Skip to main content

Hydrogen Production

  • Chapter
Liquid Hydrogen
  • 582 Accesses

Abstract

Today, hydrogen serves, primarily, as a raw material in chemical processes. It is used only on a small, although increasing, scale as an energy carrier, as in rocket fuel for example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ullmanns Enzylkopädie der Technischen Chemie, Bd. 18, 3. Aufl., Wasserstoff.

    Google Scholar 

  2. W. Balthasar, P. J. Hambleton: Industrial Scale, Production of Hydrogen from Natural Gas, Naphta and Coal. Int. J. Hydrogen Energy 5, No. 1 (1980).

    Google Scholar 

  3. T. R. Roszkowski, N. W. Snyder: Present and Emerging Hydrogen Production Technology. In: Proc., 4th. World Hydr. Energy Conf. Vol. 1. pp. 47–68. Pasadena 1982.

    Google Scholar 

  4. P. V. Clifton: The Schultz Steam Iron Process. Industr. Eng. Chem. 21, 161–166 (1959).

    Google Scholar 

  5. J. B. Pohlenz, L. O. Stine: New Process Promises Low Cost Hydrogen. Oil and Gas 23, 127–132 (1962).

    Google Scholar 

  6. H. W. Gratkowski: Kohlevergasungs-Verfahren. Ullmanns Enzyklopädie der Technischen Chemie, Bd. 10 (1958), Ergänzungsband (1970).

    Google Scholar 

  7. K. H. Osthaus: Kohlevergasung nach dem Koppers-Totzek-Verfahren für den Kraftwerksbetrieb. VGB-Kraftwerkstechnik 54, 221–224 (1974).

    Google Scholar 

  8. J. F. Farnsworth, D. M. Mitsak, R. Wintrell: Production of Gas from Coal by the Koppers-Totzek-Process. In: Proc. Symp. Clean Fuels from Coal, pp. 143–162. Inst. of Gas Techn., Chicago, December 1973.

    Google Scholar 

  9. I. N. Banchik: The Winkler Process for the Production of Low BTU-Gas from Coal. Proc. Symp. Clean Fuels from Coal, pp. 163–178. Inst. of Gas Techn., Chicago, December 1973.

    Google Scholar 

  10. Anon.: Lurgi-Handbuch, 2. Aufl., Kap. 2. 1. Frankfurt/Main, Lurgi Gesellschaften (1970).

    Google Scholar 

  11. H. Bierbach, H. Jockel: Weiterentwicklung der Lurgi-Druckvergasung. Stahl und Eisen 7, 371–376 (1980).

    Google Scholar 

  12. T. King, G. R. Hill: Erforschung und Entwicklung der Kohlevergasung in den U.S.A. GWF-Gas/Erdgas 115, 201–205 (1974).

    Google Scholar 

  13. K. A. Van Heek: Überblick über den internationalen Entwicklungsstand der Kohlevergasungsverfahren. Stahl und Eisen 7, 307–321 (1980).

    Google Scholar 

  14. Ch. Brecht, H. W. Gratkowski, G. Hoffmann: Vergasung und Hydrierung der Kohle—Eine tabellarische Übersicht der in-und ausländischen Entwicklungen sowie der großtechnisch eingesetzten Verfahren. Gaswärme Intern. 29, 367–387 (1980).

    Google Scholar 

  15. R. J. Grace: Development of the BI-Gas Process. In: Proc., Symp. Clean Fuels from Coal, pp. 178–197. Inst. of Gas Techn., Chicago, December 1973.

    Google Scholar 

  16. C. E. Fink: The CO2-Acceptor Process. In: Proc. Symp. Clean Fuels from Coal, pp. 301–309. Inst. of Gas Techn., Chicago, December 1973.

    Google Scholar 

  17. F. Schora Jr., B. S. Lee, J. Hübler: The Hygas Process. In: Proc. Symp. Clean Fuels from Coal, pp. 218–240. Inst. of Gas Techn., Chicago, December 1973.

    Google Scholar 

  18. A. E. Cover, W. C. Schreiner, G. D. Skaperdas: Kellog’s Coal Gasification Process. Chem. Eng. Progr. 69, 31–36 (1973)

    Google Scholar 

  19. A. J. Forney, J. P. McGee: The Synthane Process—Research Results and Prototype Plant Design. AGA Synthetic Pipeline Gas Symp., Chicago (1972).

