Skip to main content

The interaction of transport mechanisms and intracellular enzymes in metabolizing systems

  • Conference paper
Amine Oxidases and Their Impact on Neurobiology

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 32))

Summary

The life span of extracellular catecholamines is limited by the combination of uptake and subsequent intracellular metabolism by either monoamine oxidase (MAO) and/or catechol-O-methyl transferase (COMT). Three such “metabolizing systems” are involved in the inactivation of noradrenaline: 1) Neuronal uptake (high-affinity uptake1 in association with neuronal MAO (and vesicular uptake), 2) extraneuronal uptake (low affinity uptake2) in association with intracellular COMT and MAO (in smooth muscles, myocardial cells, glands), and 3) uptake1 of non-neuronal cells in association with intracellular COMT and/or MAO (in vascular endothelium of rat lung).

Such systems function as “pump and leak systems with enzyme(s) inside”. The analysis of either uptake or enzyme fails to reveal the characteristics of such systems; they are determined by the interaction of both components.

Because of the high activity of these intracellular enzymes, it is unlikely that either COMT or MAO is ever saturated in vivo. However, in vitro saturation of extraneuronal COMT and MAO reveals that extraneuronal COMT is a high-affinity, but extraneuronal MAO a low-affinity enzyme. Hence, membrane-bound COMT appears to be responsible for the extraneuronal O-methylation of noradrenaline.

If intracellular enzymes remain unsaturated, the determination of the rate constants describing the unsaturated enzyme (KENZYME = Vmax/Km) is of particular interest. KENZYME can be determined for metabolizing systems, since this rate constant is not affected by the (usually unknown) fractional size of the metabolizing system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

COMT:

catechol-O-methyl transferase

DOMA:

dihydroxymandelic acid

DOPEG:

dihydroxyphenyl-glycol

MAO:

monoamine oxidase

References

  • Avevedo I, Bönisch H, Osswald W, Trendelenburg U (1983) Autoradiographic study of rat hearts perfused with 3H-isoprenaline. Naunyn-Schmiedebergs Arch Pharmacol 322:1–5.

    Article  Google Scholar 

  • Bryan LJ (1990) Catechol-O-methyltransferase (COMT) in pulmonary endothelial cells of rat perfused lungs has a higher activity than monoamine oxidase (MAO) but is saturated at low concentrations of noradrenaline (NA). J Auton Pharmacol 10:12.

    Google Scholar 

  • Bryan LJ, O’Donnell SR, Westwood NN (1988) The uptake process for catecholamines in endothelial cells in rat perfused lungs is the same as uptake1 in noradrenergic neurones. Br J Pharmacol 95:539P.

    Google Scholar 

  • Bryan LJ, O’Donnell SR, Westwood NN (1989) Further evidence that the uptake process for catecholamines in pulmonary endothelial cells is the same as uptake1 in noradrenergic neurones. Clin Exp Pharmacol Physiol [Suppl] 27.

    Google Scholar 

  • Cassis L, Ludwig J, Grohmann M, Trendelenburg U (1986) The effect of partial inhibition of monoamine oxidase on the steady-state rate of deamination of 3H-catecholamines in two metabolizing systems. Naunyn-Schmiedebergs Arch Pharmacol 333:253–261.

    Article  PubMed  CAS  Google Scholar 

  • Eisenhofer G, Ropchak TG, Stull RW, Goldstein DS, Keiser HR, Kopin IJ (1987) Dihydroxyphenylglycol and intraneuronal metabolism of endogenous and exogenous norepinephrine in the rat vas deferens. J Pharmacol Exp Ther 241:547–553.

    PubMed  CAS  Google Scholar 

  • Graefe K-H, Eckert E (1972) On the stereoselectivity of the neuronal uptake in the cat’s nictitating membrane. Naunyn-Schmiedebergs Arch Pharmacol 275:45–68.

    Article  PubMed  CAS  Google Scholar 

  • Graefe K-H, Bönisch H, Trendelenburg U (1971) Time-dependent changes in neuronal net uptake of noradrenaline after pretreatment with pargyline and/or reserpine. Naunyn-Schmiedebergs Arch Pharmacol 271:1–28.

    Article  PubMed  CAS  Google Scholar 

  • Grohmann M (1987) The activity of the neuronal and extraneuronal catechola-amine-metabolizing enzymes of the perfused rat heart. Naunyn-Schmiedebergs Arch Pharmacol 336:139–147.

    Article  PubMed  CAS  Google Scholar 

  • Grohmann M, Trendelenburg U (1985) The handling of five catecholamines by the extraneuronal O-methylating system of the rat heart. Naunyn-Schmiedebergs Arch Pharmacol 329:264–270.

    Article  PubMed  CAS  Google Scholar 

  • Grohmann M, Trendelenburg U (1988) The handling of five amines by the extraneuronal deaminating system of the rat heart. Naunyn-Schmiedebergs Arch Pharmacol 337:159–163.

    PubMed  CAS  Google Scholar 

  • Guldberg HC, Marsden CA (1975) Catechol-O-methyl transferase: pharmacological aspects and physiological role. Pharmacol Rev 27:135–206.

    PubMed  CAS  Google Scholar 

  • Haibrügge T, Wölfel R, Graefe K-H (1989) Plasma 3,4-dihydroxyphenylglycol as a tool to assess the role of neuronal uptake in the anaesthetized rabbit. Naunyn-Schmiedebergs Arch Pharmacol 340:726–732.

    Google Scholar 

  • Johnson RG, Scarpa A (1976) Internal pH of isolated chromaffin vesicles. J Biol Chem 251:2189–2191.

    PubMed  CAS  Google Scholar 

  • Kennedy JA, de la Lande IS (1987) Characteristics of the cocaine-sensitive accumulation and O-methylation of 3H-(−)-noradrenaline by rabbit endometrium. Naunyn-Schmiedebergs Arch Pharmacol 336:148–154.

    Article  PubMed  CAS  Google Scholar 

  • Kurahashi K, Rawlow A, Trendelenburg U (1980) A mathematical model representing the extraneuronal O-methylating system of the perfused rat heart. Naunyn-Schmiedebergs Arch Pharmacol 311:17–32.

    Article  PubMed  CAS  Google Scholar 

  • Langeloh A, Trendelenburg U (1987) The mechanism of the 3H-noradrenaline releasing effect of various substrates of uptake1 role of monoamine oxidase and of vesicularly stored 3H-noradrenaline. Naunyn-Schmiedebergs Arch Pharmacol 336:611–620.

    Article  PubMed  CAS  Google Scholar 

  • Mack F, Bönisch H (1979) Dissociation constants and lipophilicity of catecholamines and related compounds. Naunyn-Schmiedebergs Arch Pharmacol 310:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Paiva MQ, Guimaraes S (1978) A comparative study of the uptake and metabolism of noradrenaline and adrenaline by the isolated saphenous vein of the dog. Naunyn-Schmiedebergs Arch Pharmacol 303:221–228.

    PubMed  CAS  Google Scholar 

  • Parker DAS, de la Lande IS, Proctor C, Marino V, Lam NX, Parker I (1987) Cocaine-sensitive O-methylation of noradrenaline in dental pulp of the rabbit: comparison with the rabbit ear artery. Naunyn-Schmiedebergs Arch Pharmacol 335:32–39.

    Article  PubMed  CAS  Google Scholar 

  • Reid J, Stitzel RE, Head RJ (1986) Characterization of the O-methylation of catechol oestrogens by intact rabbit thoracic aorta and subcellular fractions thereof. Naunyn-Schmiedebergs Arch Pharmacol 334:17–28.

    Article  PubMed  CAS  Google Scholar 

  • Rivett AJ, Roth JA (1982) Kinetic studies on the O-methylation of dopamine by human brain membrane-bound catechol-O-methyltransferase. Biochemistry 21:1740–1742.

    Article  PubMed  CAS  Google Scholar 

  • Schömig E, Trendelenburg U (1987) Simulation of outward transport of neuronal 3H-noradrenaline with the help of a two-compartment model. Naunyn-Schmiedebergs Arch Pharmacol 336:631–640.

    Article  PubMed  Google Scholar 

  • Stefano FJE, Trendelenburg U (1984) Saturation of monoamine oxidase by intraneuronal noradrenaline accumulation. Naunyn-Schmiedebergs Arch Pharmacol 328:135–141.

    Article  PubMed  CAS  Google Scholar 

  • Strolin Benedetti M, Boucher T, Fowler CJ (1983) The deamination of noradrenaline and 5-hydroxytryptamine by rat brain and heart monoamine oxidase and their inhibition by cimoxatone, toloxatone and MD 770222. Naunyn-Schmiedebergs Arch Pharmacol 323:315–320.

    Article  PubMed  CAS  Google Scholar 

  • Trendelenburg U (1980) A kinetic analysis of the extraneuronal uptake and metabolism of catecholamines. Rev Physiol Biochem Pharmacol 87:33–115.

    Article  PubMed  CAS  Google Scholar 

  • Trendelenburg U (1984a) Metabolizing systems. In: Fleming WW, Graefe K-H, Langer SZ, Weiner N (eds) Neuronal and extraneuronal events in autonomic pharmacology. Raven Press, New York, pp 93–109.

    Google Scholar 

  • Trendelenburg U (1984b) The influence of inhibition of catechol-O-methyl transferase or of monoamine oxidase on the extraneuronal metabolism of 3H-(−)-noradrenaline in the rat heart. Naunyn-Schmiedebergs Arch Pharmacol 327:285–292.

    Article  PubMed  CAS  Google Scholar 

  • Trendelenburg U (1986) The metabolizing systems involved in the inactivation of catecholamines. Naunyn-Schmiedebergs Arch Pharmacol 332:201–207.

    Article  PubMed  CAS  Google Scholar 

  • Trendelenburg U (1988) The extraneuronal uptake and metabolism of catecholamines. In: Trendelenburg U, Weiner N (eds) Catecholamines I. Springer, Berlin Heidelberg New York (Handbook exp pharmacol, vol 90/I, pp 279–319).

    Google Scholar 

  • Wilbrandt W, Rosenberg T (1961) The concept of carrier transport and its corollaries in pharmacology. Pharmacol Rev 13:109–183.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Trendelenburg, U. (1990). The interaction of transport mechanisms and intracellular enzymes in metabolizing systems. In: Riederer, P., Youdim, M.B.H. (eds) Amine Oxidases and Their Impact on Neurobiology. Journal of Neural Transmission, vol 32. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9113-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9113-2_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82239-5

  • Online ISBN: 978-3-7091-9113-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics