Advertisement

Lipids and Macromolecular Lipids of the Hydrocarbon-rich Microalga Botryococcus braunii. Chemical Structure and Biosynthesis. Geochemical and Biotechnological Importance

  • P. Metzger
  • C. Largeau
  • E. Casadevall
Part of the Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products book series (FORTCHEMIE (closed), volume 57)

Abstract

Botryococcus braunii Kützing is a colonial Chlorophyceae (green microalga) characterized by an unusually high production of lipids and an original organization of colonies. This species is widely distributed on all continents, in freshwater, brackish and saline lakes, reservoirs or even small pools, situated in temperate, tropical and continental zones as well (1).The ability to develop spectacular blooms on the surface of unruffled waters which consist of a floating mass of colonies rich in oil is also a conspicuous feature of B. braunii. Thus during a survey of the 4000 ha Darwin River Reservoir in Australia, Wake and Hillen (2) estimated a bloom of B. braunii at 1500 tons and assaying at 30% oil.

Keywords

Oleic Acid Outer Wall Fatty Acid Derivative Elaidic Acid Ether Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aaronson, S., T. Berner, K. Gold, L. Kushner, N.J. Patni, A. Repak, and D. Rubin: Some observations on the green planktonic alga, Botryococcus braunii and its bloom form. J. Plankton Res. 5, 693 (1983).CrossRefGoogle Scholar
  2. 2.
    Wake, L.V., and W. Hillen: Study of a bloom of the oil-rich alga Botryococcus braunii in the Darwin River Reservoir. Biotechnol. Bioeng. 22, 1637 (1980).CrossRefGoogle Scholar
  3. 3.
    Blackburn, K.B.: A reinvestigation of the alga Botryococcus braunii Kützing. Trans. Roy. Soc. Edinburgh 58, 841 (1936).Google Scholar
  4. 4.
    Schnepf, E., and W. Koch: Über den Feinbau der Ölalge Botryococcus braunii Kützing (Chlorococcales). Bot. Jahrb. Syst. Pflanzengesch. Pflanzengeogr. 99, 370 (1978).Google Scholar
  5. 5.
    Berkaloff, C., B. Rousseau, A. Coute, E. Casadevall, P. Metzger, and C. Chirac: Variability of cell wall structure and hydrocarbon type in different strains of Botryococcus braunii. J. Phycol. 20, 377 (1984).CrossRefGoogle Scholar
  6. 6.
    Bertrand, C.E., and B. Renault: Pila bibractensis et le boghead d’Autun. B. Soc. Hist. Nat. Autun. 5, 160 (1892).Google Scholar
  7. 7.
    Zalessky, M.D.: Sur les nouvelles algues découvertes dans le sapropélogène du Lac Beloe et sur une algue sapropélogène. Rev. Gen. Bot. 38, 31 (1926).Google Scholar
  8. 8.
    Swain, F.M., and J.M. Gilby: Ecology and taxonomy of Ostracoda and an alga from Lake Nicaragua. Publ. Stn. Zool. Napoli 33 (Suppl.), 361 (1964).Google Scholar
  9. 9.
    Maxwell, J.R., A.G. Douglas, G. Eglinton, and A. Mccormick: The botryococcenes-Hydrocarbons of novel structure from the alga Botryococcus braunii Kützing. Phytochemistry 7, 2157 (1968).CrossRefGoogle Scholar
  10. 10.
    Brown, A.C., B.A. Knights, and E. Conway: Hydrocarbon content and its relationship to physiological state in the green alga Botryococcus braunii. Phytochemistry 8, 543 (1969).CrossRefGoogle Scholar
  11. 11.
    Metzger, P., C. Berkaloff, E. Casadevall, and A. Coute: Alkadiene-and botryococcene-producing races of wild strains of Botryococcus braunii. Phytochemistry 24, 2305 (1985).CrossRefGoogle Scholar
  12. 12.
    Wolf, F.R., A.M. Nonomura, and J.A. Bassham. Growth and branched hydrocarbon production in a strain of Botryococcus braunii (Chlorophyta). J. Phycol. 21, 388 (1985).CrossRefGoogle Scholar
  13. 13.
    Wake, L.V., and L.W. Hillen: Nature and hydrocarbon content of the alga Botryococcus braunii occurring in Australian freshwater lakes. Aust. J. Mar. Freshwater Res. 32, 353 (1981).CrossRefGoogle Scholar
  14. 14.
    Metzger, P., E. Villarreal-Rosales, E. Casadevall, and A. Colite: Hydrocarbons, aldehydes and triacylglycerols in some strains of the A race of the green alga Botryococcus braunii. Phytochemistry 28, 2349 (1989).CrossRefGoogle Scholar
  15. 15.
    Knights, B.A., A.C. Brown, E. Conway, and B.S. Middleditch: Hydrocarbons from the green form of the freshwater alga Botryococcus braunii. Phytochemistry 9, 1317 (1970).CrossRefGoogle Scholar
  16. 16.
    Metzger, P., J. Templier, C. Largeau, and E. Casadevall: A n-alkatriene and some n-alkadienes from the A race of the green alga Botryococcus braunii. Phytochemistry 25, 1869 (1986).CrossRefGoogle Scholar
  17. 17.
    Metzger, P., E. Casadevall, and A. Coute: Botryococcene distribution in strains of the green alga Botryococcus braunii. Phytochemistry 27, 1383 (1988).CrossRefGoogle Scholar
  18. 18.
    Wolf, F.R., and E.R. Cox: Ultrastructure of active and resting colonies of Botryococcus braunii (Chlorophyceae). J. Phycol. 17, 395 (1981).CrossRefGoogle Scholar
  19. 19.
    Metzger, P., and E. Casadevall: Lycopadiene, a tetraterpenoid hydrocarbon from new strains of the green alga Botryococcus braunii. Tetrahedron Letters 28, 3931 (1987).CrossRefGoogle Scholar
  20. 20.
    Metzger, P., B. Allard, E. Casadevall, C. Berkaloff, and A. Coute: Structure and chemistry of a new chemical race of Botryococcus braunii (Chlorophyceae) that produces lycopadiene, a tetraterpenoid hydrocarbon. J. Phycol. 26, 258 (1990).CrossRefGoogle Scholar
  21. 21.
    Largeau, C., E. Casadevall, C. Berkaloff, and P. Dhamelincourt: Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochemistry 19, 1043 (1980).CrossRefGoogle Scholar
  22. 22.
    Largeau, C., E. Casadevall, and C. Berkaloff: The biosynthesis of long-chain hydrocarbons in the green alga Botryococcus braunii. Phytochemistry 19, 1081 (1980).CrossRefGoogle Scholar
  23. 23.
    Metzger, P., M. David, and E. Casadevall: Biosynthesis of triterpenoid hydrocarbons in the B race of the green alga Botryococcus braunii. Sites of production and nature of the methylating agent. Phytochemistry 26, 129 (1987).CrossRefGoogle Scholar
  24. 24.
    Villarreal-Rosales, E.: Unpublished results.Google Scholar
  25. 25.
    Villarreal-Rosales, E. Thèse 3ème Cycle, Université de Technologie de Compiègne, 1990.Google Scholar
  26. 26.
    Pambou-Tchivounda, H. Unpublished results.Google Scholar
  27. 27.
    Templier, J., C. Largeau, and E. Casadevall: Mechanism of non-isoprenoid hydrocarbon biosynthesis in Botryococcus braunii. Phytochemistry 23, 1017 (1984).CrossRefGoogle Scholar
  28. Effect of various inhibitors on biosynthesis of non-isoprenoid hydrocarbons in Botryococcus braunii. Phytochemistry 26, 377 (1987).CrossRefGoogle Scholar
  29. 29.
    Chan Yong, T.P., C. Largeau, and E. Casadevall: Biosynthesis of non-isoprenoid hydrocarbons by the microalga Botryococcus braunii. Evidence for an elongation-decarboxylation mechanism. Activation of decarboxylation. Nouv. J. de Chimie 10, 701 (1986).Google Scholar
  30. 30.
    Templier, J., C. Largeau, and E. Casadevall: Non-specific elongationdecarboxylation in biosynthesis of cis-and trans-alkadienes by Botryococcus braunii. Phytochemistry 30, 175 (1991).CrossRefGoogle Scholar
  31. 31.
    Cox, R.E, A.L. Burlingame, D.M. Wilson, G. Eglinton, and J.R. Maxwell: Botryococcene - a tetramethylated acyclic triterpenoid of algal origin. J. Chem. Soc. Chem. Comm. 284 (1973).Google Scholar
  32. 32.
    Metzger, P., E. Casadevall, M-J. Pouet, and Y. Pouet: Structures of some botryococcenes: branched hydrocarbons from the B race of the green alga Botryococcus braunii. Phytochemistry 24, 2995 (1985).CrossRefGoogle Scholar
  33. 33.
    Huang, Z., C.D. Poulter, F.R. Wolf, T.C. Somers, and J.D. White: Braunicene, a novel cyclic C32 isoprenoid from Botryococcus braunii. J. Am. Chem. Soc. 110, 3959 (1988).CrossRefGoogle Scholar
  34. 34.
    Murakami, M., H. Nakano, K. Yamaguchi, S. Konosu, O. Nakayama, Y. M.tsumoto, and H. Iwamoro: Meijicoccene, a new cyclic hydrocarbon from Botryococcus braunii. Phytochemistry 27, 455 (1988).Google Scholar
  35. 35.
    Douglas, A.G., K. Douraghi-Zadeh, and G. Eglinton: The fatty acids of the alga Botryococcus braunii. Phytochemistry 8, 285 (1969).CrossRefGoogle Scholar
  36. 36.
    Dubreuil, C., S. Derenne, C. Largeau, C. Berkaloffand B. Rousseau: Mechanism of formation and chemical structure of Coorongite. Role of the resistant biopolymer and of the hydrocarbons of Botryococcus braunii. Ultrastructure of Coorongite and its relationship with Torbanite. Org. Geochem. 14, 543 (1989).CrossRefGoogle Scholar
  37. 37.
    Huang, Z., and C.D. Poulter: Isoshowacene, a C31 hydrocarbon from Botryococcus braunii var. Showa. Phytochemistry 28, 3043 (1989).CrossRefGoogle Scholar
  38. 38.
    White, J.D., T.C. Somers, and G.N. Reddy: Absolute configuration of Botryococcene. J. Am. Chem. Soc. 108, 5352 (1986).CrossRefGoogle Scholar
  39. 39.
    Galbraith, M.N., L.W. Hillen, and L.V. Wake: Darwinene: a branched hydrocarbon from a green form of Botryococcus braunii. Phytochemistry 22, 1441 (1983).CrossRefGoogle Scholar
  40. 40.
    Stoilov, I.L., J.E. Thompson, J-H. Cho, and C. Djerassi: Biosynthetic studies of marine lipids. Stereochemical aspects and hydrogen migrations in the biosynthesis of the triply alkylated side chain of the sponge sterol strongylosterol. J. Am. Chem. Soc. 108, 8235 (1986).CrossRefGoogle Scholar
  41. 41.
    David, M., P. Metzger, and E. Casadevall: Two cyclobotryococcenes from the B race of the green alga Botryococcus braunii. Phytochemistry 27, 2863 (1988).CrossRefGoogle Scholar
  42. 42.
    Jaenicke, L., and F.-J. Marner: The irones and their precursors. In: Progress in the Chemistry of Organic Natural Products, vol. 50, ed. by W. Herz, H. Grisebach, G.W. Kirby, and C. Tamm. Wien, New York Springer. 1986.Google Scholar
  43. 43.
    Huang, Z., and C.D. Poulter: Braunicene. Absolute stereochemistry of the cyclohexane ring. J. Org. Chem. 53, 4089 (1988).CrossRefGoogle Scholar
  44. 44.
    Huang, Z., and C.D. Poulter: Isobraunicene, Wolficene, and Isowolficene. New cyclic l-3 fused isoprenoids from Botryococcus braunii. J. Org. Chem. 53, 5390 (1988).Google Scholar
  45. 45.
    Poulter, C.D.: Biosynthesis of non-head-to-tail terpenes. Formation of l’-1 and l’-3 linkages. Acc. Chem. Res. 23, 70 (1990).CrossRefGoogle Scholar
  46. 46.
    Huang, Z., and C.D. Poulter: Stereochemical studies of botryococcene biosynthesis: analogies between l’-1 and l’-3 condensations in the isoprenoid pathway. J. Am. Chem. Soc. 111, 2713 (1989).CrossRefGoogle Scholar
  47. 47.
    Casadevall, E., P. Metzger, and M.-P. Puech: Biosynthesis of triterpenoid hydrocarbons in the alga Botryococcus braunii. Tetrahedron Letters 25, 4123 (1984).CrossRefGoogle Scholar
  48. 48.
    Wolf, F.R., E.K. Nemethy, J.H. Blanding, and J.A. Bassham: Biosynthesis of unusual acyclic isoprenoids in the alga Botryococcus braunii. Phytochemistry 24, 733 (1985).CrossRefGoogle Scholar
  49. 49.
    Zundel, M., and M. Rohmer: Procaryotic triterpenoid. 3. The biosynthesis of 213methylhopanoids and 3ß-methylhopanoids of Methylobacterium organophilum and Acetobacter pasteurianus ssp pasteurianus. Eur. J. Biochem. 150, 35 (1985).CrossRefGoogle Scholar
  50. 50.
    Huang, Z., and C.D. Poulter: Tetramethylsqualene, a triterpene from Botryococcus braunii var. Showa. Phytochemistry 28, 1467 (1989).CrossRefGoogle Scholar
  51. 51.
    Metzger, P., and E. Casadevall: Structure de trois nouveaux botryococcenes synthétisés par une souche de Botryococcus braunii cultivée en laboratoire. Tetrahedron Letters 24, 4013 (1983).CrossRefGoogle Scholar
  52. 52.
    White, J.D., G.N. Reddy, and G.O. Spessard: Total synthesis of (-)-Botryococcene, J. Am. Chem. Soc. 110, 1624 (1988).CrossRefGoogle Scholar
  53. 53.
    Hird, N.W., T.V. Lee, A.J. Leigh, J.R. Maxwell, and T.M. Peakman: The total synthesis of 10-(R,S)-C30 botryococcene and botryococcane and a new synthesis of a general intermediate to the botryococcene family. Tetrahedron Letters 30, 4867 (1989).CrossRefGoogle Scholar
  54. 54.
    Grung, M., P. Metzger, and S. Liaaen-Jensen: Primary and secondary carotenoids in two races of the green alga Botryococcus braunii. Biochem. Syst. Ecol. 17, 263 (1989).CrossRefGoogle Scholar
  55. 55.
    Grung, M.: Unpublished results.Google Scholar
  56. 56.
    Metzger, P., and E. Casadevall: Aldehydes, very long chain alkenylphenols, epoxides and other lipids from an alkadiene-producing strain of Botryococcus braunii. Phytochemistry 28, 2097 (1989).CrossRefGoogle Scholar
  57. 57.
    Brennan, J.: Mycobacterium and other actinomycetes. In: Microbial lipids, vol. 1, ed. by C. Ratledge and S.G. Wilkinson. London: Academic Press. 1988.Google Scholar
  58. 58.
    Cojocaru, M., S. Droby, E. Glotter, A. Goldman, H.E. Gottlieb, B. Jacoby, and D. Prusky: 5-(12-Heptadecenyl)-resorcinol, the major component of the antifungal activity in the peel of mango fruit. Phytochemistry 25, 1093 (1986).CrossRefGoogle Scholar
  59. 59.
    Metzger, P., and E. Casadevall: Botryococcoid ethers. A novel type of ether lipids isolated from the green alga Botryococcus braunii. Phytochemistry, in press.Google Scholar
  60. 60.
    Lee, M.S., G.-W. Qin, K. Nakanishi, and M.G. Zagorski: Biosynthetic studies of brevetoxins, potent neurotoxins produced by the dinoflagellate Gymnodinium breve. J. Am. Chem. Soc. 111, 6234 (1989).CrossRefGoogle Scholar
  61. 61.
    Metzger, P., and E. Casadevall: In preparation.Google Scholar
  62. 62.
    Metzger, P., E. Villarreal-Rosales, and E. Casadevall: Methyl-branched fatty aldehydes and fatty acids in Botryococcus braunii. Phytochemistry, 30, 185 (1991).CrossRefGoogle Scholar
  63. 63.
    Han, J., H.W.-S. Chan, and M. Calvin: Biosynthesis of alkanes in Nostoc muscorum. J. Am. Chem. Soc. 91, 5156 (1969).CrossRefGoogle Scholar
  64. 64.
    Rainwater, D.L., and P.E. Kolattukudy: Fatty acid biosynthesis in Mycobacterium tuberculosis var. bonis Bacillus Calmette-Guérin. J. Biol. Chem. 260, 616 (1985).Google Scholar
  65. 65.
    Metzger, P., R. Bischoff, and E. Casadevall: In preparation.Google Scholar
  66. 66.
    Berkaloff, C., E. Casadevall, C. Largeau, P. Metzger, S. Peracca, and J. Virlet: The resistant polymer of the walls of the hydrocarbon-rich alga Botryococcus. Phytochemistry 22, 389 (1983).CrossRefGoogle Scholar
  67. 67.
    Largeau, C., S. Derenne, E. Casadevall, A. Kadouri, and N. Sellier: Pyrolysis of immature Torbanite and of the resistant biopolymer (PRB A) isolated from extant alga Botryococcus braunii. Mechanism of formation and structure of Torbanite. Org. Geochem. 10, 1023 (1986).CrossRefGoogle Scholar
  68. 68.
    Largeau, C., S. Derenne, E. Casadevall, A. Kadouri, and P. Metzger: Formation of Botryococcus-derived kerogens. Comparative study of immature Torbanites and of the extant alga Botryococcus braunii. Org. Geochem. 6, 327 (1984).CrossRefGoogle Scholar
  69. 69.
    Laureillard, J., C. Largeau, and E. Casadevall: Oleic acid in the biosynthesis of the resistant biopolymers of Botryococcus braunii. Phytochemistry 27, 2095 (1988).CrossRefGoogle Scholar
  70. 70.
    Derenne, S.: In preparation.Google Scholar
  71. 71.
    Kadouri, A., S. Derenne, C. Largeau, E. Casadevall, and C. Berkaloff: Resistant biopolymer in the outer walls of Botryococcus braunii, B race. Phytochemistry 27, 551 (1988).CrossRefGoogle Scholar
  72. 72.
    Laureillard, J., C. Largeau, F. Waeghemaeker, and E. Casadevall: Biosynthesis of the resistant polymer in the alga Botryococcus braunii. Studies on the possible direct precursors. Journal of Natural Products 49, 794 (1986).CrossRefGoogle Scholar
  73. 73.
    Derenne, S., C. Largeau, E. Casadevall, and C. Berkaloff: Occurrence of a resistant biopolymer in the L race of Botryococcus braunii. Phytochemistry 28, 1137 (1989).CrossRefGoogle Scholar
  74. 74.
    Derenne, S., C. Largeau, E. Casadevall, and N. Sellier: Direct relationship between the resistant biopolymer and the tetraterpenic hydrocarbon in the lycopadiene race of Botryococcus braunii. Phytochemistry 29, 2187 (1990).CrossRefGoogle Scholar
  75. 75.
    Derenne, S., C. Largeau, and E. Casadevall: Occurrence of tightly bound isoprenoid acids in an algal, resistant biomacromolecule: possible geochemical implications. Org. Geochem. in press.Google Scholar
  76. 76.
    Durand, B.: Sedimentary organic matter and kerogen. Definition and quantitative importance of kerogen. In: Kerogen, ed. by B. Durand. Paris: Editions Technip. 1980.Google Scholar
  77. 77.
    Tissot, B.P., and D.H. Welte: Kerogen, composition and classification. In: Petroleum formation and occurrence, ed. by B.P. Tissot and D.H. Welte. Berlin Heidelberg New York: Springer. 1978.Google Scholar
  78. 78.
    Temperley, B.N.: The Boghead controversy and the morphology of the Boghead algae. Trans. R. Soc. Edinburgh 43, 855 (1936).Google Scholar
  79. 79.
    Correia, M., and J. Connan: Diagenèse naturelle et diagenèse artificielle de la matière organique à éléments végétaux dominants. In: Advances in Organic Geochemistry 1973, ed. by B. Tissot and F. Bienner. Paris: Editions Technip. 73 (1974).Google Scholar
  80. 80.
    Derenne, S., C. Largeau, E. Casadevall, and F. Laupretre: Structural analysis of two Torbanites at different evolutionary stages. Investigation of the quantitative reliability of fa determination by 13C CP/MAS n.m.r. Fuel 66, 1084 (1987).CrossRefGoogle Scholar
  81. 81.
    Derenne, S., C. Largeau, E. Casadevall, and J. Connan: Comparison of Torbanites of various origins and evolutionary stages. Bacterial contribution to their formation. Cause of the lack of botryococcane in bitumens. Org. Geochem. 12, 43 (1988).Google Scholar
  82. 82.
    Mechanism of formation and chemical structure of Coorongite. II. Structure and origin of the labile fraction. Fate of botryococcenes during early diagenesis. Org. Geochem. 13, 965 (1988).Google Scholar
  83. 83.
    Derenne, S., C. Largeau, E. Casadevall, E. Tegelaar, and J.W. DE Leeuw: Relationship between algal coals and resistant cell wall biopolymers of extant algae as revealed by Py-GC-MS. Fuel Process. Technol. 20, 93 (1988).Google Scholar
  84. 84.
    Largeau, C., P. Bertrand, P. Fourmont, S. Derenne, and E. Casadevall: Etude de trois Torbanites par microspectrofluorimétrie: contribution des différentes fractions constitutives dans la fluorescence totale; corrélations avec la structure chimique; relations avec le degré de maturation. Bull. Soc. Géol. France 8, 993 (1989).Google Scholar
  85. 85.
    Kister, J., M. Guiliano, C. Largeau, S. Derenne, and E. Casadevall: Character-ization of chemical structure, degree of maturation and oil potential of Torbanites (type I kerogens) by quantitative FT-i.r. spectroscopy. Fuel. 69, 1356 (1990).CrossRefGoogle Scholar
  86. 86.
    Nip, M., E.W. Tegelaar, H. Brinkhuis, J.W. De Leeuw, P.A. Schenck, and P.J. Holloway: Analysis of modern and fossil plant cuticles by Curie point Py-GC and Curie point Py-GC-MS: recognition of a new, highly aliphatic and resistant biopolymer. Org. Geochem. 10, 769 (1986).CrossRefGoogle Scholar
  87. 87.
    Chalansonnet, S., C. Largeau, E. Casadevall, C. Berkaloff, G. Peniguel, and R. Couderc: Cyanobacterial resistant biopolymers. Geochemical implications of the properties of Schizothrix sp. resistant material. Org. Geochem. 13, 1003 (1988).CrossRefGoogle Scholar
  88. 88.
    Zelibor, J.L., L. Romankiw, P.G. Hatcher, and R.R. Comm,: Comparative analysis of the chemical composition of mixed and pure cultures of green algae and their decomposed residues by “C-NMR spectroscopy. Appl. Environ. Microbiol. 54, 1051 (1988).Google Scholar
  89. 89.
    Goth, K., J.W. DE Leeuw, W. Püttmann, and E.W. Tegelaar: Origin of Messel Oil Shale Kerogen. Nature (London) 336, 759 (1988).CrossRefGoogle Scholar
  90. 90.
    Tegelaar, E.W., J.W. DE Leeuw, C. Largeau, S. Derenne, H.R. Schulten, R. Müller, J.J. Bon, M. Nip, and J.C.M. Sprenkels:Scope and limitation of several pyrolysis methods in the structural elucidation of a macromolecular plant constituent in the leaf cuticle of Agave Americana L. J. Anal. Appl. Pyrolysis 15, 29 (1989).CrossRefGoogle Scholar
  91. 91.
    Largeau, C., S. Derenne, E. Casadevall, C. Berkaloff, M. Corolleur, B. Lugardon, J.F. Raynaud, and J. Connan: Occurrence and origin of “ultra-laminar” structures in “amorphous” kerogens of various source rocks and oil shales. Org. Geochem. 16, 889 (1990).CrossRefGoogle Scholar
  92. 92.
    Largeau, C., S. Derenne, C. Clairay, E. Casadevall, J.F. Raynaud, B. Lugardin, C. Berkaloff, M. Corolleur, and B. Rousseau: Characterization of various kerogens by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Morphological relationships with resistant outer walls in extant microorganisms. In: Proceedings of the International Symposium on Organic Petrology, Zeist 1990, ed. by W.J.J. Fermont et J.W. Weegink, Geological Survey of the Netherlands, special issue, in press.Google Scholar
  93. 93.
    Derenne, S., C. Largeau, E. Casadevall, C. Berkaloff, and B. Rousseau: Chemical evidence of kerogen formation in source rocks and oil shales via selective preservation of thin resistant outer walls of microalgae. Origin of ultralaminae. Geochim. Cosmochim. Acta. In press.Google Scholar
  94. 94.
    Tegelaar, E.W., J.W. DE Leeuw, S. Derenne, and C. Largeau: A reappraisal of kerogen formation. Geochim. Cosmochim. Acta 53, 3103 (1989).CrossRefGoogle Scholar
  95. 95.
    De Leeuw, J.W., and C. Largeau: A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal and petroleum formation. In Organic Geochemistry, ed. by M.H. Engel and S.A. Macko. New York: Plenum Publishing Corp. In press.Google Scholar
  96. 96.
    Seiffert, W.K., and J.M. Moldowan: Paleoreconstruction by biological markers. Geochim. Cosmochim. Acta 45, 783 (1981).CrossRefGoogle Scholar
  97. 97.
    Tullocx, A.P.: Chemistry of waxes of higher plants. In: Chemistry and biochemistry of natural waxes, ed. by P.E. KOLATTUKUDY. Amsterdam: Elsevier. 1976.Google Scholar
  98. 98.
    Moldowan, J.M., and W.K. Seifert: First discovery of botryococcane in petroleum. J.C.S. Chem. Commun. 19, 912 (1980).Google Scholar
  99. 99.
    Mckirdy, D.M., R.E. Cox, J.K. Volkman, and V.J. Howell: Botryococcane in a new class of Australian non-marine crude oils. Nature (London) 320, 57 (1986).CrossRefGoogle Scholar
  100. 100.
    Brassell, S.C., G. Eglinton, and F. jiamo: Biological markers compounds as indicators of the depositional history of the Maoming Oil Shale. Org. Geochem. 10, 927 (1986).CrossRefGoogle Scholar
  101. 101.
    Chu, S.P.: The influence of the mineral composition of the medium on the growth of planktonic algae. I. Methods and culture media. J. Ecol. 30, 284 (1942).CrossRefGoogle Scholar
  102. 102.
    Belcher, J.H.: Notes on the physiology of Botryococcus braunii Kützing. Arch. Mikrobiol. 61, 335 (1968).CrossRefGoogle Scholar
  103. 103.
    Largeau, C., E. Casadevall, and D. Dif: Renewable hydrocarbon production from the alga Botryococcus braunii. In: Energy from biomass. 1st E.C. Conference, ed. by W. PALZ, P. CHARTIER, and D.O. HALL. London: Applied Science Publishers. 1981.Google Scholar
  104. 104.
    Casadevall, E., D. Dif, C. Largeau, C. Gudin, D. Chaumont, and O. Desanti: Studies on batch and continuous cultures of Botryococcus braunii: hydrocarbon production in relation to physiological state, cell ultrastructure and phosphate nutrition. Biotechnol. Bioengin. 27, 286 (1985).CrossRefGoogle Scholar
  105. 105.
    Metzger, P., E. Casadevall, A. Coute, and Y. Pouet: Screening of wild strains of the hydrocarbon-rich alga Botryococcus braunii. Productivity and hydrocarbon nature. In: Energy from biomass. 3rd E.C. Conference, ed. by W. PALZ, J. Comm, and D.O. HALL. London: Elsevier. 1985.Google Scholar
  106. 106.
    Weetall, H.: Studies on the nutritional requirements of the oil-producing alga Botryococcus braunü. Appl. Biochem. Biotechnol. 11, 377 (1985).CrossRefGoogle Scholar
  107. 107.
    Tenaud, M., M. Ohmori, and S. Miyachi: Inorganic carbon and acetate assimilation in Botryococcus braunii (Chlorophyceae). J. Phycol. 25, 662 (1989).CrossRefGoogle Scholar
  108. 108.
    Iwamoto, H., and A. Suzuki: Fat synthesis in unicellular algae. Part II: Chemical composition of nitrogen deficient Chlorella cells. Bull. Agr. Chem. Soc. 19, 247 (1955).Google Scholar
  109. 109.
    Aaronson, S., T. Berner, and Z. Dubinsky: Microalgae as a source of chemicals and natural products. In: Algae biomass, production and use, ed. by G. Shelef and C.J. Soeder. Amsterdam: Elsevier. 1980.Google Scholar
  110. 110.
    Snifrin, N.S., and S.W. Chisholm: Phytoplankton lipids: Environmental influence on production and possible commercial applications. In: Algae biomass, production and use, ed. by G. Shelef and C.J. Soeder. Amsterdam: Elsevier. 1980.Google Scholar
  111. 111.
    Brenckmann, F., C. Largeau, E. Casadevall, and C. Berkaloff: Influence de la nutrition azotée sur la croissance et la production d’hydrocarbures de l’algue unicellulaire Botryococcus braunii. In: Energy from biomass, 3rd E.C. Conference, ed. by W. Palz, J. Coombs, and D.O. Hall. London: Elsevier. 1985.Google Scholar
  112. 112.
    Dubinsky, Z., T. Berner, and S. Aaronson: Potential of large-scale algal cultures for biomass and lipid production in arid lands. Biotechnol. Bioengin. Symp. N8, 51 (1978).Google Scholar
  113. 113.
    Brenckmann, F., C. Largeau, E. Casadevall, B. Corre, and C. Berkaloff: Influence of light intensity on hydrocarbon and total biomass production of Botryococcus braunii. Relationships with photosynthetic characteristics. In: Energy from biomass. 3rd E.C. Conference, ed. by W. Palz, J. Coombs, and D.O. Hall. London: Elsevier. 1985.Google Scholar
  114. 114.
    Chirac, C., E. Casadevall, C. Largeau, and P. Metzger: Influence de la souche et des bactéries associées sur la productivité en hydrocarbures de l’algue Botryococcus braunii. C.R. Acad. Sci. Paris 295 III, 671 (1982).Google Scholar
  115. 115.
    Chirac, C., E. Casadevall, and C. Largeau: Croissance et production d’hydrocarbures de l’algue Botryococcus braunii en cultures associées. C.R. Acad. Sci. Paris 297 III, 187 (1983).Google Scholar
  116. 116.
    Chirac, C., E. Casadevall, C. Largeau, and P. Metzger: Bacterial influence upon growth and hydrocarbon production of the green alga Botryococcus braunii. J. Phycol. 21, 380 (1985).CrossRefGoogle Scholar
  117. 117.
    Bailliez, C., C. Largeau, E. Casadevall, and C. Berkaloff: Effets de l’immobilisation en gel d’alginate sur l’algue Botryococcus braunii. C.R. Acad. Sci. Paris 296 III, 199 (1983).Google Scholar
  118. 118.
    Bailliez, C., C. Largeau, and E. Casadevall: Effect of immobilization on the hydrocarbon-rich alga Botryococcus braunii. In: Energy from biomass. 2nd E.C. Conference, ed. by A. Strub, P. Chartier, and G. Schleser. London: Applied Sciences Publishers. 1983.Google Scholar
  119. 119.
    Bailliez, C., C. Largeau, and E. Casadevall: Growth and hydrocarbon production of Botryococcus braunii immobilized in calcium alginate gel. Appl. Microbiol. Biotechnol. 23, 99 (1985).Google Scholar
  120. 120.
    Bailliez, C., C. Largeau, C. Berkaloff, and E. Casadevall: Immobilization of Botryococcus braunii in alginate: Influence on chlorophyll content, photosynthetic activity and degeneration during batch cultures. Appl. Microbiol. Biotechnol. 23, 361 (1986).CrossRefGoogle Scholar
  121. 121.
    Bailliez, C., C. Largeau, E. Casadevall, L.W. Yang, and C. Berkaloff: Photosynthesis, growth and hydrocarbon production of Botryococcus braunii immobilized by entrapment and adsorption in polyurethane foams. Appl. Microbiol. Biotechnol. 29, 141 (1988).Google Scholar
  122. 122.
    Frenz, J., C. Largeau, E. Casadevall, F. Kollerup, and A.J. Daugulis: Hydrocarbon recovery and biocompatibility of solvents for extractions from cultures of Botryococcus braunii. Biotechnol. Bioengin. 34, 755 (1989).CrossRefGoogle Scholar
  123. 123.
    Frenz, J., C. Largeau, and E. Casadevall: Hydrocarbon recovery by extraction with a biocompatible solvent from free and immobilized cultures of Botryococcus braunii. Enzyme Microb. Technol. 11, 717 (1989).Google Scholar

Copyright information

© Springer-Verlag/Wien 1991

Authors and Affiliations

  • P. Metzger
    • 1
  • C. Largeau
    • 1
  • E. Casadevall
    • 1
  1. 1.Laboratoire de Chimie Bioorganique et Organique Physique, Ecole Nationale Supérieure de Chimie de ParisCNRSFrance

Personalised recommendations