    Google Scholar 

  20. R. M. Nadkarni, C. Bliss, W. I. Watson: Underground Gasification of Coal. Chemtech. 6, 230–237 (1974).

    Google Scholar 

  21. N. Fichtner: Wirtschaftliche Aussichten von mit nuklearer Prozeßwärme erzeugtem technischen Wasserstoff. Studie im Auftr. d. BMFT, NT 125 (1971).

    Google Scholar 

  22. KFA Jülich: Entwicklung von Verfahren zur Umwandlung fester fossiler Rohstoffe mit Wärme aus Hochtemperaturreaktoren. KFA Jülich GmbH, Halbj. Bericht 1973/I.

    Google Scholar 

  23. R. Schulten: Kernernergie zur Prozeßwärmenutzung. Atomwirtschaft 55, 491–494 (1972).

    Google Scholar 

  24. R. Schulten: Nuclear Energy as a Primary Energy Source for Hydrogen Production. Int. J. Hydrogen Energy 5, 281–292 (1980).

    Article  Google Scholar 

  25. R. N. Quade, L. Meyer: Nuclear Heat Source for Hydrogen Production. Int. J. Hydrogen Energy 4, 101–110 (1979).

    Article  ADS  Google Scholar 

  26. K. H. Heek: Wasserdampfvergasung von Kohle unter Einkopplung nuklearer Prozeßwärme aus Hochtemperatur-Kerreaktoren. In: Kohlevergasung in der Energietechnik. In: Proc., VGB-Kraftwerkstechnik GmbH, Essen (1979).

    Google Scholar 

  27. Anon.: Ullmanns Enzyklopädie der Technischen Chemie, Bd. 6. 1953.

    Google Scholar 

  28. Anon.: Gmelins Handbuch der anorganischen Chemie, Wasserstoff. 8. Aufl., p. 227, 244, 257 (1958).

    Google Scholar 

  29. N. C. Hallet: Cost and Systems Analysis of Liquid Hydrogen Production. NASA-CR-73. 266, 1968.

    Google Scholar 

  30. D. P. Gregory, J. O. M. Bockris: The Hydrogen Economy. New York, Plenum Press (1972).

    Google Scholar 

  31. A. Gann: Hydrogen Production by Water Electrolysis. ESA TT-250, 1976, see also DLR-Mitt., Nr. 39–74, Über die Herstellung von Wasserstoff durch Wasserelektrolyse, (1974).

    Google Scholar 

  32. R. Renaud, R. L. LeRoy: Separator Materials for Use in Alkaline Water Electrolysis. Int. J. Hydrogen Energy 7, 155–166 (1982).

    Article  Google Scholar 

  33. A. Menth, S. Stucki: Present State and Outlook of the Electrolytic H2-Production Route. In: Proc., 2nd. World Hydrogen Energy Conf. Vol. 1, pp. 55–63 (1978).

    Google Scholar 

  34. L. J. Nuttal, J. H. Russel: Solid Polymer Electrolyte Water Electrolysis. Int. J. Hydrogen Energy 5, 75–84 (1980).

    Article  Google Scholar 

  35. W. Dönitz, W. Schmidberger: Concepts and Design for Scaling up High Temperature Water Vapour Electrolysis. Int. J. Hydrogen Energy 7, 321–330 (1982).

    Article  Google Scholar 

  36. W. Dönitz, R. Schmidberger, E. Steinheil, R. Streicher: Hydrogen Production by High Temperature Electrolysis of Water Vapour. Int. J. Hydrogen Energy 5, 55–64 (1980).

    Article  Google Scholar 

  37. K. F. Knoche, H. Cremer, D. Breywisch, et al.: Experimental Theoretical Investigation of Thermochemical Hydrogen Production. Int. J. Hydrogen Energy 3, 209–216 (1978).

    Article  Google Scholar 

  38. G. E. Beghi: Review of Thermochemical Hydrogen Production. Int. J. Hydrogen Energy 4, 555–566 (1981).

    Article  Google Scholar 

  39. G. E. Beghi: A Decade of Research on Thermochemical Hydrogen at the Joint Research Centre, Ispra. Int. J. Hydrogen Energy 11, 761–772 (1986).

    Article  Google Scholar 

  40. F. Deneuve, J. Roncato: Thermochemical of Hybride Cycles of Hydrogen Production—Techno-Economical Comparison with Water Electrolysis. Int. J. Hydrogen Energy 6, 9–24 (1981).

    Article  Google Scholar 

  41. R. Dahlberg: Replacement of Fossil Fuels by Hydrogen. Int. J. Hydrogen Energy 7, 121–142 (1982).

    Article  ADS  Google Scholar 

  42. C. Carpetis: A Study of Water Electrolysis with Photovoltaic Solar Energy Conversion. Int. J. Hydrogen Energy 7, 287–310 (1982).

    Article  ADS  Google Scholar 

  43. W. J. D. Escher, J. A. Hanson: Ocean Based Solar-to-Hydrogen Energy Conversion Macro system. In: Hydrogen Energy, Part A (T. N. Veziroglu, ed.), pp. 209–229. New York, Plenum Press (1975).

    Google Scholar 

  44. G. L. Dugger, H. L. Olsen, W. B. Shippen et al.: Tropical Ocean Thermal Power Plants and Potential Products. In: Proc. Solar Energy for Earth, Conf., Los Angeles, Calif., Am. Inst. for Aeron. and Astron., New York (1975). AIAA-paper 75–167, 16 p.

    Google Scholar 

  45. Y. Ikezoe, S. Sato, S. Shimizu, H. Nakajima: Potential of Carbon Doixide Radiolysis for Hydrogen Production. Int. J. Hydrogen Energy 7, 539–544 (1982).

    Article  Google Scholar 

  46. E. Broda: Hydrogen Production Through Solar Radiation by Means of Water Photolysis in Membranes. Int. J. Hydrogen Energy 3, 119–122 (1978).

    Article  Google Scholar 

  47. N. Getoff et al.: Wasserstoff als Energieträger, 173–322. Wien New York: Springer 1977.

    Google Scholar 

  48. A. Kruis, W. Scholz: Tieftemperaturwäschen zur Gaszerlegung. Linde-Bericht aus Technik und Wissenschaft 17, 15–23 (1964).

    Google Scholar 

  49. N. C. Ubdegraff: Gas Prepurification for Low-Temperature Processing. Chem. Eng. Progr. 53, 268–271 (1957).

    Google Scholar 

  50. W. R. Wood, B. D. Storrs: Girbotol Purification Process. Oil Gas J. 37, 47–48 (1938).

    Google Scholar 

  51. E. Guccione: Cryogenic Washing Scrubs Hydrogen for Liquid-Fueled Rockets. Chem. Eng. 70, 150–152 (1963).

    Google Scholar 

  52. H. Tanz: High-Purity Hydrogen Production (Erzeugung von Hochreinem Wasserstoff). DECHEMA Monogr. 65, 293–301 (1970).

    Google Scholar 

  53. C. Carpetis: Break-Even and Optimization Conditions for Overal Energy Systems wherein Hydrogen Storage Facilities are used. Int. J. Hydrogen Energy 10, 839–850 (1985).

    Article  ADS  Google Scholar 

  54. C. Carpetis: An Assessment of Electrolytic Hydrogen Production by Means of Photovoltaic Energy Conversion. Int. J. Hydrogen Energy 9, 969–991 (1984).

    Article  ADS  Google Scholar 

  55. C. Carpetis: Technoeconomic Comparisons of Leading Hydrogen Storage Options. In: Proc., 10th IECEC Conf. Vol. 4, pp. 1747–1756 (1983).

    Google Scholar 

  56. C. Carpetis: On the Design of Solar Energy Systems with Production and Storage of Hydrogen. In: Proc., 4th Int. Solar Forum, Vol. 2, pp. 961–963 (1982).

    Google Scholar 

  57. M. Oertel, W. Weirich et al.: The Lithium-Lithium Hydride Process for the Production of Hydrogen: Comparison of two concepts for 950 and 1300 °C HTR Helium Outlet Temperature, Int. J. Hydrogen Energy 12, 211–218 (1987).

    Article  Google Scholar 

  58. H. Engels, J. E. Funk, et al.: Thermochemical Hydrogen Production, Int. J. Hydrogen Energy 12, 291–296 (1987).

    Article  Google Scholar 

  59. J. E. Funk: Thermochemical Water Decomposition—Current Status. In: Recent Developments in Hydrogen Technology K. D. Williamson Jr., F. J. Edeskuty eds Vol. 1, pp. 1–18. Cleveland, CRC Press (1986).

    Google Scholar 

  60. Ch. F. Blazek, E. J. Daniels, T. D. Donakowski, M. Novil: Economics of Hydrogen in the 80’s and Beyond. In: Recent Developments in Hydrogen Technology K. D. Williamson Jr., F. J. Edeskuty eds Vol. 2, pp. 1–34. Cleveland, CRC Press (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag/Wien

About this chapter

Cite this chapter

Peschka, W. (1992). Hydrogen Production. In: Liquid Hydrogen. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9126-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9126-2_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9128-6

  • Online ISBN: 978-3-7091-9126-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics