Advertisement

The Finite Element Analysis of Brain Oedema Associated with Intracranial Meningiomas

  • T. Nagashima
  • Y. Tada
  • S. Hamano
  • M. Skakakura
  • K. Masaoka
  • N. Tamaki
  • S. Matsumoto
Part of the Acta Neurochirurgica book series (NEUROCHIRURGICA, volume 51)

Summary

The mathematical model of vasogenic brain oedema, which was presented at the previous meeting in 19878, was applied to the analysis of peritumoural brain oedema associated with meningiomas.

Magnetic resonance images of 90 patients with intracranial meningiomas were reviewed to analyze the spatial extension of peritumoural brain oedema. It is assumed that the heterogeneous pattern of distribution of peritumoural oedema reflects the variability of the compact density of the fibers in the white matter.

A two dimensional finite element model was constructed with 786 triangular elements from a horizontal section of the human brain. The development of oedema, the change of interstitial pressure, the deformation of the brain and the absorption of oedema fluid could be simulated by the finite element method. The result of computer simulation represented interactive behaviour of the brain tissue, extracellular fluid, and cerebrospinal fluid in the clinical situation. The finite element method (FEM) may provide a new experimental tool to analyze the pathophysiology of vasogenic brain oedema.

Keywords

White Matter Hydraulic Conductivity Corpus Callosum Brain Oedema Internal Capsule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aoyago N, Masuzawa H, Sano K, Kihira M, Kobayashi S (1980) Compliance of the brain. Brain and Nerve 32: 47–56Google Scholar
  2. 2.
    Curnes JT, Burger PC, Djang WT, Boyko OB (1988) MR imaging of compact white matter pathways. AJNR 9: 1061–1068PubMedGoogle Scholar
  3. 3.
    Fenstermacher JD, Patlak CS (1976) The movement of water and solutes in the brain of mammals. In: Pappius HM, Feindel W (eds) Dynamics of brain oedema. Springer, Berlin Heidelberg New York, pp 287–294Google Scholar
  4. 4.
    Gazendam J, Go KG, Zanten AK (1979) Composition of isolated oedema fluid in cold-induced brain oedema. J Neurosurg 51: 70–77PubMedCrossRefGoogle Scholar
  5. 5.
    Glandorff P, Prigogine I (1971) Thermodynamic theory, structure, stability and fluctuation. Wiley-Interscience, LondonGoogle Scholar
  6. 6.
    Klazo I, Chui E, Fujiwara K, Spatz M (1980) Resolution of vasogenic brain oedema. Adv Neurol 28: 359–373Google Scholar
  7. 7.
    Nagashima T, Tamaki N, Matsumoto S, Seguchi Y, Tamura T (1984) Biomechanics of vasogenic brain oedema. Application of Biot’s consolidation theory and finite element method. In: Inaba Y, Klazo I, Spatz M (eds) Brain oedema. Springer, Berlin Heidelberg New York, pp 92–98Google Scholar
  8. 8.
    Nagashima T, Shirakuni T, Horwitz B, Rapoport SI (1990) A mathematical model for vasogenic brain oedema. In: Long DL (ed) Advances in neurology, vol 52, Brain oedema. Raven Press, New York, pp 317–326Google Scholar
  9. 9.
    Nagashima T, Shirakuni T, Rapoport SI (1990) A two dimensional finite element analysis of vasogenic brain oedema. Neurogia Medicochirurigica 30: 1–10Google Scholar
  10. 10.
    Rapoport SI (1978) A mathematical model for vasogenic brain oedema. J Theor Biol 74: 439–467PubMedCrossRefGoogle Scholar
  11. 11.
    Reulen HJ, Tsuyumu M, Prioleau G (1980) Further results concerning the resolution of vasogenic brain oedema. Adv Neurol 28: 375–381PubMedGoogle Scholar
  12. 12.
    Shulman K, Marmarou A, Weitz SN (1975) Gradients of brain interstitial fluid pressure in experimental brain infusion and compression. In: Lundberg N, Ponten U, Brock M (eds) Intracranial pressure II. Springer, Berlin Heidelberg New York, pp 221–223CrossRefGoogle Scholar
  13. 13.
    Stevens JM, Ruitz JS, Kendall BE (1983) Observation of peritumoural ooedema in meningioma. Neuroradiology 25: 71–80PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • T. Nagashima
    • 3
  • Y. Tada
    • 2
  • S. Hamano
    • 1
  • M. Skakakura
    • 2
  • K. Masaoka
    • 2
  • N. Tamaki
    • 1
  • S. Matsumoto
    • 1
  1. 1.Department of NeurosurgeryKobe University School of MedicineJapan
  2. 2.Department of System Engineering, Faculty of EngineeringKobe UniversityJapan
  3. 3.Chuo-ku, Kobe 650Japan

Personalised recommendations