Molecular Biology of Flavonoid Pigment Biosynthesis in Flowers

  • Trevor W. Stevenson
Part of the Plant Gene Research book series (GENE)


For some time considerable scientific and commercial interest has been generated by the potential impact of genetic engineering technology on the broad acre agricultural crops. It is only recently that the application of this technology to the development of new varieties of flowers has been seriously considered. This is somewhat surprising given the size of the cut flower industry, the small number of plant species which dominate the cut flower market and the fact that a considerable body of genetic and physiological information is available describing economically important traits such as colour, vase life and disease response.


Flavonoid Biosynthesis Petunia Hybrida Anthocyanin Pigment Vase Life Pigment Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asen S, Stewart RN, Norris KH (1972) Copigmentation of anthocyanins in plant tissues and its effect on colour. Phytochemistry 11: 1139–1144CrossRefGoogle Scholar
  2. Beld M, Martin C, Huits H, Stuitje AR, Gerats AGM (1989) Flavonoid synthesis in Petunia hybrida: partial characterization of dihydroflavonol-4-reductase genes. Plant Mol Biol 13: 491–502PubMedCrossRefGoogle Scholar
  3. Bonas U, Sommer H, Saedler H (1984) The 17 kb Taml element of Antirrhinum majus induces a 3 bp duplication upon integration into the chalcone synthase gene. EMBO J 3: 1015–1019PubMedGoogle Scholar
  4. Chandler VL, Radicella JP, Robbins TP, Chen J, Turks D (1989) Two regulatory genes of the maize anthocyanin pathway are homologues: isolation of B utilizing R genomic sequences. Plant Cell 1: 1175–1183PubMedCrossRefGoogle Scholar
  5. Coen ES, Almeida J, Robbins TP, Hudson A, Carpenter R (1988) Molecular analysis of genes determining spatial patterns in Antirrhinum majus. In: Verma DPS, Goldberg RB (eds) Temporal and spatial regulation of plant genes. Springer, Wien New York, pp 63–82 [Dennis ES et al (eds) Plant gene research. Basic knowledge and application]Google Scholar
  6. Coen ES, Carpenter R, Martin C (1986) Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus. Cell 47: 285–296PubMedCrossRefGoogle Scholar
  7. Dooner HK (1983) Co-ordinate genetic regulation of flavonoid biosynthetic enzymes in maize. Mol Gen Genet 189: 136–141CrossRefGoogle Scholar
  8. Dooner HK, Nelson OE Jr (1977) Genetic control of UDP glucose: flavonol 3–0glucosyltransferase in the endosperm of maize. Biochem Genet 15: 509–519PubMedCrossRefGoogle Scholar
  9. Douglas C, Hoffman H, Schulz W, Hahlbrock K (1987) Structure and elicitor or UV light stimulated expression of two 4-coumarate: CoA ligase genes in parsley. EMBO J 6: 1189–1195Google Scholar
  10. Edwards K, Cramer CL, Bolwell GP, Dixon RA, Schuch W, Lamb CJ (1985) Rapid transient induction of phenylalanine ammonia lyase mRNA in elicitor-treated bean cells. Proc Natl Acad Sci USA 82: 6731–6735PubMedCrossRefGoogle Scholar
  11. Fedoroff N (1983) Controlling elements in maize. In: Shapiro JA (ed) Mobile genetic elements. Academic Press, New York, pp 1–63Google Scholar
  12. Fedoroff N, Furtek DB, Nelson OE Jr (1984) Cloning of the bronze locus in maize by a simple and generalized procedure using the transposable controlling element Activator (Ac). Proc Natl Acad Sci USA 81: 3825–3829PubMedCrossRefGoogle Scholar
  13. Feinbaum RL, Ausubel FM (1988) Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Mol Cell Biol 8: 1985–1992PubMedGoogle Scholar
  14. Forkmann G, Ruhnau B (1987) Distinct substrate specificity of dihydroflavonol-4-reductase from flowers in Petunia hybrida. Z Naturforsch 42c: 1146–1148Google Scholar
  15. Gabriac B, Benveniste I, Durst F (1985) Isolation and characterization of cytochrome P-450 from higher plants (Helianthis tuberosis). CR Acad Sci Ser III 301: 753–758Google Scholar
  16. Gerats AGM, de Vlaming P, Doodeman M, Al B, Schram AW (1982) Genetic control of conversion of dihydroflavonols into flavonols and anthocyanins in flowers of Petunia hybrida. Planta 155: 364–368CrossRefGoogle Scholar
  17. Goto T (1987) Structure, stability and color variation of natural anthocyanins. In: Herz W et al (eds) Progress in the chemistry of organic natural products, vol 52. Springer, Wien New York, pp 113–158Google Scholar
  18. Hagmann M, Heller W, Grisebach H (1983) Induction and characterization of a microsomal flavonoid 3’-hydroxylase from parsley cell cultures. Eur J Biochem 134: 547–554PubMedCrossRefGoogle Scholar
  19. Harbourne JB (1967) Comparative biochemistry of the flavonoids. Academic Press, London, pp 1–99Google Scholar
  20. Heller E, Hahlbrock K (1980) Highly purified “flavonone synthase” from parsley catalyzes the formation of naringenin chalcone. Arch Biochem Biophys 200: 617–619PubMedCrossRefGoogle Scholar
  21. Herrmann A, Schulz W, Hahlbrock K (1988) Two alleles of the single-copy chalcone synthase gene in parsley differ by a transposon-like element. Mol Gen Genet 212: 93–98PubMedCrossRefGoogle Scholar
  22. Higashi K, Ikeuchi K, Obara M, Karasaki Y, Hirano H, Gotoh S, Koga Y (1985) Purification of a single form of microsomal cytochrome P-450 from tulip bulbs (Tulip genseriana L.). Agricult Biol Chem 49: 2399–2405CrossRefGoogle Scholar
  23. Horsch RB, Fry JE, Hoffman NL, Wallroth M, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227: 1229–1231CrossRefGoogle Scholar
  24. Koes RE, Spelt CE, Reif HJ, van den Elzen PJM, Veltkamp E, Mol JNM (1986) Floral tissue of Petunia hybrida (V30) expresses only one member of the chalcone synthase multigene family. Nucleic Acids Res 14: 5229–5239PubMedCrossRefGoogle Scholar
  25. Kreuzaler F, Ragg H, Fautz E, Kuhn DN, Hahlbrock K (1983) UV-induction of chalcone synthase mRNA in cell suspension cultures of Petroselinum hortense. Proc Natl Acad Sci USA 80: 2591–2593PubMedCrossRefGoogle Scholar
  26. Kuhn D, Chappell J, Boudet A, Hahlbrock K (1984) Induction of phenylalanine ammonia lyase and 4-coumarate: CoA ligase mRNAs in cultured plant cells by UV light or fungal elicitor. Proc Natl Acad Sci USA 81: 1102–1106Google Scholar
  27. Larson RL, Bussard JB (1986) Microsomal flavonoid 3’ mono oxygenase from maize seedlings. Plant Physiol 80: 483–486PubMedCrossRefGoogle Scholar
  28. Lemieux C (1989) Transformation of chrysanthemum cultivars with Agrobacterium tumefaciens. In: Proceedings Horticultural Biotechnology Symposium, University of California, Davis, August, 1989Google Scholar
  29. Ludwig SR, Ledare HF, Dellaporta SL, Wessler SR (1989) Lc, a member of the maize R gene family responsible for tissue specific anthocyanin production encodes a protein similar to transcriptional activators and contains the myc homology region. Proc Natl Acad Sci USA 86: 7092–7096Google Scholar
  30. Martin C, Carpenter R, Sommer H, Saedler H, Coen E (1985) Molecular analysis of instability in flower pigmentation of Antirrhinum majus, following isolation of the pallida locus by transposon tagging. EMBO J 4: 1625–1630PubMedGoogle Scholar
  31. Matile Ph (1975) The lytic compartment of plant cells. Springer, Wien New York [Alfert M et al (eds) Cell biology monographs, vol 1]Google Scholar
  32. McLaughlin M, Walbot V (1987) Cloning of mutable bz 2 allele of maize by transposon tagging and differential hybridization. Genetics 117: 771–784PubMedGoogle Scholar
  33. Mehdy MC, Lamb CJ (1987) Chalcone isomerase cDNA cloning and mRNA induction by fungal elicitor, wounding and infection. EMBO J 6: 1527–1533PubMedGoogle Scholar
  34. Meyer P, Heidmann I, Forkmann G, Saedler H (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330: 677–678PubMedCrossRefGoogle Scholar
  35. Mol JNM, Schram AW, de Vlaming P, Gerats AGM, Kreuzaler F, Hahlbrock K, Reif HJ, Veltkamp E (1983) Regulation of flavonoid gene expression in Petunia hybrida: description and partial characterization of a conditional mutant in chalcone synthase gene expression. Mol Gen Genet 192: 424–429CrossRefGoogle Scholar
  36. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2: 279–289PubMedCrossRefGoogle Scholar
  37. Nevers P, Shephard NS, Saedler H (1986) Plant transposable elements. Adv Bot Res 12: 103–203CrossRefGoogle Scholar
  38. Niesbach-Klosgen K, Barzen E, Bernhardt J, Rohde W, Schwarz-Sommer Z, Reif HJ, Wienand U, Saedler H (1987) Chalcone synthase genes in plants: a tool to study evolutionary relationships. J Mol Evol 26: 213–225CrossRefGoogle Scholar
  39. O’Keefe DP, Leto KJ (1989) Cytochrome P-450 from the mesocarp of avocado (Perseo americana). Plant Physiol 89: 1141–1149PubMedCrossRefGoogle Scholar
  40. O’Reilly C, Shephard N, Pereira A, Schwarz-Sommer Z, Bertram I, Robertson DS, Peterson PA, Saedler H (1985) Molecular cloning of the Al locus of Zea mays using the transposable elements En and Mu 1. EMBO J 4: 877–882PubMedGoogle Scholar
  41. Paz-Ares J, Weinand U, Peterson PA, Saedler H (1986) Molecular cloning of the c locus of Zea mays: a locus regulating the anthocyanin pathway. EMBO J 5: 829–833PubMedGoogle Scholar
  42. Paz-Ares J, Ghosal D, Wienand U, Peterson PA, Saedler H (1987) The regulatory Cl locus of Zea mays encodes a protein with homology to myb proto-oncogene products with structural similarities to transcription activators. EMBO J 6: 3553–3558PubMedGoogle Scholar
  43. Pereira A, Cuypers H, Gierl A, Schwarz-Sommer Z, Saedler H (1986) Molecular analysis of the En/Spm transposable element system of Zea mays. EMBO J 5: 835–841PubMedGoogle Scholar
  44. Pereira A, Schwarz-Sommer Z, Gierl A, Bertram I, Peterson PA Saedler H (1985) Genetic and molecular analysis of Enhancer (En) transposable element system of Zea mays. EMBO J 4: 17–23PubMedGoogle Scholar
  45. Ranjeva R, Boudet AM, Faggion R (1976) Phenolic metabolism in petunia tissues IV.Google Scholar
  46. Properties of p-coumarate: coenzyme A ligase isoenzymes. Biochemie 58: 1255–1262Google Scholar
  47. Reddy A, Britsch L, Salamini F, Saedler H, Rohde W (1987) The Al (anthocyanin-1) locus in Zea mays encodes dihydroquercetin reductase. Plant Sci 52: 7–13CrossRefGoogle Scholar
  48. Robinson GM, Robinson R (1931) A survey of anthocyanins I. Biochem J 25: 1687–1705 Russell DW (1971) The metabolism of aromatic compounds in higher plants. J Biol Chem 246: 3870–3878Google Scholar
  49. Ryder TB, Hedrick SA, Bell JN, Liang X, Clouse SD, Lamb CJ (1987) Organization and differential activation of a gene family encoding the plant defense enzyme chalcone synthase in Phaseolus vulgaris. Mol Gen Genet 210: 219–233PubMedCrossRefGoogle Scholar
  50. Schroder J, Kruezaler F, Schafer E, Hahlbrock K (1979) Concomitant induction of phenylalanine ammonia-lyase and flavanone synthase mRNA’s in irradiated plant cells. J Biol Chem 254: 57–65PubMedGoogle Scholar
  51. Schwarz-Sommer Z, Shephard N, Tacke E, Gierl A, Rohde W, Leclercq L, Mattes M, Berndtgen R, Peterson P, Saedler H (1987) Influence of transposable elements on the structure and function of the Al gene of Zea mays. EMBO J 6: 287–294PubMedGoogle Scholar
  52. Sommer H, Saedler H (1986) Structure of the chalcone synthase gene of Antirrhinum majus. Mol Gen Genet 202: 429–434CrossRefGoogle Scholar
  53. Sommer H, Carpenter R, Harrison BJ, Saedler H (1985) The transposable element Tam3 of Antirrhinum majus generates a novel type of sequence alteration upon excision. Mol Gen Genet 199: 225–231CrossRefGoogle Scholar
  54. Spribille R, Forkmann G (1982) Chalcone synthesis and hydroxylation of flavonoids in 3’-position with enzyme preparations from flowers of Dianthus caryophyllus L. (carnation). Planta 155: 176–182CrossRefGoogle Scholar
  55. Stotz G, Forkmann G (1982) Hydroxylation of the B-ring of flavonoids in the 3’ and 5’ position with enzyme extracts from flowers of Verbena hybrida. Z Naturforsch 37c: 19–32Google Scholar
  56. Stotz G, de Vlaming P, Wiering H, Schram AW, Forkmann G (1985) Genetic and biochemical studies on flavonoid 3’ hydroxylation in flowers of Petunia hybrida. Theor Appl Genet 70: 300–305CrossRefGoogle Scholar
  57. Strickland RG, Harrison RI (1974) Precursors and genetic control of pigmentation. I Induced biosynthesis of pelargonidin, cyanidin and delphinidin in Antirrhinum majus. Heredity 33: 108–112CrossRefGoogle Scholar
  58. Upadhyaya KC, Sommer H, Krebbers E, Saedler H (1985) The paramutagenic line niv-44 has a 5 kb insert, Tam2, in the chalcone synthase gene of Antirrhinum majus. Mol Gen Genet 199: 201–207CrossRefGoogle Scholar
  59. van der Krol AR, Lenting PE, Veenstra J, van der Meer IM, Koes RE, Gerats AGM, Mol JNM, Stuitje AR (1988) An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333: 866–869CrossRefGoogle Scholar
  60. van der Krol AR, Mur LA, Beld M, Mol JNM, Stuitje AR (1990a) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2: 291–299PubMedCrossRefGoogle Scholar
  61. van der Krol AR, Mur LA, de Lange P, Gerats AGM, Mol JNM, Stuitje AR (1990b) Antisense chalcone synthase genes in petunia: visualization of variable transgene expression. Mol Gen Genet 220: 204–212CrossRefGoogle Scholar
  62. van Tunen A, Koes RE, Spelt CE, van der Krol AR, Stuitje AR, Mol JNM (1988) Cloning of the two chalcone flavanone isomerase genes from Petunia hybrida: co-ordinate, light-regulated and differential expression of flavonoid genes. EMBO J 7: 1257–1263PubMedGoogle Scholar
  63. Wiering H (1974) Genetics of flower colour in Petunia hybrida. Horticult Genen Phaenen 17: 117–134Google Scholar
  64. Wiering H, deVlaming P (1984) Inheritance and biochemistry of pigments. In: Sink KC (ed) Petunia. Springer, Berlin Heidelberg New York Tokyo, pp 49–67 [Frankel R et al (eds) Monographs on theoretical and applied genetics, vol 9]Google Scholar
  65. Wienand U, Weydemann U, Niesbach-Klosgen U, Peterson PA, Saedler H (1986) Molecular cloning of the C2 locus from Zea mays, the gene coding for chalcone synthase. Mol Gen Genet 203: 202–207CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1991

Authors and Affiliations

  • Trevor W. Stevenson
    • 1
  1. 1.Calgene Pacific Pty LtdCollingwoodAustralia

Personalised recommendations