Skip to main content

Hydrogen Liquefaction

  • Chapter

Abstract

Several procedures have been developed for hydrogen liquefaction, encompassing the range from laboratory liquefaction equipment to large-scale plants. The large-scale end of the spectrum and the developments associated with it were essentially influenced and promoted by space technology requirements. Very detailed literature exists concerning the different procedures for hydrogen liquefaction. This is the basis for the following description of hydrogen liquefaction procedures (see for example [1–4, 6, 7]).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Barron: Cryogenic Systems. New York, McGraw Hill (1966).

    Google Scholar 

  2. A. J. Westbrock: Liquefaction of Oxygen, Nitrogen and Hydrogen. In: Applied Cryogenic Engineering (R. D. Vance, W. M. Duke, eds.), pp. 170–191. New York, Wiley (1962).

    Google Scholar 

  3. G. G. Haselden: Refrigeration and Liquefaction Cycles. In: Cryogenic Fundamentals (G. G. Haselden, ed.), pp. 17–89. London, Academic Press (1971).

    Google Scholar 

  4. R. B. Scott, W. H. Denton, C. M. Nicholls: Technology and Use of Liquid Hydrogen. Oxford, Pergamon Press (1964).

    Google Scholar 

  5. R. B. Scott: Cryogenic Engineering. Princeton, N.J., van Nostrand (1959).

    Google Scholar 

  6. J. Macinko, D. B. Chelton, J. Dean: Hydrogen Liquefaction Cycles. In: Adv. Cryog. Eng., Vol. 3. New York, Plenum Press (1960).

    Google Scholar 

  7. R. Plank (ed.): Handbuch der Kältetechnik. Berlin Göttingen Heidelberg, Springer (1959).

    Google Scholar 

  8. Ch. Kittel: Einführung in die Festkörperphysik. München Wien, Oldenbourg (1969).

    Google Scholar 

  9. F. E. Simon, N. Kurti, J. F. Allen, K. Mendelssohn: Low Temperature Physics. Four Lectures. London, Pergamon Press (1952).

    Google Scholar 

  10. J. A. Barclay, W. A. Steyert: Magnetic Refrigeration for Space Applications, Report on an Design Study. Los Alamos Sci. Lab. Rep. LA-8134 (1980).

    Google Scholar 

  11. T. Hashimoto, T. Numasawa, M. Shino, T. Okada: Magnetic Refrigeration in the Temperature Range from 10 K to Room Temperature: The Ferromagnetic Refrigerants. Cryogenics, November (1981).

    Google Scholar 

  12. N. Kurti: The Temperature Range below 1° Absolute. In: Low Temperature Physics, Four Lectures ( F. E. Simon, N. Kurti, eds.). London, Pergamon Press (1952).

    Google Scholar 

  13. D. S. Betts: Refrigeration and Thermometry below 1 K. Sussex University Press (1976).

    Google Scholar 

  14. J. A. Barclay, O. Moze, L. Paterson: A Reciprocating Magnetic Refrigerator for 2–4 K Operation: Initial Results. J. Appl. Phys. 50, 5870–5877 (1979).

    Article  ADS  Google Scholar 

  15. G. V. Brown: Magnetic Heat Pumping Near Room Temperature. J. Appl. Phys. 47, 3673–3680 (1976).

    Article  ADS  Google Scholar 

  16. J. A. Barclay, W. A. Steyert: Materials for Magnetic Refrigeration between 2K. Cryogenics 22, 73–79 (1982).

    Article  Google Scholar 

  17. J. A. Barclay: Can Magnetic Refrigerators Liquefy Hydrogen at High Efficiency. ASME-paper 81-HT-82, 20th Joint ASME/AICHE National Heat Transfer Conf.. Milwaukee, Wisc., August 2–5 (1981).

    Google Scholar 

  18. J. W. L. Köhler, C. O. Jonkers: Grundlagen der Gaskältemaschine-Konstruktion einer Gaskältemaschine. Philips Tech. Rdsch. 11, 12 (1954).

    Google Scholar 

  19. W. L. Köhler, P. F. Stevens, A. K. de Jonge, D. C. Beuzekom: Computation of Regenerators Used in Regenerative Refrigerators. Cryogenics 15, 521–530 (1975).

    Article  Google Scholar 

  20. J. A. Barclay, W. F. Stewart: The Effect of Parasitic Refrigeration on the Efficiency of Magnetic Liquefiers, 1166–1170. In: Proc., 17th IECEC, CH 1789–7/82/0000–1166, August (1982).

    Google Scholar 

  21. W. A. Steyert: Rotating Carnot-Cycle Magnetic Refrigerators for Use Near 2 K. J. Appl. Phys. 49, 1227–1230 (1978).

    Article  ADS  Google Scholar 

  22. J. A. Barclay: A 4 K to 20 K Rotational-Cooling Magnetic Refrigerator Capable of 1 mW at 1 W Operation. Los Alamos Sci. Lab. Rep. LA-81111 (1980).

    Google Scholar 

  23. W. A. Steyert: Stirling Cycle Rotating Magnetic Refrigerators and Heat Engines for Use Near Room Temperature. J. Appl. Phys. 49, 1227 (1978).

    Article  ADS  Google Scholar 

  24. J. R. van Geuns: Philips Res. Rep., Suppl. 6 (1966).

    Google Scholar 

  25. N. P. Chopey: Industry Joins Liquid Hydrogen Scene. Chem. Eng. 61, 164–167 (1960).

    Google Scholar 

  26. P. C. van der Arend: Large-Scale Liquid Hydrogen Production. Chem. Eng. Progr. 57, 62–67 (1961).

    Google Scholar 

  27. H. L. Coplen: Large-Scale Production and Handling of Liquid Hydrogen. J. Amer. Rocket Sci. 22, 309–322 (1952).

    Google Scholar 

  28. P. C. van der Arend: Liquid Hydrogen—Ultimate Fuel. Chem. Eng. Progr. Symp. Series 57, No. 34, 1–7 (1961).

    MathSciNet  Google Scholar 

  29. T. M. Flynn, C. N. Smith: Trends in Cryogenic Fluid Production in the United States. In: Proc., Int. Inst. of Refrigeration, pp. 241–247, Tokyo, Japan (1970).

    Google Scholar 

  30. P. C. van der Arend: Large-Scale Production, Handling and Storage of Liquid Hydrogen. In: Adv. Cryog. Eng., Vol. 5, pp. 49–54. New York, Plenum Press (1959).

    Google Scholar 

  31. C. R. Baker, L. C. Matsch: Production and Distribution of Liquid Hydrogen. Adv. Petrol. Chem. Refining 10, 36–81 (1965).

    Google Scholar 

  32. H. Fujita: Liquefied Hydrogen in France. Production, Storage, Transportation and Utilization. Koatsu Gasu 12, 18–27 (1975).

    Google Scholar 

  33. J. Blackford, P. Halford, D. H. Tantam: Expanders and Pumps, Chapt, 8. In: Haselden, G. G. (ed.): Cryogenic Fundamentals. London, Academic Press (1971).

    Google Scholar 

  34. J. L. Smith, Jr.: A Metal Bellows Expansion Engine. Adv. in Cryog. Eng., Vol. 12, pp. 595–601 New York, Plenum Press (1967).

    Google Scholar 

  35. W. A. Morain: Design of a Cryogenic Expansion Engine for Tonnage Hydrogen Liquefaction. In: Adv. Cryog. Eng., Vol. 12, pp. 585–594. New York, Plenum Press (1967).

    Google Scholar 

  36. M. L. Land: Expansion Engines and Turbines for Low Temperature Processing. In: Adv. Cryogenic Eng., Vol. 2. New York, Plenum Press (1960).

    Google Scholar 

  37. N. Eber, H. Quack, C. Schmidt: Gas Bearing Turbines with Dynamics Gas Bearings and their Application. Cryogenics 18, 585–588 (1978).

    Article  Google Scholar 

  38. C. R. Baker, R. L. Shaner: A Study of the Efficiency of Hydrogen Liquefaction. Int. J. Hydrogen Energy 3, 321–334 (1978).

    Article  Google Scholar 

  39. C. R. Baker: Economics of Hydrogen Production and Liquefaction updated to 1980. NASA Contractor Rep. 159163 (1979), also see NASA-CR-132631, NASA-CR-145077, NASA-CR-145282.

    Google Scholar 

  40. R. O. Voth, D. E. Daney: H2-Liquefaction: Effects of Component Efficiencies. In: Proc. 14th IECEC, Newark, Delaware, pp. 1356–1362, August (1975).

    Google Scholar 

  41. W. Foerg: Purification of Hydrogen by Means of Low Temperatures. Sci. Technol. 15, 18–26 (1970).

    Google Scholar 

  42. C. R. Baker, R. S. Paul: Purification of Liquefaction-Grade Hydrogen. Chem. Eng. Progr. 59, 61–64 (1963).

    Google Scholar 

  43. K. Wilson: Adsorption. In: Cryogenic Fundamentals (G. G. Haselden, ed.), pp. 375–403. London, Academic Press (1971).

    Google Scholar 

  44. D. H. Weitzel, C. C. van Valin, J. W. Draper: Design Data for Ortho-Parahydrogen Converters. In: Adv. Cryog. Eng., Vol. 3. New York, Plenum Press (1980).

    Google Scholar 

  45. A. H. Singleton, J. F. Kucirka, A. Lapin: Investigation of the Para-Ortho Shift of Hydrogen Air Force Prop. Lab. (APEL), Tech. Rep. AFAPL-TR-66–111, 80 p, Wright Patterson Air Force Bose, Ohio (1966).

    Google Scholar 

  46. P. L. Barrick, L. F. Brown, H. L. Hutchinson, R. L. Cruse: Improved Ferric Oxide Gel for Ortho-Parahydrogen Conversion. In: Adv. Cryog. Eng., Vol. 10. New York, Plenum Press (1965).

    Google Scholar 

  47. A. H. Singleton, A. Lapin: Design of Para-Orthohydrogen Catalytic Reactors. In: Adv. Cryog. Eng., Vol. 10A. New York, Plenum Press (1965).

    Google Scholar 

  48. A. H. Singleton, A. Lapin, L. A. Wenzel: Rate Model for Ortho-Parahydrogen Reaction on a Highly Active Catalyst. In: Adv. Cryog. Eng., Vol. 13. New York, Plenum Press (1968).

    Google Scholar 

  49. T. R. Strobridge: Cryogenic Refrigerators—An Updated Survey, NBS, Tech. Note 655 (1974).

    Google Scholar 

  50. A. A. Dros: Large Capacity Industrial Stirling Machine. In: Adv. Cryog. Eng., Vol. 10A. New York, Plenum Press (1965).

    Google Scholar 

  51. W. Kanoldt: Selected Examples for European Cryogenic Design Practice. In: Adv. Cryog. Eng., Vol. 10A. New York, Plenum Press (1965).

    Google Scholar 

  52. W. E. Keller: Worldwide Cryogenics-U.S., Cryogenics at the Lost Alamos Scientific Laboratory. Cryogenics 20, 547–556 (1980).

    Article  Google Scholar 

  53. J. E. McCormick, J. B. Brauer: The Feasibility of Solid State Cryogenic Refrigeration to 70 K. In: Adv. Cryog. Eng., Vol. 10. New York, Plenum Press (1965).

    Google Scholar 

  54. J. A. Barclay: Magnetic Refrigeration: A Review of a Developing Technology. In: Adv. Cryog. Eng., Vol. 33, pp. 719–732. New York, Plenum Press (1988).

    Google Scholar 

  55. T. Hashimoto, T. Yazawa, R. Li, et al.: Recent Progress in Magnetic Refrigeration Studies. In: Adv. Cryog. Eng., Vol. 33, pp. 733–742. New York, Plenum Press (1988).

    Google Scholar 

  56. S. R. Jaeger, J. A. Barclay, W. C. Overton, Jr.: Analysis of Magnetic Refrigeration with External Regeration. In: Adv. Cryog. Eng. Vol. 33, pp. 751–756. New York, Plenum Press (1988).

    Google Scholar 

  57. C. R. Cross, J. A. Barclay, A. J. De Gregoria, et al.: Optimal Temperature-Entropy Curves for Magnetic Refrigeration. In: Adv. Cryog. Eng., Vol. 33, pp. 767–776. New York, Plenum Press (1988).

    Google Scholar 

  58. G. Green, W. Patton, J. Stevens: The Magnetocaloric Effect of Some Rare Earth Metals. In: Adv. Cryog. Eng., Vol. 33, pp. 777–784. New York, Plenum Press (1988).

    Google Scholar 

  59. G. M. Claude: Magnetic Refrigeration Study at CEN Grenoble. In: Adv. Cryog. Eng., Vol. 31, pp. 733–742. New York, Plenum Press (1985).

    Google Scholar 

  60. W. Peschka, C. Carpetis: Möglichkeiten der Magnetischen Kühlung, pp. 8–13. DLR-Nachrichten 57, Juni 1989.

    Google Scholar 

  61. G. Bogner: Technische Anwendungen der Supraleitung-Anforderungen an die neuen Hochtemperatur-Supraleiter, Siemens, Techn. Mitteilungen 80 (1987) 8.

    Google Scholar 

  62. E. M. W. Leung, D. D. Madura, R. E. Bailey: Yttrium Barium Copper Oxide Superconducting to Normal Transition Characterization for a Solenoid Configuration. In: Ad. Cryog. Eng., Vol. 35A, pp. 633–639. New York, Plenum Press (1990).

    Google Scholar 

  63. P. Seyfert: Research on Magnetic Refrigeration at CEN Grenoble. In: Adv. Cryog. Eng., Vol. 35B, pp. 1087–1096. New York, Plenum Press (1990).

    Google Scholar 

  64. J. A. Barclay, S. R. Jaeger, F. G. Jr. Pregner: Operational Envelope for Magnetic Refrigerators. In: Adv. Cryog. Eng. Vol. 35B, pp. 1097–1104. New York, Plenum Press (1990).

    Google Scholar 

  65. P. Kittel: Eddy Current Heating in Magnetic Refrigerators. In: Adv. Cryog. Eng. Vol. 35B, pp. 1141–1148. New York, Plenum Press (1990).

    Google Scholar 

  66. E. Schroeder, G. Green, J. Chafe: Performance Predictions of a Magnetocaloric Refrigerator Using a Finite Element Model. In: Adv. Cryog. Eng. Vol. 35B, pp. 1149–1155. New York, Plenum Press (1990).

    Google Scholar 

  67. C. P. Taussing, G. R. Gollagher, Jr., J. L. Smith, Y. Iwasa: Magnetic Refrigeration Based on Magnetically Active Regeneration. In: Proc., Fourth Int. Cryocoolers Conference, pp. 78–88 (1986).

    Google Scholar 

  68. C. P. Taussig: Magnetically Active Regeneration, MIT, Ph.D. Thesis (1986).

    Google Scholar 

  69. J. L. Smith, Jr., Y. Iwasa, F. J. Cogswell: Material and Cycle Considerations for Regenerative Magnetic Refrigeration. In: Adv. Cryog. Eng., Vol. 35B, pp. 1157–1164. New York, Plenum Press (1990).

    Google Scholar 

  70. G. Green, J. Chafe: A Gadolinium-Terbium Active Regennerator. In: Adv. Cryog. Eng. Vol. 35B, pp. 1165–1174. New York, Plenum Press (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag/Wien

About this chapter

Cite this chapter

Peschka, W. (1992). Hydrogen Liquefaction. In: Liquid Hydrogen. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9126-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9126-2_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9128-6

  • Online ISBN: 978-3-7091-9126-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics