Superoxide Dismutase Inhibits Brain Oedema Formation in Experimental Pneumococcal Meningitis

  • H. W. Pfister
  • U. Koedel
  • U. Dirnagl
  • R. L. Haberl
  • W. Feiden
  • K. M. Einhäupl
Conference paper
Part of the Acta Neurochirurgica book series (NEUROCHIRURGICA, volume 51)


The purpose of this study was to identify mediators of brain oedema formation in experimental pneumococcal meningitis. In a rat model of pneumococcal meningitis brain water content was significantly elevated 6 hours post infection (79.69% ± 0.24 compared to 78.94% ± 0.16 in the control group, mean ± SEM, p<0.05). Brain oedema formation was completely blocked by superoxide dismutase (132,000 U/kg i.v. per 6 hours; n = 6), pretreatment with dexamethasone (3 mg/kg i.p., n = 3), or administration of dexamethasone at two hours after pneumococcal injection (n = 5). Pretreatment with indomethacin (10 mg/kg i.v., n = 5) attenuated the brain oedema formation. These findings suggest that oxygen derived free radicals act as mediators of brain oedema formation during the early phase of experimental bacterial meningitis. Cyclooxygenase metabolites may provide one possible source for the generation of oxygen derived free radicals in bacterial meningitis.


Bacterial Meningitis Brain Oedema Mean Arterial Blood Pressure Pneumococcal Meningitis Cereb Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersen NEO, Gyring J, Hansen AJ, Laursen H, Siesjö BK (1989) Brain acidosis in experimental pneumococcal meningitis. J Cereb Blood Flow Metab 9: 381–387PubMedCrossRefGoogle Scholar
  2. 2.
    Baethmann A, Maier-Hauff K, Kempski O, Unterberg A, Wahl M, Schürer L (1988) Mediators of brain oedema and secondary brain damage. Crit Care Med 16: 972–978PubMedCrossRefGoogle Scholar
  3. 3.
    Dirnagl U, Kaplan B, Jacewicz M, Pulsinelli W (1989) LaserDoppler-Flowmetry for the estimation of CBF changes: a validation using autoradiography in a rat stroke model. J Cereb Blood Flow Metab 9: 589–596PubMedCrossRefGoogle Scholar
  4. 4.
    Haberl RL, Heizer ML, Marmarou A, Ellis EF (1989 a) Laser-Doppler assessment of brain microcirculation: effect of systemic alterations. Am J Physiol 256: H1247 — H1254Google Scholar
  5. 5.
    Kontos HA (1989) Oxygen radicals in experimental brain injury. In: Hoff JT, Betz AL (eds) Intracranial pressure, vol VII. Springer, Berlin, Heidelberg, New York, pp 787–798Google Scholar
  6. 6.
    McCord JM (1974) Free radicals and inflammation: Protection of synovial fluid by superoxide dismutase. Science 185: 529–531PubMedCrossRefGoogle Scholar
  7. 7.
    Mustafa MM, Lebel MH, Ramilo O, Olsen KD, Reisch JS, Beutler B, McCracken GH (1989) Correlation of interleukin-1 ß and cachectin concentrations in cerebrospinal fluid and outcome from bacterial meningitis. J Pediatr 115: 208–213PubMedCrossRefGoogle Scholar
  8. 8.
    Pfister HW, Koedel U, Haberl RL, Dirnagl U, Feiden W, Ruckdeschel G, Einhäupl KM (1990) Microvascular changes during the early phase of experimental bacterial meningitis. J Cereb Blood Flow Metab (in press)Google Scholar
  9. 9.
    Quagliarello VJ, Long WJ, Scheid WM (1986) Morphological alterations of the blood brain barrier with experimental meningitis in the rat. J Clin Invest 77: 1084–1095PubMedCrossRefGoogle Scholar
  10. 10.
    Täuber MG, Khayam-Bashi H, Sande MA (1985) Effects of ampicillin and corticosteroids on brain water content, cerebrospinal fluid pressure, and cerebrospinal fluid lactate levels in experimental pneumococcal meningitis. J Infect Dis 151: 528–534PubMedCrossRefGoogle Scholar
  11. 11.
    Tuomanen E (1987) Molecular mechanisms of inflammation in experimental pneumococcal meningitis. Ped Infect Dis 6: 1146–1149Google Scholar
  12. 12.
    Tureen JH, Stella FB, Clyman RI, Mauray F, Sande MA (1987) Effect of indomethacin on brain water content, cerebrospinal fluid white blood cell response and prostaglandin E2 levels in cerebrospinal fluid in experimental pneumococcal meningitis in rabbits. Ped Infect Dis 6: 1151–1153Google Scholar
  13. 13.
    Wahl M, Young AR, Edvinsson L, Wagner F (1983) Effects of bradykinin on pial arteries and arterioles in vitro and in situ. J Cereb Blood Flow Metab 3: 231–237PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • H. W. Pfister
    • 3
  • U. Koedel
    • 1
  • U. Dirnagl
    • 1
  • R. L. Haberl
    • 1
  • W. Feiden
    • 2
  • K. M. Einhäupl
    • 1
  1. 1.Department of NeurologyUniversity of MunichFederal Republic of Germany
  2. 2.Institute of NeuropathologyUniversity of MunichFederal Republic of Germany
  3. 3.Department of Neurology, Klinikum GroßhadernLudwig-Maximilians-University of MunichMünchen 70Federal Republic of Germany

Personalised recommendations