The Effect of Immunosuppression with Whole Body and Regional Irradiation on the Development of Cerebral Oedema in a Rat Model of Intracerebral Haemorrhage

  • P. J. Kane
  • P. Modha
  • R. D. Strachan
  • A. D. Mendelow
  • S. Cook
  • I. R. Chambers
Conference paper
Part of the Acta Neurochirurgica book series (NEUROCHIRURGICA, volume 51)


A lesion simulating intracerebral haemorrhage was produced in the right caudate nucleus of rats immunosuppressed with whole body or regional irradiation. Whole body irradiation produced significant leucopaenia and thrombocytopaenia and conferred protection against cerebral ischaemia and oedema when compared to nonirradiated control animals. Local radiation to the head or torso did not confer protection.


Cerebral Blood Flow Cerebral Ischaemia Intracerebral Haemorrhage Irradiate Group Regional Irradiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dutka I et al (1989) Influence of granulocytopaenia on canine cerebral ischaemia induced by air embolism. Stroke 20: 390–395PubMedCrossRefGoogle Scholar
  2. 2.
    Grogaard I et al (1989) Delayed hypoperfusion after incomplete forebrain ischaemia in the rat. The role of polymorphonuclear leucocytes. J Cereb Blood Flow Metab 9: 500–505PubMedCrossRefGoogle Scholar
  3. 3.
    Hallenbeck JM et al (1986) Polymorphonuclear leucocyte accumulation in brain regions with low blood flow during the early post ischaemic period. Stroke 17: 246–253PubMedCrossRefGoogle Scholar
  4. 4.
    Jenkins A et al (1990) Experimental intracerebral haematoma: The role of blood constituents in early ischaemia. Br J Neurosurg 4: 45–52PubMedCrossRefGoogle Scholar
  5. 5.
    Kingman TA et al (1988) Experimental intracerebral mass: Description of model, intracranial pressure changes and neuropathology. J Neuropath Exptl Neurol 47: 128–137CrossRefGoogle Scholar
  6. 6.
    Modha P et al (1988) Experimental intracerebral haematoma: Ischaemic brain oedema in granulocytopaenic rats. Med Sci Res 16: 1031–1032Google Scholar
  7. 7.
    Obrenovitch TP et al (1985) Platelet accumulation in regions of low blood flow during the post ischaemic period. Stroke 16 (2): 224–234PubMedCrossRefGoogle Scholar
  8. 8.
    Pozzilli C et al (1985) Imaging of leucocyte infiltration in human cerebral infarct. Stroke 16 (2): 251–255PubMedCrossRefGoogle Scholar
  9. 9.
    Romson JL et al (1985) Reduction of the extent of ischaemic myocardial injury by neutrophil depletion in the dog. Circulation 67: 1016–1023CrossRefGoogle Scholar
  10. 10.
    Shigeno T et al (1982) The determination of brain water content: microgravimetry versus dry weighing method. J Neurosurg 57: 99–107PubMedCrossRefGoogle Scholar
  11. 11.
    Suzuki J et al Sequential changes in tissue surrounding ICH. In: Pia HW, Langmaid C, Zierski J (eds) Spontaneous intracerebral haematomas: Advances in diagnosis and therapy. Springer, Berlin Heidelberg New York, pp 121–128Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • P. J. Kane
    • 1
  • P. Modha
    • 1
  • R. D. Strachan
    • 1
  • A. D. Mendelow
    • 3
  • S. Cook
    • 1
  • I. R. Chambers
    • 2
  1. 1.Departments of NeurosurgeryUniversity of Newcastle Upon TyneEngland
  2. 2.Medical PhysicsUniversity of Newcastle Upon TyneEngland
  3. 3.Department of NeurosurgeryNewcastle General HospitalNewcastle Upon TyneEngland

Personalised recommendations