Skip to main content

Engineering Microbial Herbicide Detoxification Genes in Higher Plants

  • Chapter
Molecular Approaches to Crop Improvement

Part of the book series: Plant Gene Research ((GENE))

Abstract

Although less than ten years have elapsed since the first demonstration of the techniques which enable us to transfer or genetically engineer herbicide resistance into crop plants, there already exists unprecedented interest from molecular biologists, weed scientists, agrochemical manufacturers, plant breeders and farmers alike, in the potential of this new technology. On offer to the molecular biologist is the chance to utilize an assortment of new skills, coupled with the extensive knowledge of herbicide action gathered over the last four decades by weed scientists and biochemists, to address practical problems in agriculture. Agrochemical companies look to this technology to provide the opportunity to increase market share or total sales of herbicides through the wedding of their products to a wider range of crop varieties, while the plant breeders view herbicide resistant traits as a bonus in efforts to differentiate their particular hybrids and varieties from those of their competitors. Finally, there will be obvious advantages for the farmer in using currently available herbicides at greater margins of safety and on additional crops, and in simplifying the integration and rotation of those crops by keeping the hazards of herbicide residue and spray drift toxicity to a minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amy PS, Schulke JW, Frazier LM, Seidler RJ (1985) Characterization of aquatic bacteria and cloning of genes specifying partial degradation of 2,4-dichlorophenoxyacetic acid. Appl Environ Microbiol 49: 1237–1245

    PubMed  CAS  Google Scholar 

  • Anderson JPE (1984) Herbicide degradation in soil: influence of microbial biomass. Soil Biol Biochem 16: 483–489

    Article  CAS  Google Scholar 

  • Anderson JJ, Dulka JJ (1985) Environmental fate of sulfometuron methyl in aerobic soils. J Agricult Food Chem 33: 596–602

    Article  CAS  Google Scholar 

  • Attaway HH, Camper ND, Paynter MJB (1982) Anaerobic microbial degradation of diuron by pond sediment. Pestic Biochem Physiol 17: 96–101

    Article  CAS  Google Scholar 

  • Balthazor TM, Hallas LE (1986) Glyphosate-degrading microorganisms from industrial activated sludge. Appl Environ Microbiol 51: 432–434

    PubMed  CAS  Google Scholar 

  • Bartsch K, Tebbe CC (1989) Initial steps in the degradation of phosphinothricin (glufosinate) by soil bacteria. Appl Environ Microbiol 55: 711–716

    PubMed  CAS  Google Scholar 

  • Behki RM, Khan SU (1986) Degradation of atrazine by Pseudomonas: N-dealkylation and dehalogenation of atrazine and its metabolites. J Agricult Food Chem 34: 746–749

    Article  CAS  Google Scholar 

  • Bollag J-M, McGahen LL, Minard RD, Liu S-Y, (1986) Bioconversion of alachlor in an anaerobic stream sediment. Chemosphere 15: 153–162

    Article  CAS  Google Scholar 

  • Botterman J, Leemans J (1988) Engineering of herbicide resistance in plants. Biotechnol Genet Engineer Rev 6: 321–340

    CAS  Google Scholar 

  • Carr RJG, Bilton RF, Atkinson T (1985) Mechanism of biodegradation of paraquat by Lipomyces starkeyi. Appl Environ Microbiol 49: 1290–1294

    PubMed  CAS  Google Scholar 

  • Chaudhry GR, Cortez L (1988) Degradation of bromacil by a Pseudomonas sp. Appl Environ Microbiol 54: 2203–2207

    PubMed  CAS  Google Scholar 

  • Chaudhry GR, Huang GH (1988) Isolation and characterization of a new plasmid from a Flavobacterium sp. which carries the genes for degradation of 2,4-dichlorophenoxyacetate. J Bacteriol 170: 3897–3902

    PubMed  CAS  Google Scholar 

  • Cheung AY, Bogorad L, Van Montagu M, Schell J (1988) Relocating a gene for herbicide tolerance: a chloroplast gene is converted to a nuclear gene. Proc Natl Acad Sci USA 85: 391–395

    Article  PubMed  CAS  Google Scholar 

  • Cornai L, Facciotti D, Hiatt WR, Thompson G, Rose RE, Stalker DM (1985) Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317: 741–744

    Article  Google Scholar 

  • Comai L, Stalker D (1986) Mechanism of action of herbicides and their molecular manipulation. Oxford Sury Plant Mol Cell Biol 3: 166–195

    CAS  Google Scholar 

  • Comballack JH (1989) The importance of weeds and the advantages and disadvantages of herbicide use. Plant Protect 4: 14–32

    Google Scholar 

  • Cook AM, Hutter R (1982) Ametryne and Prometryne as sulfur sources for bacteria. Appl Environ Microbiol 43: 781–786

    PubMed  CAS  Google Scholar 

  • Cook AM, Grossenbacher H, Hutter R (1983) Isolation and cultivation of microbes with biodegradative potential. Experientia 39: 1191–1198

    Article  PubMed  CAS  Google Scholar 

  • De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Rao Movva N, Thompson C, Van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6: 2513–2518

    PubMed  CAS  Google Scholar 

  • De Greef W, Delon R, De Block M, Leemans J, Botterman J (1989) Evaluation of herbicide resistance in transgenic crops under field conditions. Bio/Technology 7: 61–64

    Article  Google Scholar 

  • della-Cioppa G, Bauer SC, Taylor ML, Rochester DE, Klein BK, Shah DM, Fraley RT, Kishore GM, (1987) Targeting a herbicide-resistance enzyme from Escherichia coli to chloroplasts of higher plants. Bio/Technology 5: 579–584

    Article  CAS  Google Scholar 

  • Don RH, Pemberton JM (1981) Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol 145: 681–686

    PubMed  CAS  Google Scholar 

  • Don RH, Weightman AJ, Knackmuss H-J Timmis KN (1985) Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3chlorobenzoate in Alcaligenes eutrophus JMP134 (pJP4). J Bacteriol 161: 85–90

    PubMed  CAS  Google Scholar 

  • Don RH, Weightman AJ, Knackmuss H-J Timmis KN (1985) Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3chlorobenzoate in Alcaligenes eutrophus JMP134 (pJP4). J Bacteriol 161: 85–90

    PubMed  CAS  Google Scholar 

  • Eckes P, Wengemayer F (1987) Overproduction of glutamine synthetase in transgenic plants. In: Regulation of plant gene expression. 29th Harden Conf Prog Abstr, Wye College, Ashford, UK

    Google Scholar 

  • Fang SC (1969) Thiolcarbamates. In: Kearney PC, Kaufman DD (eds) Degradation of herbicides. Marcel Dekker, New York, pp 147–164

    Google Scholar 

  • Gardiner JA, Rhodes RC, Adams JB, Soboczenski EJ (1969) Synthesis and studies with 2C14-labeled bromacil and terbacil. J Agricult Food Chem 17: 980–986

    Article  CAS  Google Scholar 

  • Gasser CS, Fraley RT (1989) Genetically engineering plants for crop improvement. Science 244: 1293–1299

    Article  PubMed  CAS  Google Scholar 

  • Geissbuhler H (1969) The substituted ureas. In: Kearney PC, Kaufman DD (eds) Degradation of herbicides. Marcel Dekker, New York, pp 79–111

    Google Scholar 

  • Ghosal D, You I-S, Chatterjee DK, Chakrabarty AM (1985) Microbial degradation of halogenated compounds. Science 228: 135–142

    Article  PubMed  CAS  Google Scholar 

  • Giardina MC, Giardi MT, Filacchioni G (1982) Atrazine metabolism by Nocardia: elucidation of initial pathway and synthesis of potential metabolites. Agricult Biol Chem 46: 1439–1445

    Article  CAS  Google Scholar 

  • Goss JR, Mazur BJ (1989) A kaleidoscopic view of crop herbicide resistance. Proc Western Soc Weed Sci 42: 17–28

    Google Scholar 

  • Haughn GW, Smith J, Mazur B, Somerville C (1988) Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol Gen Genet 211: 266–271

    Article  CAS  Google Scholar 

  • Huppatz JL (1990) Essential amino acid biosynthesis provides multiple targets for selective herbicides. In: Casida JE (ed) Pesticides and alternatives: innovative chemical and biological approaches to pest control. Elsevier, Amsterdam, pp 563–572

    Google Scholar 

  • Jacob GS, Garbow JR, Hallas LE, Kimack NM, Kishore GM, Schaefer J (1988) Metabolism of glyphosate in Pseudomonas sp. strain LBr. Appl Environ Microbiol 54: 2953–2958

    PubMed  CAS  Google Scholar 

  • Kaufman DD, Blake J (1973) Microbial degradation of several acetamide, acylanilide, carbamate, toluidine and urea pesticides. Soil Biol Biochem 5: 297–308

    Article  CAS  Google Scholar 

  • Keeler KH (1989) Can genetically engineered crops become weeds? Bio/Technology 7: 1134–1139

    Google Scholar 

  • Kellogg ST, Chatterjee DK, Chakrabarty AM (1981) Plasmid-assisted molecular breeding: new technique for enhanced biodegradation of persistent toxic chemicals. Science 214: 1133–1135

    Article  PubMed  CAS  Google Scholar 

  • Kilbane JJ, Chatterjee DK, Karns JS, Kellogg ST, Chakrabarty AM (1982) Biodegradation of 2,4,5-trichlorophenoxyacetic acid by a pure culture of Pseudomonas cepacia. Appl Environ Microbiol 44: 72–78

    PubMed  CAS  Google Scholar 

  • Kilpi S (1980) Degradation of some phenoxy acid herbicides by mixed cultures of bacteria isolated from soil treated with 2-(2-methyl-4-chloro)phenoxypropionic acid. Microbiol Ecol 6: 261–270

    Article  CAS  Google Scholar 

  • Knowles CO, Benezet HJ (1981) Microbial degradation of the carbamate pesticides desmedipham, phenmedipham, promecarb and propamocarb. Bull Environ Contamin Toxicol 27: 529–533

    Article  CAS  Google Scholar 

  • Knuesli E, Berrer D, Dupuis G, Esser H (1969) s-Triazines. In: Kearney PC, Kaufman DD (eds) Degradation of herbicides. Marcel Dekker, New York, pp 51–78

    Google Scholar 

  • Krause A, Hancock G, Minard RD, Freyer Ai, Honeycutt RC, LeBaron HM, Paulson DL, Liu S-Y, Bollag J-M (1985) Microbial transformation of the herbicide metolachlor by a soil actinomycete. J Agricult Food Chem 33: 584–589

    Article  CAS  Google Scholar 

  • Lappin HM, Greaves MP, Slater JH (1985) Degradation of the herbicide mecoprop [2-(2-methyl-4-chlorphenoxy)propionic acid] by a synergistic microbial community. Appl Environ Microbil 49: 429–433

    CAS  Google Scholar 

  • Lee A (1984) EPTC (S-ethyl N,N dipropylthiocarbamate) -degrading microorganisms isolated from a soil previously exposed to EPTC. Soil Biol Biochem 16: 529–531

    CAS  Google Scholar 

  • Lee A (1984) EPTC (S-ethyl N,N dipropylthiocarbamate) -degrading microorganisms isolated from a soil previously exposed to EPTC. Soil Biol Biochem 16: 529–531

    CAS  Google Scholar 

  • Liu T, Chapman RI (1984) Purification and properties of a plasmid-encoded, 2,4-dichlorophenol hydroxylase. FEBS Lett 173: 314–318

    Article  PubMed  CAS  Google Scholar 

  • Lyon BR, Llewellyn DJ, Huppatz JL, Dennis ES, Peacock WJ (1989) Expression of a bacterial gene in transgenic tobacco plants confers resistance to the herbicide 2,4dichlorophenoxyacetic acid. Plant Mol Biol 13: 533–540

    Article  PubMed  CAS  Google Scholar 

  • MacRae IC (1989) Microbial metabolism of pesticides and structurally related compounds. Rev Environ Contamin Toxicol 109: 1–87

    CAS  Google Scholar 

  • Malik J, Barry G, Kishore G (1989) The herbicide glyphosate. BioFactors 2: 17–25

    PubMed  CAS  Google Scholar 

  • Marty JL, Vouges J (1987) Purification and properties of a phenylcarbamate herbicide degrading enzyme of Pseudomonas alcaligenes isolated from soil. Agricult Biol Chem 51: 3287–3294

    Article  CAS  Google Scholar 

  • Mazur BJ, Falco SC (1989) The development of herbicide resistant crops. Annu Rev Plant Physiol Plant Mol Biol 40: 441–470

    Article  CAS  Google Scholar 

  • Mazur BJ, Chui C-F, Smith JK (1987) Isolation and characterization of plant genes coding for acetolactate synthase, the target enzyme for two classes of herbicides. Plant Physiol 85: 1110–1117

    Article  PubMed  CAS  Google Scholar 

  • McBride KE, Kenny JW, Stalker DM (1986) Metabolism of the herbicide bromoxynil by Klebsiella pneumoniae subsp. ozaenae. Appl Environ Microbiol 52: 325–330

    PubMed  CAS  Google Scholar 

  • McGahen LL, Tiedje JM (1978) Metabolism of two acylanilide herbicides, Antor herbicide (M-22234) and Dual (metolachlor) by the soil fungus ChaPtomium globosum. J Agricult Food Chem 26: 414–419

    Article  CAS  Google Scholar 

  • Moore JK, Braymer HD, Larson AD (1983) Isolation of a Pseudomonas sp. which utilizes the phosphonate herbicide glyphosate. Appl Environ Microbiol 46: 316–320

    PubMed  CAS  Google Scholar 

  • Murata K, Higaki N, Kimura A (1989) A microbial carbon-phosphorus bond cleavage enzyme requires two protein components for activity. J Bacteriol 171: 4504–4506

    PubMed  CAS  Google Scholar 

  • Novick NJ, Alexander M (1985) Cometabolism of low concentrations of propachlor, alachlor, and cycloate in sewage and lake water. Appl Environ Microbiol 49: 737–743

    PubMed  CAS  Google Scholar 

  • Novick NJ, Mukherjee R, Alexander M (1986) Metabolism of alachlor and propachlor in suspensions of pretreated soils and in samples from ground water aquifers. J Agricult Food Chem 34: 721–725

    Article  CAS  Google Scholar 

  • O’Keefe DP, Romesser JA, Leto KJ (1988) Identification of constitutive and herbicide inducible cytochromes P-450 in Streptomyces griseolus. Arch Microbiol 149: 406–412

    Article  Google Scholar 

  • Perkins EJ, Lurquin PF (1988) Duplication of a 2,4-dichlorophenoxyacetic acid mono- oxygenase gene in Alcaligenes eutrophus JMP134 (pJP4). J Bacteriol 170: 5669–5672

    PubMed  CAS  Google Scholar 

  • Pipke R, Amrhein N (1988a) Degradation of the phosphonate herbicide glyphosate by Arthrobacter atrocyaneus ATCC 13752. Appl Environ Microbiol 54: 1293–1296

    PubMed  CAS  Google Scholar 

  • Pipke R, Amrhein N (1988b) Isolation and characterization of a mutant of Arthrobacter sp. strain GLP-1 which utilizes the herbicide glyphosate as its sole source of phosphorus and nitrogen. Appl Environ Microbiol 54: 2868–2870

    PubMed  CAS  Google Scholar 

  • Pipke R, Schulz A, Amrhein N (1987) Uptake of glyphosate by an Arthrobacter sp. Appl Environ Microbiol 53: 974–978

    PubMed  CAS  Google Scholar 

  • Potrykus I (1989) Gene transfer to cereals: an assessment. Tibtech 7: 269–273

    Article  Google Scholar 

  • Probst GW, Tepe JB (1969) Trifluralin and related compounds. In: Kearney PC, Kaufman DD (eds) Degradation of herbicides. Marcel Dekker, New York, pp 255–282

    Google Scholar 

  • Romesser JA, O’Keefe DP (1986) Induction of cytochrome P-450-dependent sulfonylurea metabolism in Streptomyces griseolus. Biochem Biophys Res Comm 140: 650–659

    Article  PubMed  CAS  Google Scholar 

  • Saxena A, Zhang R, Bollag J-M (1987) Microorganisms capable of metabolizing the herbicide metolachlor. Appl Environ Microbiol 53: 390–396

    PubMed  CAS  Google Scholar 

  • Shah DM, Horsch RB, Klee HJ, Kishore GM, Winter JA, Tumer NE, Hironake CM, Sanders PR, Gasser CS, Aykent S, Siegal NR, Rogers SG, Fraley RT (1986) Engineering herbicide tolerance in transgenic plants. Science 233: 478–481

    Article  PubMed  CAS  Google Scholar 

  • Shah DM, Gasser CS, della-Cioppa G, Kishore GM (1988) Genetic engineering of herbicide resistance genes. In: Verma DPS, Goldberg RB (eds) Temporal and spacial regulation of plant genes. Springer, Wien New York, pp 297–309 [Dennis ES et al (eds) Plant gene research. Basic knowledge and application]

    Google Scholar 

  • Schulz A, Wengenmayer F, Goodman HM (1990) Genetic engineering of herbicide resistance in higher plants. CRC Crit Rev Plant Sci 9: 1–15

    Article  CAS  Google Scholar 

  • Shinabarger DL, Braymer HD (1986) Glyphosate metabolism by Pseudomonas sp. strain PG2982. J Bacteriol 168: 702–707

    PubMed  CAS  Google Scholar 

  • Smith AE, Hayden BJ (1981) Relative persistence of MCPA, MCPB and mecoprop in Saskatchewan soils and the identification of MCPA in MCPB-treated soils. Weed Res 21: 179–183

    Google Scholar 

  • Smith AE (1989) Transformation of the herbicide [“C]glufosinate in soils. J Agricult Food Chem 37: 267–271

    Article  CAS  Google Scholar 

  • Stalker DM, McBride KE, Malyi LD (1988) Herbicide resistance in transgenic plants expressing a bacterial detoxification gene. Science 242: 419–422

    Article  PubMed  CAS  Google Scholar 

  • Stalker DM, McBride KE (1987) Cloning and expression in Escherichia coli of a Klebsiella ozaenae plasmid-borne gene encoding a nitrilase specific for the herbicide bromoxynil. J Bacteriol 169: 955–960

    PubMed  CAS  Google Scholar 

  • Stanier RY, Palleroni, NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43: 159–271

    PubMed  CAS  Google Scholar 

  • Stralka KA, Camper ND (1981) Microbial degradation of profluralin. Soil Biol Biochem 13: 33–38

    Article  CAS  Google Scholar 

  • Streber WR, Willmitzer L (1989) Transgenic tobacco plants expressing a bacterial detoxifying enzyme are resistant to 2,4-D. Bio/Technology 7: 811–816

    Article  CAS  Google Scholar 

  • Streber WR, Timmis KN, Zenk MH (1987) Analysis, cloning, and high-level expression of 2,4-dichlorophenoxyacetate monooxygenase gene tfdA of Alcaligenes eutrophus JMP134. J Bacteriol 169: 2950–2955

    PubMed  CAS  Google Scholar 

  • Tachibana K, Watanabe T, Sekizawa Y, Takematsu T (1986) Accumulation of ammonia in plants treated with bialaphos. J Pestic Sci 11: 33–37

    Article  CAS  Google Scholar 

  • Talbot HW, Johnson LM, Munnecke DM (1984) Glyphosate utilization by Pseudomonas sp. and Alcaligenes sp. isolated from environmental sources. Curr Microbiol 10: 255–260

    Article  CAS  Google Scholar 

  • Tam AC, Behki RM, Khan SU (1987) Isolation and characterization of an s-ethyl-N,Ndipropylthiocarbamate-degrading Arthrobacter strain and evidence for plasmid-associated s-ethyl-N,N-dipropylthiocarbamate degradation. Appl Environ Microbiol 53: 1088–1093

    PubMed  CAS  Google Scholar 

  • Thompson CJ, Rao Movva N, Tizard R, Davies JE, Lauwereys M, Botterman J (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J 6: 2519–2523

    PubMed  CAS  Google Scholar 

  • Tiedje JM, Hagedorn ML (1975) Degradation of alachlor by a soil fungus, Chaetomium globosum. J Agricult Food Chem 23: 77–81

    Article  CAS  Google Scholar 

  • Vega D, Bastide J, Coste C (1985) Isolation from soil and growth characteristics of a CIPCdegrading strain of Pseudomonas cepacia. Soil Biol Biochem 17: 541–545

    Article  Google Scholar 

  • Wang Y-S, Subba-Rao RV, Alexander M (1984) Effect of substrate concentration and organic and inorganic compounds on the occurrence and rate of mineralization and cometabolism. Appl Environ Microbiol 47: 1195–1200

    PubMed  CAS  Google Scholar 

  • Wright SJL, Maule A (1982) Transformation of the herbicides propanil and chloropropham by micro-algae. Pestic Sci 13: 253–256

    Article  CAS  Google Scholar 

  • Zeyer J, Kearney PC (1982) Microbial metabolism of propanil and 3,4-dichloroaniline. Pestic Biochem Physiol 17: 224–231

    Article  CAS  Google Scholar 

  • Zeyer J, Kearney PC (1983) Microbial dealkylation of trifluralin in pure culture. Pestic Biochem Physiol 20: 10–18

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag/Wien

About this chapter

Cite this chapter

Lyon, B.R. (1991). Engineering Microbial Herbicide Detoxification Genes in Higher Plants. In: Dennis, E.S., Llewellyn, D.J. (eds) Molecular Approaches to Crop Improvement. Plant Gene Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9108-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9108-8_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9110-1

  • Online ISBN: 978-3-7091-9108-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics