Skip to main content

Some aspects of the pharmacology of semicarbazide-sensitive amine oxidases

  • Conference paper
Amine Oxidases and Their Impact on Neurobiology

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 32))

  • 102 Accesses

Summary

Semicarbazide-sensitive amine oxidase enzymes (SSAO) are found in animals, plants, fungi and bacteria. In vertebrates, their distribution in tissues and blood plasma varies between species. Studies of the SSAO enzymes have concentrated on their biochemical identities separate from those of MAO. Attention is now being paid to their possible physiological and pharmacological significance. These may include, besides the scavenging of circulating amines, functions dependent upon the hydrogen peroxide these enzymes produce. Modulation, by SSAO, of blood vessel tone may be due to the control of amine concentration itself or to actions of released peroxide. In the plasma the activity of SSAO may be susceptible to hormonal control as well as being an indicator of copper status of the animal. However, SSAO may convert xenobiotics to more toxic metabolities. Use of highly selective SSAO inhibitors, such as procarbazine and B24 should enable these preliminary observations to be examined further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banchelli G, Buffoni F, Elliott J, Callingham BA (1990) A study of the biochemical pharmacology of 3,5-ethoxy-4-aminomethylpyridine (B24), a novel amine oxidase inhibitor with selectivity for tissue bound semicarbazide-sensitive amine oxidase enzymes. Neurochem Int 17:215–221.

    Article  PubMed  CAS  Google Scholar 

  • Bellomo G, Mirabelli F, Richelmi P, Orrenius S (1983) Critical role of sulfhydryl group(s) in ATP-dependent Ca2+ sequestration by the plasma membrane fraction from rat liver. FEBS Lett 163:136–139.

    Article  PubMed  CAS  Google Scholar 

  • Bellomo G, Thor H, Orrenius S (1987) Alterations in inositol phosphate production during oxidative stress in isolated hepatocytes. J Biol Chem 262:1530–1534.

    PubMed  CAS  Google Scholar 

  • Blaschko H (1974) The natural history of amine oxidases. Rev Physiol Biochem Pharmacol 70:83–148.

    Article  PubMed  CAS  Google Scholar 

  • Blaschko H, Bonney R (1962) Spermine oxidase and benzylamine oxidase. Distribution, development and substrate specificity. Proc Roy Soc (Lond) B156:268–279.

    Article  Google Scholar 

  • Blaschko H, Hawes R (1959) Observations on spermine oxidase of mammalian plasma. J Physiol 145:124–131.

    PubMed  CAS  Google Scholar 

  • Boor PJ, Hysmith RM (1987) Allylamine cardiovascular toxicity. Toxicology 44:129–145.

    Article  PubMed  CAS  Google Scholar 

  • Bradley PB, Humphrey PPA, Williams RH (1985) Tryptamine-induced vasoconstrictor responses are mediated predominantly via 5-hydroxytryptamine receptors. Br J Pharmacol 84:919–925.

    PubMed  CAS  Google Scholar 

  • Braughler JM (1982) Involvement of sulfhydryl groups in the oxidative modulation of particulate lung guanylate cyclase by nitric oxide and N-methyl-N′-nitro-N-nitrosoguanidine. Biochem Pharmacol 31:1239–1244.

    Article  PubMed  CAS  Google Scholar 

  • Buffoni F (1966) Histaminase and related amine oxidases. Pharmacol Rev 18:1163–1199.

    PubMed  CAS  Google Scholar 

  • Buffoni F (1988) On the nature of the organic cofactor of pig plasma benzylamine oxidase. Pharmacol Res Commun 20 [Suppl] 4:159–160.

    Article  Google Scholar 

  • Buffoni F, Blaschko H (1964) Benzylamine oxidase and histaminase: purification and crystallization of an enzyme from pig plasma. Proc Roy Soc (Lond) 6161:153–167.

    Article  Google Scholar 

  • Byrd WJ, Jacob DM, Amos MS (1977) Synthetic polyamines added to cultures containing bovine sera reversibly inhibit in vitro parameters of immunity. Nature 267:621–623.

    Article  PubMed  CAS  Google Scholar 

  • Callingham BA, Barrand MA (1987) Some properties of semicarbazide-sensitive amine oxidases. J Neural Transm [Suppl] 23:37–54.

    CAS  Google Scholar 

  • Callingham BA, Elliott J, Williams RB (1988) Amine oxidase interactions in the cardiovascular system. In: Dahlström A, Belmaker RH, Sandier M (eds) Progress in catecholamine research, part A. Basic aspects and peripheral mechanisms. Alan R Liss, New York (Neurology and neurobiology, vol 42A, pp 109–113).

    Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605.

    PubMed  CAS  Google Scholar 

  • Czech MP, Lawrence JC, Lynn WS (1974a) Hexose transport in isolated brown fat cells. A model system for investigating insulin action on membrane transport. J Biol Chem 249:5421–5427.

    CAS  Google Scholar 

  • Czech MP, Lawrence JC, Lynn WS (1974b) Evidence for the involvement of sulfhydryl oxidation in the regulation of fat cell hexose transport by insulin. Proc Natl Acad Sci USA 71:4173–4177.

    Article  PubMed  CAS  Google Scholar 

  • Coomes MW, Prough RA (1983) The mitochondrial metabolism of 1,2-disubstituted hydrazines, procarbazine and 1,2-dimethylhydrazine. Drug Metab Dispos 11:550–555.

    PubMed  CAS  Google Scholar 

  • De Vita VT, Hahn MA, Oliverio VT (1965) Monoamine oxidase inhibition by a new carcinostatic agent, N-isopropyl-α-(2-methylhydrazino)-p-toluamide (MIH). Proc Soc Exp Biol Med 120:561–565.

    PubMed  Google Scholar 

  • Dost FN, Reed DJ (1967) Methane formation in vivo from, N-isopropyl-α-(2-methylhydrazino)-p-toluamide hydrochloride, a tumor-inhibiting methylhydrazine derivative. Biochem Pharmacol 16:1741–1746.

    Article  PubMed  CAS  Google Scholar 

  • Duine JA, Frank J Jr (1981) Quinoproteins: a novel class of dehydrogenases. Trends Biochem Sci 6:278–280.

    Article  CAS  Google Scholar 

  • Elliott J, Callingham BA, Barrand MA (1989a) In vivo effects of (E)-2-(3′,4′-dimethoxyphenyl)-3-fluoroallylamine (MDL 72145) on amine oxidase activities in the rat. Selective inhibition of semicarbazide-sensitive amine oxidase in vascular and brown adipose tissue. J Pharm Pharmacol 41:37–41.

    CAS  Google Scholar 

  • Elliott J, Callingham BA, Sharman DF (1989b) Metabolism of amines in the isolated perfused mesenteric arterial bed of the rat. Br J Pharmacol 98:507–514.

    PubMed  CAS  Google Scholar 

  • Elliott J, Callingham BA, Sharman DF (1989c) The influence of amine metabolizing enzymes on the pharmacology of tyramine in the isolated perfused mesenteric arterial bed of the rat. Br J Pharmacol 98:515–522.

    PubMed  CAS  Google Scholar 

  • Elliott J, Fowden AL, Callingham BA, Sharman DF, Silver M (1990) Physiological and pathological influences on sheep plasma amine oxidase: effect of pregnancy and experimental alloxan-induced diabetes mellitus. Res Vet Sci (submitted).

    Google Scholar 

  • Finazzi-Agro (1989) Copper-containing amine oxidases. In: Jongejan JA, Duine JA (eds) PQQ and quinoproteins. Kluwer Academic Publishers, London, pp 279–282.

    Chapter  Google Scholar 

  • Haenen GRMM, Vermeulen NPE, Tai Tin Tsoi JNL, Regetli HMN, Timmerman H, Bast A (1988a) Activation of the microsomal glutathione-s-transferase and reduction of the glutathione dependent protection against lipid peroxidation by acrolein. Biochem Pharmacol 37:1933–1938.

    Article  PubMed  CAS  Google Scholar 

  • Haenen GRMM, Van Dansik P, Vermeulen NPE, Timmerman H, Bast A (1988b) The effect of hydrogen peroxide on beta-adrenoceptor function in the heart. Free Radic Res Commun 4:243–249.

    Article  PubMed  CAS  Google Scholar 

  • Harris ED, Gonnerman WA, Savage, JE, O’Dell BL (1974) Connective tissue amine oxidase. II. Purification and partial characterization of lysyl oxidase from chick aorta. Biochim Biophys Acta 341:332–344.

    CAS  Google Scholar 

  • Hirsch JG (1953) Spermine oxidase: an amine oxidase with specificity for spermine and spermidine J Exp Med 97:345–355.

    Article  PubMed  CAS  Google Scholar 

  • Hysmith RM, Boor PJ (1988) Role of benzylamine oxidase in the cytotoxicity of allylamine toward aortic smooth muscle cells. Toxicology 51:133–145.

    Article  PubMed  CAS  Google Scholar 

  • Janes SM, Mu D, Wemmer D, Smith AJ, Kaur S, Maltby D, Burlingame AL, Klinman JP (1990) A new redox cofactor in eukaryotic enzymes: 6-hydroxydopa at the active site of bovine serum amine oxidase. Science 248:981–987.

    Article  PubMed  CAS  Google Scholar 

  • Kapeller-Adler R (1970) Amine oxidases and methods for their study. Wiley Interscience, London.

    Google Scholar 

  • Klinman JP, Hartman C, Janes SM (1989) Mechanistic probes of copper amine oxidases. In: Jongejan JA, Duine JA (eds) PQQ and quinoproteins. Kluwer Academic Publishers, London, pp 297–305.

    Chapter  Google Scholar 

  • Knowles PF, Yadav KDS (1984) Amine oxidases. In: Lontie R (ed) Copper proteins and copper enzymes, vol II. CRC Press, Boca Raton F1, pp 103–129.

    Google Scholar 

  • Knowles PF, Pandeya KB, Rius FX, Spencer CM, Moog RS, McGuirl MA, Dooley DM (1987) The organic cofactor in plasma amine oxidase: evidence for pyrroloquinoline quinone and against pyridoxal phosphate. Biochem J 241:603–608.

    PubMed  CAS  Google Scholar 

  • Lewinsohn R (1984) Mammalian monoamine-oxidizing enzymes, with special reference to benzylamine oxidase in human tissues. Braz J Med Biol Res 17:223–256.

    PubMed  CAS  Google Scholar 

  • Lewinsohn R, Böhm K-H, Glover V, Sandier M (1978) A benzylamine oxidase distinct from monoamine oxidase B-widespread distribution in man and rat. Biochem Pharmacol 27:1857–1863.

    Article  PubMed  CAS  Google Scholar 

  • Lyles GA, Taneja DT (1987) Effects of amine oxidase inhibitors upon tryptamine metabolism and tryptamine-induced contractions of rat aorta. Br J Pharmacol 90:16P.

    Google Scholar 

  • Mondovi B, Riccio P (1989) On the role of copper in PQQ amine oxidases. In: Jongejan JA, Duine JA (eds) PQQ and quinoproteins. Kluwer Academic Publishers, London pp 289–295.

    Google Scholar 

  • Mondovi B, Rotilio G, Costa MT (1963) The purification of hog kidney diamine oxidase. In: Snell EE, Fasella PM, Braunstein A, Rossi-Fanelli A (eds) Chemical and biological aspects of pyridoxal catalysis. Pergamon Press, Oxford, pp 415–428.

    Google Scholar 

  • Moog RS, McGuirl MA, Cote CE, Dooley DM (1986) Evidence for methoxatin (pyrroloquinoline quinone) as the cofactor in bovine plasma amine oxidase from resonance Raman spectroscopy. Proc Natl Acad Sci USA 83:8435–8439.

    Article  PubMed  CAS  Google Scholar 

  • Morgan DML (1985) Polyamine oxidases. Biochem Soc Trans 13:322–326.

    PubMed  CAS  Google Scholar 

  • Morgan DML (1987) Oxidized polyamines and the growth of human vascular endothelial cells. Prevention of cytotoxic effects by selective acetylation. Biochem J 242:347–352.

    CAS  Google Scholar 

  • Oi S, Inasumu M, Yasunobu KT (1970) Mechanistic studies of beef plasma amine oxidase. Biochemistry 9:3378–3383.

    Article  PubMed  CAS  Google Scholar 

  • Pfefferbaum B, Pack R, Van Eys J (1989) Monoamine oxidase inhibitor toxicity. J Am Acad Child Adolesc Psychiatry 28:954–955.

    Article  PubMed  CAS  Google Scholar 

  • Prough RA, Brown MI, Moloney SJ, Wiebkin P, Cummings SW, Spearman ME, Guengerich FP (1985) The activation of hydrazines to reactive intermediates. In: Boobis AR, Caldwell J, De Matteis F, Elcombe CR (eds) Microsomes and drug oxidations. Taylor and Francis, London, p 330.

    Google Scholar 

  • Ramasarma T (1982) Generation of H2O2 in biomembranes. Biochim Biophys Acta 694:69–93.

    PubMed  CAS  Google Scholar 

  • Seregi A, Serfözö P, Mergl Z, Schaefer A (1982) On the mechanism of the involvement of monoamine oxidase in catecholamine-stimulated prostaglandin biosynthesis in particulate fraction of rat brain homogenates: role of hydrogen peroxide. J Neurochem 38:20–27.

    Article  PubMed  CAS  Google Scholar 

  • Seregi A, Serfözö P, Mergl Z (1983) Evidence for the localization of hydrogen peroxide-stimulated cyclooxygenase activity in rat brain mitochondria: a possible coupling with monoamine oxidase. J Neurochem 40:407–413.

    Article  PubMed  CAS  Google Scholar 

  • Stollak JS, Furchgott RF (1983) Use of selective antagonists for determining the types of receptors mediating the actions of 5-hydroxytryptamine and tryptamine in the isolated rabbit aorta. J Pharmacol Exp Ther 224:215–221.

    PubMed  CAS  Google Scholar 

  • Swaffar DS, Horstman MG, Jaw JY, Thrall BD, Meadows GG, Harker WG, Yost GS (1989) Methylazoxyprocarbazine, the active metabolite responsible for the anticancer activity of procarbazine against L1210 leukemia. Cancer Res 49:2442–2447.

    PubMed  CAS  Google Scholar 

  • Tabor CW, Tabor H, Bacharach U (1964) Identification of the aminoaldehydes produced by the oxidation of spermine and spermidine with purified plasma amine oxidase. J Biol Chem 239:2194–2203.

    PubMed  CAS  Google Scholar 

  • Taneja DT, Lyles GA (1988) Further studies on the interactions between amine oxidase inhibitors and tryptamine-induced contractions of rat aorta. Br J Pharmacol 93:253P.

    Google Scholar 

  • Tweedie DJ, Erikson JM, Prough RA (1987) Metabolism of hydrazine anti-cancer agents. Pharmacol Ther 34:111–127.

    Article  PubMed  CAS  Google Scholar 

  • Waldman SA, Murad F (1987) Cyclic GMP synthesis and function. Pharmacol Rev 39:163–196.

    PubMed  CAS  Google Scholar 

  • Williams RB, Callingham BA (1987) MAO and haemoglobin: interaction or artefact?. Pharmacol Toxicol 60 [Suppl] 1:52.

    Google Scholar 

  • Wright M, Drummond GI (1983) Inactivation of the β-adrenergic receptor in skeletal muscle by dithiols. Biochem Pharmacol 32:509–515.

    Article  PubMed  CAS  Google Scholar 

  • Yamada H, Yasunobu KT (1962) Monoamine oxidase II. Copper, one of the prosthetic groups of plasma monoamine oxidase. J Biol Chem 237:3077–3082.

    CAS  Google Scholar 

  • Yu KT, Khalaf N, Czech MP (1987) Insulin stimulates the tyrosine phosphorylation of a Mr = 160,000 glycoprotein in rat adipocyte plasma membranes. J Biol Chem 262:7865–7873.

    PubMed  CAS  Google Scholar 

  • Zeller EA (1963) Diamine oxidase. In: Boyer PD, Lardy H, Myrbäck K (eds) The enzymes, vol 8, 2nd edn. Academic Press, London, pp 313–335.

    Google Scholar 

  • Zeller EA (1979) Classification and nomenclature of monoamine oxidases and other amine oxidases. In: Singer TP, Von Korff RW, Murphy DL (eds) Monoamine oxidases: structure, function, and altered functions. Academic Press, London, pp 531–537.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Callingham, B.A., Holt, A., Elliott, J. (1990). Some aspects of the pharmacology of semicarbazide-sensitive amine oxidases. In: Riederer, P., Youdim, M.B.H. (eds) Amine Oxidases and Their Impact on Neurobiology. Journal of Neural Transmission, vol 32. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9113-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9113-2_38

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82239-5

  • Online ISBN: 978-3-7091-9113-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics