, R. K. Wedel: Thermal Performance of Multilayer Insulation Applied to Small Cryogenic Tankage. In: Adv. Cryog. Eng., Vol. 21, pp. 272–282. New York, Plenum Press (1976).

    Google Scholar 

  58. A. R. Urbach, R. N. Herring: Long-term Helium Dewar for Space Experiments. In: Proc., 6th Int. Cryog. Eng. Conf., pp. 154–156 (1974).

    Google Scholar 

  59. W. F. Stewart: Operating Experience with a Liquid Hydrogen Fueled Buick and Refueling System. In: Proc., 4th Int. Hydrogen Energy Conf., Pasadena (June 1982), Vol. 3, pp. 1071–1093. New York, Pergamon Press (1982).

    Google Scholar 

  60. L. R. Niendorf, S. C. Choksi: Ultra-efficient Insulation System for Solid Cryogen Coolers. In: Adv. Cryog. Eng., Vol. 12, pp. 286–299. New York, Plenum Press (1967).

    Google Scholar 

  61. F. J. Edeskuty, K. D. Williamson, Jr.: Storage and Handling of Cryogens. In: Adv. Cryog. Eng., Vol. 17, pp. 56–68. New York, Plenum Press (1972).

    Google Scholar 

  62. M. P. Segel: Experimental Study of Phenomena of Stratification and Pressurization of Liquid Hydrogen. In: Adv. Cryog. Eng., Vol. 10, pp. 308–313. New York, Plenum Press (1964).

    Google Scholar 

  63. B. W. Birmingham, E. H. Brown, C. R. Class, A. F. Schmidt: Vessels for the Storage and Transport of Liquid Hydrogen-Research paper 2757, J. Res. Nat. Bur. Stand., A 58, 243–253 (1957).

    Google Scholar 

  64. D. H. Liebenberg, R. W. Stokes, F. J. Edeskuty: Chilldown and Storage Losses of Large Liquid Hydrogen Storage Dewars. In: Adv. Cryog. Eng., Vol. 11, pp. 554–560. New York, Plenum Press (1966).

    Google Scholar 

  65. P. D. Fuller, J. N. McLagan: Storage and Transfer of Cryogenic Fluids. In: Applied Cryogenic Engineering (R. W. Vance, W. M. Duke, eds.). Section 1: Cryogenic Storage Vessels and Transport Trailers, pp. 215–237, Sect. 2: Transfer Lines, pp. 238–254. New York, Wiley (1962).

    Google Scholar 

  66. F. J. Edeskuty: Nuclear Propulsion. In: Cryogenic Technology (R. W. Vance, ed.) pp. 352–374. New York, Wiley (1963).

    Google Scholar 

  67. C. F. Sind: Transmission of Hydrogen_ In: Topics on Hydrogen Fuel (J. Hard, ed.), NBS-Sec. Publ. 419 (1975).

    Google Scholar 

  68. R. B. Jacobs: Long Distance Transfer of Liquefied Gases. In: Proc., 2nd Cryog. Eng. Conf., Boulder, Co., 1956. Nat. Bureau of Stand (1957).

    Google Scholar 

  69. A. J. Croft: 14 Meter Liquid Hydrogen Line. Cryogenics 10, 167–168 (1970).

    Google Scholar 

  70. J. Stuchly: Internally Insulated Cryogenic Pipelines. In: Adv. Cryog. Eng., Vol. 21, pp. 531–537. New York, Plenum Press (1976).

    Google Scholar 

  71. R. S. Thurston, J. D. Rogers, V. J. Skoglund: Pressure Oscillations Induced by Forced Convection Heating of Dense Hydrogen. In: Adv. Cryog. Eng., Vol. 12, pp. 438–451. New York, Plenum Press (1967).

    Google Scholar 

  72. W. G. Flieder, W. J. Smith, K. R. Wetmore: Flexibility Considerations for Design of Cryogenic Transfer Lines. In: Adv. Cryog. Eng., Vol. 5, pp. 111–119. New York, Plenum Press (1960).

    Google Scholar 

  73. W. G. Steward: Transfer Line Surge. In: Adv. Cryog. Eng., Vol. 10, pp. 313–323. New York, Plenum Press (1965).

    Google Scholar 

  74. R. S. Thurston: Probing Experiments on Pressure Oscillations in Two Phase and Supercritical Hydrogen with Forced Convection Heat Transfer. In: Adv. Cryog. Eng., Vol. 10, pp. 305–312. New York, Plenum Press (1965).

    Google Scholar 

  75. J. C. Burke, W. R. Byrnes, A. H. Post, F. E. Ruccia: Pressurized Cooldown of Cryogenic Transfer Lines. In: Adv. Cryog. Eng., Vol. 4, pp. 378–394. New York, Plenum Press (1964).

    Google Scholar 

  76. J. C. Bronson, F. J. Edeskuty, et al.: Problems in Cooldown of Cryogenic Systems. In: Adv. Cryog. Eng., Vol. 7, pp. 198–205. New York, Plenum Press (1960).

    Google Scholar 

  77. O. Baker: Design of Pipe Lines for Simultaneous Flow of Oil and Gas. The Oil and Gas J. 53, 185–195 (1954).

    Google Scholar 

  78. K. Srinivasan, R. Seshagiri, M. V. Krishna Murthy: Analytical and Experimental Investigations on Cooldown of Short Cryogenic Transfer Lines. Cryogenics 14, 489–494 (1974).

    Google Scholar 

  79. C. S. Beard: Cryogenic Valves, a Survey. Cryog. Eng. News 2, 62–68 (1967).

    Google Scholar 

  80. A. E. Biermann, R. C. Kohl: Preliminary Study of a Piston Pump for Cryogenic Fluids. NASA-Memo 3/6/59E, Lewis Res. C. (1959).

    Google Scholar 

  81. T. A. Carter, Jr.: Pumps for Liquid Hydrogen. Cryog. Tech. 3, 173–175 (1967).

    Google Scholar 

  82. W. H. Knuth, J. Farquhar, B. K. Lindley: Design Study of Modification of M 1 Liquid Hydrogen Turbopumps for Use in Nuclear Reactor Test Facility. NASA-CR-54422 (1965).

    Google Scholar 

  83. J. Farquhar, B. K. Lindley: Hydraulic Design of M 1 Liquid Hydrogen Turbopumps. NASA-CR-54822 (1966).

    Google Scholar 

  84. G. H. Ribble, Jr., G. E. Turney: Experimental Study of Low Speed Operating Characteristics of a Liquid Hydrogen Centrifugal Turbopump. NASA-TM-X-1861, August (1969).

    Google Scholar 

  85. H. P. Stinson, R. J. Strickland: Experimental Findings from Zero Tank Net Positive Suction Head Operation of the J-2 Hydrogen Pump. NASA-TN-D-6824, August (1972).

    Google Scholar 

  86. K. P. Martin, R. B. Jacobs, R. J. Hardy: Performance of Pumps with Liquefied Gases. In: Adv. Cryog. Eng., Vol. 2, pp. 295–302. New York, Plenum Press (1960).

    Google Scholar 

  87. I. S. Pearsall: Supercavitating Pumps for Cryogenic Liquids. Cryogenics 12, 422–426 (1972).

    Google Scholar 

  88. J. F. Di Stefano, G. H. Caine: Cavitation Characteristics of Tank-mounted Cryogenic Pumps and their Predicted Performance under Reduced Gravity. In: Adv. Cryog. Eng., Vol. 7, pp. 277–290. New York, Plenum Press (1962).

    Google Scholar 

  89. A. G. Cryomec, J. E. Tornare, K. Bofinger: Pumpeneinlaufkranz, Europ. Pat. EP 0 317 687 Al (1989).

    Google Scholar 

  90. G. H. Caine, L. Schäfer, D. Burgeson: Pumping of Liquid Hydrogen. Adv. Cryog. Eng., Vol. 4, pp. 241–254. New York, Plenum Press (1960).

    Google Scholar 

  91. M. Morpurgo: Design and Construction of a Pump for Liquid Helium. Cryogenics 17, 91–93 (1977).

    Google Scholar 

  92. C. F. Goltzmann: High Pressure Liquid Hydrogen and Helium Pumps. Adv. Cryog. Eng., Vol. 5, pp. 289–298. New York, Plenum Press (1960).

    Google Scholar 

  93. A. G. Cryomec, J. E. Tornare, K. Bofinger, Cl. Tschopp: Pumpe für kryogene Fluiden. Europ. Pat. EP 0 174 269 A3, 1984, US Pat. No. 4, 639, 197.

    Google Scholar 

  94. P. R. Ludtke, D. E. Daney, W. G. Steward: Performance of a Small Centrifugal Pumps in the I and He II. In: Adv. in Cryog. Eng., Vol. 33, pp. 515–524. New York, Plenum Press (1988).

    Google Scholar 

  95. P. M. McConnel: Liquid Helium Pumps, NBSIR 73–316, NBS, Boulder, Colorado (1973).

    Google Scholar 

  96. P. R. Ludke: Performance Characteristics of a Liquid Helium Pump. NBSIR 75–816, NBS, Boulder, Colorado (1975).

    Google Scholar 

  97. W. G. Steward: Centrifugal Pumps for Superfluid Helium. Cryogenics 26 (1986).

    Google Scholar 

  98. P. Kittel: Liquid Helium Pumps for in Orbit Transfer Cryogenics 27 (1987).

    Google Scholar 

  99. P. N. McNail, J. E. Engloud, R. H. Knoll: Design, Development, and Test of Shuttle/Centour G— Prime Cryogenic Tankage Protection Systems. In: Adv. Cryog. Eng., Vol. 33, pp. 341–348. New York, Plenum Press (1988).

    Google Scholar 

  100. H. W. Scibbe: Bearings and Seals for Cryogenic Fluids. NASA-TM-X-52415 (1968).

    Google Scholar 

  101. D. E. Brewe, H. H. Coe, H. W. Scibbe: Cooling Studies with High Speed Ball Bearings Operating in Cold Hydrogen Gas. ASLE-Trans., 12, No. 1, 66–76 (1969).

    Google Scholar 

  102. H. H. Coe, D. E. Brewe, H. W. Scibbe: Cooling Requirements of Ball Bearings Lubricated by Glass-Fiber-Filled PTFE Retainers in Cold Hydrogen Gas. NASA-TN-D-5607, 26 pp, February 1970.

    Google Scholar 

  103. W. A. Wilson, K. B. Martin, J. A. Brennan, et al.: Evaluation of Ball Bearing Separator Materials Operating Submerged in Liquid Nitrogen. Trans. ASLE 4, 50–58 (1962).

    Google Scholar 

  104. D. B. Chelton, J. A. Brennan, L. E. Scott: Dry Gas Operation of Ball Bearings at Cryogenic Temperatures. In: Adv. Cryog. Eng., Vol. 7, pp. 273–276. New York, Plenum Press (1960).

    Google Scholar 

  105. D. E. Brewe, D. W. Wisander, H. W. Scibbe: Performance of 40-millimeter Bore Bearings with Lead and Lead-alloy Retainers in Liquid Hydrogen at 192 Million DN. NASA-Lewis-Res. C., Tech. Note, NASA-TN-D-6091. November (1982).

    Google Scholar 

  106. R. B. Jacobs: Prediction of Symptoms of Cavitation. J. Res. NBS, 65C, 156, July/September (1961).

    Google Scholar 

  107. J. E. Blackford, P. Halford, D. H. Tantam: Expanders and Pumps. In: Cryogenic Fundamentals (G. G. Haselden, ed.), pp. 403–489. London, Academic Press (1971).

    Google Scholar 

  108. C. F. Sindt: A Summary of the Characterization Study of Slush Hydrogen. Cryogenics No. 5, 372–380 (1970).

    Google Scholar 

  109. R. D. McCarty, J. Hord, H. M. Roder: Selected Properties of Hydrogen, NBS-Monograph 168, U.S. Government Printing Office (1981).

    Google Scholar 

  110. C. F. Sindt, P. R. Ludtke, D. E. Daney: Slush Hydrogen Fluid Characterization and Instrumentation. NBS-Tech. Note No. 377, 65 pp. (1969).

    Google Scholar 

  111. R. Schraewer, W. Daus: Herstellung und Förderung von Wassertoffmatsch. Forschungsbericht NT 200 des BMFT (1974).

    Google Scholar 

  112. Q. S. Shu, R. W. Fast, H. L. Hart: Theory and Techniques for Reducing the Effect of Cracks in Multilayer Insulation from Room Temperature to 77 K. In: Adv. Cryog. Eng., Vol. 33, pp. 291–298. New York, Plenum Press (1988).

    Google Scholar 

  113. Q. S. Shu, R. W. Fast, H. L. Hart: Crack Covering Patch Technique to Reduce the Heat Flux from 77 K to 4, 2 K through Multilayer Insulation. In: Adv. Cryog. Eng., Vol. 33, pp. 299–304. New York, Plenum Press (1988).

    Google Scholar 

  114. P. R. Ludtke, P. J. Storch: Survey of Instrumentation for Slush Hydrogen Systems, National Institute for Standards and Technology (NIST), NASP Report 1054, March (1989).

    Google Scholar 

  115. P. Ordin: Hydrogen Safety Standard, NASA TMX-42454, NASA CR-182200, NASA Headquarters. Washington D.C., October 1988.

    Google Scholar 

  116. N. Squires et al.: Gelation, Hydrodynamics, and Heat Transfer Aspects of Gelled Cryogenic Propellants, A Progress Report, Part 1: Experiment. Grant No. NAG 3–850, Dept. of Mechanical Engineering and Applied Mechanics. The University of Michigan, Ann Arbor, MI, May 1989.

    Google Scholar 

  117. D. E. Daney, V. D. Arp, R. O. Voth: Hydrogen Slush Production with a Large Auger. In: Adv. Cryog. Eng., Vol. 35B, pp. 1767–1776. New York, Plenum Press (1990).

    Google Scholar 

  118. E. C. Cady, T. L. Flaska, P. K. Worell: In-Tank Thermodynamics of Slush Hydrogen for the National Aerospace Plane. In: Adv. Cryog. Eng., Vol. 35B, pp. 1755–1766. New York, Plenum Press (1990).

    Google Scholar 

  119. W. Peschka: Liquid Hydrogen Reciprocating Pumps for Automotive Application. In: Adv. Cryog. Eng., Vol. 35B, pp. 1783–1790. New York, Plenum Press (1990).

    Google Scholar 

  120. De Witt, R. L., Hardy, T. L., Whalen, M. V., Richter, G. P., Tomcik, T. M.: Background, Current Status, and prognosis of the Ongoing Slush Hydrogen Technology Development Program for the NASP. In: Proc. Symp. on National Aero-Space Plane and Space Applications, pp. 69–85, Hawaii: Hawaii Natural Energy Institute, Univ. of Hawaii 1990

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag/Wien

About this chapter

Cite this chapter

Peschka, W. (1992). Thermal Insulation, Storage and Transportation of Liquid Hydrogen. In: Liquid Hydrogen. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9126-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9126-2_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9128-6

  • Online ISBN: 978-3-7091-9126-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics