Advertisement

Dependability of Digital Computers on Board Airplanes

  • Pascal Traverse
Part of the Dependable Computing and Fault-Tolerant Systems book series (DEPENDABLECOMP, volume 4)

Abstract

This paper deals with digital computers on board airplanes. Only the systems unde Aerospatiale’s responsibility are dealt with. The airplanes involved are the Airbus and the ATR By studying the evolution of these aircraft families, it can be seen that digital computing systems are becoming increasingly numerous and used in increasingly critical functions Aerospatiale has therefore had to adapt its design and certification methods to suit. A lesson to be drawn from this experience is that a problem cannot be solved unless a global approach is used covering all issues.

This paper first deals with the key elements of our approach: the control and monitoring computers and our system design process. As this approach is extensibely used, several practical examples are explained. The safety related research topics are briefly described.

Keywords

Digital Computer Control Surface Flight Control Flight Control System Civil Aircraft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Avizienis, P. Gunningberg, J.P.J. Kelly, L. Strigini, P. Traverse, K.S. Tso, U. Voges, “The UCLA DEDIX System: A distributed testbed for multiple-version software”, Proc. 15th International Symposium on Fault-Tolerant Computing, FTCS-15, Ann Arbor, Michigan, June 1985.Google Scholar
  2. [2]
    L. Barbaste, J.P. Desmons, “Assurance qualité du logiciel et la certification des aéronefs, expérience A320”, Proc. 1er Séminaire EOQC sur la Qualité des Logiciels, Brussels, April 1988.Google Scholar
  3. [3]
    K. Barkaoui, G. Florin, C. Fraize, B. Lemaire, S. Natkin, “Reliability analysis of non repairable systems using stochastic Petri nets”, Proc. 18th International Symposium on Fault-Tolerant Computing, FTCS-18, Tokyo, June 1988.Google Scholar
  4. [4]
    D. Chatrenet, “Simulateurs A320 d’Aérospatiale: leur contribution à la conception, au développement et à la certification”, INFAUTOM 89, Toulouse, March 1989.Google Scholar
  5. [5]
    S.G. Corps, “A320 Flight controls”, Proc. 29th Symposium of the Society of Experimental Test Pilots, September 1985.Google Scholar
  6. [6]
    M. Durandeau, J. Troyes, “Les commandes de vol des avions de transport”, Cercles des Officiers Mécaniciens et Ingénieurs Navigants — COMINAC, Roissy en France, January 1986.Google Scholar
  7. [7]
    J. Farineau, “Lateral electric flight controls laws of the A320 based upon eigenstructure assignment technique”, Proc. AIAA Guidance, Navigation and Control Conference, Boston, August 1989.Google Scholar
  8. [8]
    Federal Aviation Authority (FAA) and Joint Airworthiness Authorities (JAA), “Federal Aviation Regulation part 25 and Joint Airworthiness Requirements part 25”.Google Scholar
  9. [9]
    D.P. Glutch, M.J. Paul, “Fault-tolerance in distributed digital fly-by-wire flight control systems”, Proc. 7th Digital Avionics Systems Conference — DASC, Fort Worth, Texas, October 1986.Google Scholar
  10. [10]
    J. Grossin, P. Traverse, “Système de commande vol pour aéronef”, French Patent n° 88.03.343, March 1988.Google Scholar
  11. [11]
    A.D. Hills, “Digital fly-by-wire experience”, AGARD Lectures Series n ° 143, 1985.Google Scholar
  12. [12]
    C. Hourtolle, “Conception de logiciels sûrs de fonctionnement: analyse de la sécurité des logiciels ; mécanismes de décision pour la programmation N-version”, Thesis for the doctorate of the Institut National Polytechnique de Toulouse, n° 122, October 1987.Google Scholar
  13. [13]
    J.P. Laborie, P. Desjean, J.P. Domergue, P. Palandjian, “Système pour la commande aérodynamique mobile d’un aéronef”, French Patent n° 86.01.576, February 1986.Google Scholar
  14. [14]
    H. Lansdorf, “Terminal weather”, Flight International, May 23rd, 1987.Google Scholar
  15. [15]
    Radio Technical Commission for Aeronautics (RTCA) and EURopean Organization for Civil Aviation Electronics (EUROCAE), “Software considerations in airborne systems and equipment certification”, n° DO178A and ED12A, March 1985.Google Scholar
  16. [16]
    C.R. Spitzer, “All-digital jets are taking off”, IEEE Spectrum, September 1986.Google Scholar
  17. [17]
    P. Traverse, “Sûreté des systèmes informatiques embarqués à bord d’avions”, Proc. 3ème Colloque ANAE International sur la Sécurité Aérienne et Spatiale, Toulouse, September 1988.Google Scholar
  18. [18]
    P. Traverse, “Evolution dans les applications civiles”, Proc. AGARD Conference on Fault Tolerant Design Concepts for Highly Integrated Flight Critical Guidance and Control Systems, CP-456, Toulouse, October 1989.Google Scholar
  19. [19]
    J.M. Wensley, L. Lamport, J. Goldberg, M.W. Green, K.N. Levitt, P.M. Melliar-Smith, “SIFT: The design and analysis of a fault-tolerant computer for aircraft control”, Proceedings of the IEEE, vol. 66, n° 10, October 1978.Google Scholar
  20. [20]
    B. Ziegler, M. Durandeau, “Flight control system on modern civil aircraft”, International Council of the Aeronautical Sciences — ICAS84, Toulouse, September 1984.Google Scholar

Copyright information

© Springer-Verlag/Wien 1991

Authors and Affiliations

  • Pascal Traverse
    • 1
  1. 1.AEROSPATIALEToulouseFrance

Personalised recommendations