Skip to main content

Improvement of the Protein Quality of Seeds by Genetic Engineering

  • Chapter
Molecular Approaches to Crop Improvement

Part of the book series: Plant Gene Research ((GENE))

Abstract

Seeds provide a major source of protein in the diets of humans and livestock. Accordingly, there has long been interest in the structure, amino acid content, and genetic regulation of seed proteins. Unfortunately, the value of seeds as protein sources is lessened by their unbalanced amino acid compositions. Most seed proteins are deficient in one or more of the amino acids that are essential for humans and other monogastric animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ampe C, Van Damme J, de Castro LAB, Sampaio MJAM, Van Montagu M, Vandekerckhove J (1986) The amino-acid sequence of the 2S sulphur-rich proteins from seeds of Brazil nut ( Bertholletia excelsa H.B.K. ). Eur J Biochem 159: 597–604

    Google Scholar 

  • Altenbach SB, Pearson KW, Meeker G, Staraci LC, Sun SSM (1989) Enhancement of the methionine content of seed proteins by the expression of a chimeric gene encoding a methionine-rich protein in transgenic plants. Plant Mol Biol 13: 513–522

    Article  PubMed  CAS  Google Scholar 

  • Argos P, Pederson K, Marks MD, Larkins BA (1982) A structural model for maize zein proteins. J Biol Chem 257: 9984–9990

    PubMed  CAS  Google Scholar 

  • Argos P, Narayana SVL, Nielsen NC (1985) Structural similarity between legumin and vicilin storage proteins from legumes. EMBO J 4: 1111–1117

    PubMed  CAS  Google Scholar 

  • Badenoch-Jones J, Spencer D, Higgins TJV, Millerd A (1981) The role of glycosylation in storage-protein synthesis in developing pea seeds. Planta 153: 201–209

    Article  CAS  Google Scholar 

  • Barton KA, Thompson JF, Madison JT, Rosenthal R, Larvis NP, Beachy RN (1982) The biosynthesis and processing of high molecular weight precursors of soybean glycinin subunits. J Biol Chem 257: 6089–6095

    PubMed  CAS  Google Scholar 

  • Bollini R, Vitale A, Chrispeels MJ (1983) In vivo and in vitro processing of seed reserve protein in the endoplasmic reticulum: evidence for two glycosylation steps. J Cell Biol 96: 999–1007

    Article  PubMed  CAS  Google Scholar 

  • Borroto K, Dure L III (1987) The globulin seed storage proteins of flowering plants are derived from two ancestral genes. Plant Mol Biol 8: 113–131

    Article  CAS  Google Scholar 

  • Bright SWJ, Shewry PR (1983) Improvement of protein quality in cereals. CRC Crit Rev Plant Sci 1: 49–92

    Article  CAS  Google Scholar 

  • Brown JWS, Bliss FA, Hall TC (1981) Linkage relationships between genes controlling seed proteins in French bean. Theor Appl Genet 60: 251–259

    Article  CAS  Google Scholar 

  • Cameron-Mills V, von Wettstein D (1980) Protein body formation in the developing barley endosperm. Carlsberg Res Commun 45: 577–594

    Article  CAS  Google Scholar 

  • Campbell WH, Gowri G (1990) Codon usage in higher plants, green algae, and cyanobacteria. Plant Physiol 92: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Casey R, Domoney C, Ellis N (1986) Legume storage proteins and their genes. Oxford Sury Plant Mol Cell Biol 3: 1–95

    CAS  Google Scholar 

  • Chesnut RS, Shotwell MA, Boyer SK, Larkins BA (1989) Analysis of avenin proteins and the expression of their mRNAs in developing oat seeds. Plant Cell 1: 913–924

    Article  PubMed  CAS  Google Scholar 

  • Chrispeels MJ, Higgins TJV, Spencer D (1982) Assembly of storage protein oligomers in the endoplasmic reticulum and processing of the polypeptides in the protein bodies of developing pea cotyledons. J Cell Biol 93: 306–313

    Article  PubMed  CAS  Google Scholar 

  • Colot V, Bartels D, Thompson R, Flavell R (1989) Molecular characterization of an active wheat LMW glutenin gene and its relation to other wheat and barley prolamin genes. Mol Gen Genet 216: 81–90

    Article  PubMed  CAS  Google Scholar 

  • Davies HM, Delmer DP (1981) Two kinds of protein glycosylation in a cell-free preparation from developing cotyledons of Phaseolus vulgaris. Plant Physiol 68: 284–291

    Google Scholar 

  • de Barros EG, Larkins BA (1990) Purification and characterization of zein-degrading proteinases from germinating maize endosperm. Plant Physiol (in press)

    Google Scholar 

  • de Boer HA, Kastelein RA (1986) Biased codon usage: an exploration of its role in optimization of translation. In: Reznikoff W, Gold L (eds) Maximizing gene expression. Butterworths, Boston, pp 225–285

    Google Scholar 

  • Derbyshire E, Boulter D (1976) Isolation of legumin-like protein from Phaseolus aureus and Phaseolus vulgaris. Phytochemistry 15: 411–414

    Article  CAS  Google Scholar 

  • Destéfano-Beltran L, Nagpala P, Jaeho K, Dodds JH, Jaynes JM (1991) Genetic transformation of potato to enhance nutritional value and confer disease resistance. In: Dennis ES, Llewellyn DJ (eds) Molecular approaches to crop improvements. Springer, Wien New York, pp 17–32 [Dennis ES et al (eds) Plant gene research. Basic knowledge and application]

    Google Scholar 

  • Dickinson CD, Hussein EHA, Nielsen NC (1989) Role of post-translational cleavage in glycinin assembly. Plant Cell 1: 459–469

    Article  PubMed  CAS  Google Scholar 

  • Dickinson CD, Scott MP, Hussein EHA, Argos P, Nielsen NC (1990) Effect of structural modifications on the assembly of a glycinin subunit. Plant Cell 2: 403–413

    Article  PubMed  CAS  Google Scholar 

  • Domoney C, Casey R (1985) Measurement of gene number for seed storage proteins in Pisum. Nucleic Acids Res 13: 687–699

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Schuler MA, Godette WD, Zenger V, Beachy RN, Slightom JL (1986) The glycosylated seed storage proteins of Glycine max and Phaseolus vulgaris. J Biol Chem 261: 9228–9238

    PubMed  CAS  Google Scholar 

  • Gallardo D, Reina M, Rigau J, Boronat A, Palau J (1988) Genomic organization of the 28 kDa glutelin-2 gene from maize. Plant Sci 54: 211–218

    Article  CAS  Google Scholar 

  • Gibbs PEM, Strongin KB, McPherson A (1989) Evolution of legume seed storage proteins —a domain common to legumins and vicilins is duplicated in vicilins. Mol Biol Evol 6: 614–623

    PubMed  CAS  Google Scholar 

  • Harvey BMR, Oaks A (1974) The hydrolysis of endosperm protein in Zea mays. Plant Physiol 53: 453–457

    Article  PubMed  CAS  Google Scholar 

  • Herman EM, Shannon LM, Chrispeels MJ (1986) The Golgi apparatus mediates the transport and post-translational modification of protein body proteins. In: Shannon LM, Chrispeels MJ (eds) Molecular biology of seed storage proteins and lectins. American Society of Plant Physiologists, Rockville, MD, pp 163–173

    Google Scholar 

  • Hoffman LM, Donaldson DD, Bookland R, Rashka K, Herman EM (1987) Synthesis and protein body deposition of maize 15-kd zein in transgenic tobacco seeds. EMBO J 6: 3213–3221

    PubMed  CAS  Google Scholar 

  • Kim WT, Okita TW (1988) Structure, expression, and heterogeneity of the rice seed prolamines. Plant Physiol 88: 649–655

    Article  PubMed  CAS  Google Scholar 

  • Kim WT, Franceschi VR, Krishnan HB, Okita TW (1988) Formation of wheat protein

    Google Scholar 

  • bodies: involvement of the Golgi apparatus in gliadin transport. Planta 176: 173–182 Kirihara JA, Hunsperger JP, Mahoney WC, Messing JW (1988) Differential expression of a gene for a methionine-rich storage protein in maize. Mol Gen Genet 211: 477–484

    Google Scholar 

  • Kreis M, Tatham AS (1990) The prolamin storage proteins of cereal seeds: structure andevolution. Biochem J 267: 1–12

    Google Scholar 

  • Kreis M, Forde BG, Rahman S, Miflin BJ, Shewry PR (1985a) Molecular evolution of the seed storage proteins of barley, rye and wheat. J Mol Biol 183: 499–502

    Article  PubMed  CAS  Google Scholar 

  • Kreis M, Shewry PR, Forde BG, Forde J, Miflin BJ (1985b) Structure and evolution of seed storage proteins and their genes with particular reference to those of wheat, barley and rye. Oxford Sury Plant Mol Cell Biol 2: 253–317

    CAS  Google Scholar 

  • Krishnan HB, Franceschi VR, Okita TW (1986) Immunochemical studies on the role of the Golgi complex in protein-body formation in rice seeds. Planta 169: 471–480

    Article  CAS  Google Scholar 

  • Ladin BF, Doyle JJ, Beachy RN (1984) Molecular characterization of a deletion mutation affecting the a’-subunit of ß-conglycinin of soybean. J Mol Appl Genet 2: 372–380

    PubMed  CAS  Google Scholar 

  • Larkins BA (1982) Genetic engineering of seed storage proteins. In: Kosuge T, Meredith CP, Hollaender A (eds) Genetic engineering of plants. An agricultural perspective. Plenum, New York, pp 93–118

    Google Scholar 

  • Larkins BA, Hurkman WJ (1978) Synthesis and deposition of zein in protein bodies of maize endosperm. Plant Physiol 62: 256–263

    Article  PubMed  CAS  Google Scholar 

  • Larkins BA, Lending CR, Wallace JC, Galili G, Kawata EE, Geetha KB, Kriz AL, Martin DM, Bracker CE (1989) Zein gene expression during maize endosperm development. In: Goldberg RB (ed) The molecular basis of plant development. Alan R Liss, New York, pp 109–120

    Google Scholar 

  • Lawrence MC, Suzuki E, Varghese JN, Davis PC, Van Donkelaar A, Tulloch PA, Colman PM (1990) The three-dimensional structure of the seed storage protein phaseolin at 3 A resolution. EMBO J 9: 9–15

    PubMed  CAS  Google Scholar 

  • Lending CR, Larkins BA (1989) Changes in the zein composition of protein bodies during maize endosperm development. Plant Cell 1: 1011–1023

    Article  PubMed  CAS  Google Scholar 

  • Lending CR, Kriz AK, Larkins BA, Bracker CE (1988) Structure of maize protein bodies and immunocytochemical localization of zeins. Protoplasma 143: 51–62

    Article  CAS  Google Scholar 

  • Lycett GW, Delauney AJ, Zhao W, Gatehouse JA, Croy RRD, Boulter D (1984) Two cDNA clones coding for the legumin protein of Pisum sativum L. contain sequence repeats. Plant Mol Biol 3: 91–96

    Article  CAS  Google Scholar 

  • Marks MD, Pedersen K, Wilson DR, DiFonzo N, Larkins BL (1984) Molecular biology of the maize seed storage proteins. Curr Top Plant Biochem Physiol 3: 9–18

    Google Scholar 

  • Meinke DW, Chen J, Beachy RN (1981) Expression of storage-protein genes during soybean seed development. Planta 153: 130–139

    Article  CAS  Google Scholar 

  • Moureaux T (1979) Protein breakdown and protease properties of germinating maize endosperm. Phytochemistry 18: 1113–1117

    Article  CAS  Google Scholar 

  • Nelson OE (1969) Genetic modification of protein quality in plants. Adv Agron 21: 171–194

    Article  CAS  Google Scholar 

  • Nelson OE (1980) Genetic control of polysaccharide and storage protein synthesis in the endosperms of barley, maize, and sorghum. In: Pomeranz Y (ed) Advances in cereal science and technology. American Association of Cereal Chemistry, St. Paul, pp 41–71

    Google Scholar 

  • Nielsen NC, Dickinson CD, Cho T-J, Thanh VH, Scallon BJ, Fischer RL, Sims TL, Drews GN, Goldberg RB (1989) Characterization of the glycinin gene family in soybean. Plant Cell 1: 313–328

    Article  PubMed  CAS  Google Scholar 

  • Ohtani T, Wallace JC, Thompson GA, Galili G, Larkins BA (1990) Normal and lysine-

    Google Scholar 

  • containing zeins are unstable in transgenic tobacco seeds. Plant Mol Biol (in press) Okita TW, Cheesbrough V, Reeves CD (1985) Evolution and heterogeneity of the a-/ß-type

    Google Scholar 

  • and y-type gliadin DNA sequences. J Biol Chem 260: 8203–8213

    Google Scholar 

  • Okita TW, Hwang YS, Hnilo J, Kim WT, Aryan AP, Larson R, Krishnan HB (1989) Structure and expression of the rice glutelin multigene family. J Biol Chem 264: 12573–12581

    PubMed  CAS  Google Scholar 

  • Pedersen K, Argos P, Naravana SVL, Larkins BA (1986) Sequence analysis and characterization of a maize gene encoding a high-sulfur zein protein of M,. 15,000. J Biol Chem 261: 6279–6284

    PubMed  CAS  Google Scholar 

  • Plietz P, Damaschun G (1986) The structure of the 11S seed globulins from various plant species: comparative investigations by physical methods. Stud Biophys 3: 153–173

    Google Scholar 

  • Plietz P, Damaschun G, Müller JJ, Schlesier B (1983a) Comparison of the structure of the 7S globulin from Phaseolus vulgaris in solution with the crystal structure of 7S globulin from Canavalia ensiformis by small angle X-ray scattering. FEBS Lett 162: 43–46

    Article  CAS  Google Scholar 

  • Plietz P, Damaschun G, Zirwer D, Gast K, Schlesier B (1983b) Structure of 7S seed globulin from Phaseolus vulgaris L. in solution. Int J Biol Macromol 5: 356–360

    Article  CAS  Google Scholar 

  • Plietz P, Drescher B, Damaschun G (1988) Structure and evolution of the 11S globulins: conclusions from comparative evaluation of amino acids sequences and X-ray scattering data. Biochem Physiol Pflanzen 183: 199–203

    CAS  Google Scholar 

  • Reichelt R, Schwenke K-D, König T, Pähtz W, Wangermann G (1980) Electron microscopic studies for estimation of the quaternary structure of the 11S globulin (helianthin) from sunflower seed ( Helianthus annuus L. ). Biochem Physiol Pflanzen 175: 653–663

    Google Scholar 

  • Shotwell MA, Larkins BA (1989) The biochemistry and molecular biology of seed storage proteins. In: Marcus A (ed) The biochemistry of plants. A comprehensive treatise, vol 15. Academic Press, San Diego, pp 297–345

    Google Scholar 

  • Shotwell MA, Boyer SK, Chesnut RS, Larkins BA (1990) Analysis of seed storage protein genes of oats. J Biol Chem 265: 9652–9658

    PubMed  CAS  Google Scholar 

  • Shutov AD, Vaintraub IA (1987) Degradation of storage proteins in germinating seeds. Phytochemistry 23: 75–94

    Google Scholar 

  • Spencer D, Chandler PM, Higgins TJV, Inglis AS, Rubira M (1983) Sequence interrelationships of the subunits of vicilin from pea seeds. Plant Mol Biol 2: 259–267

    Article  CAS  Google Scholar 

  • Sun SSM, Altenbach SB, Leung FW (1987) Properties, biosynthesis and processing of a sulfur-rich protein in Brazil nut ( Bertholletia excelsa H.B.K. ). Eur J Biochem 162: 477–483

    Google Scholar 

  • Talbot DR, Adang MJ, Slightom JL, Hall TC (1984) Size and organization of a multigene family encoding phaseolin, the major seed storage protein in Phaseolus vulgaris L. Mol Gen Genet 198: 42–49

    Article  CAS  Google Scholar 

  • Taylor JRN, Schüssler L, Liebenberg, NvdW (1985) Protein body formation in starchy

    Google Scholar 

  • endosperm of developing Sorghum bicolor (L.) Moench seeds. S Afr J Bot 51: 35–40 Torrent M, Geli MI, Ludevid MD (1989) Storage-protein hydrolysis and protein-body

    Google Scholar 

  • breakdown in germinated Zea mays L. seeds. Planta 180: 90–95

    Google Scholar 

  • Ueng P, Galili G, Sapanara V, Goldsbrough PB, Dube P, Beachy RN, Larkins BA (1988) Expression of a maize storage protein gene in petunia plants is not restricted to seeds. Plant Physiol 86: 1281–1285

    Article  PubMed  CAS  Google Scholar 

  • Voelker TA, Herman EM, Chrispeels MJ (1989) In vitro mutated phytohemagglutinin genes expressed in tobacco seeds: role of glycans in protein targeting and stability. Plant Cell 1: 95–104

    Article  PubMed  CAS  Google Scholar 

  • Vonder Haar RA, Allen RA, Cohen EA, Nessler CL, Thomas TL (1988) Organization of the sunflower 11S storage protein gene family. Gene 74: 433–443

    Article  Google Scholar 

  • Wallace JC, Galili G, Kawata EE, Cuellar RE, Shotwell MA, Larkins BA (1988) Aggregation of lysine-containing zeins into protein bodies in Xenopus oocytes. Science 240: 662–664

    Article  PubMed  CAS  Google Scholar 

  • Wallace JC, Ohtani T, Lending CR, Lopes M, Williamson JD, Shaw KL, Gelvin SB, Larkins BA (1990) Factors affecting physical and structural properties of maize protein bodies. In: Lamb C, Beachy RN (eds) Plant gene transfer. Alan R Liss, New York [UCLA symposium on molecular and cellular biology, new series, vol 129] (in press)

    Google Scholar 

  • Williamson JD, Galili G, Larkins BA, Gelvin SB (1988) The synthesis of a 19 kilodalton zein protein in transgenic Petunia plants. Plant Physiol 88: 1002–1007

    Article  PubMed  CAS  Google Scholar 

  • Wilson DM, Larkins BA (1984) Zein gene organization in maize and related grasses. J Mol Evol 29: 330–340

    Article  Google Scholar 

  • Wright DJ, Boulter D (1972) The characterization of vicilin during seed development in Vicia faba ( L. ). Planta 105: 60–65

    Google Scholar 

  • Yang MS, Espinoza NO, Nagpala PG, Dodds JH, White FF, Schnorr KL, Jaynes JM (1989) Expression of a synthetic gene for improved protein quality in transformed potato plants. Plant Sci 64: 99–111

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag/Wien

About this chapter

Cite this chapter

Shotwell, M.A., Larkins, B.A. (1991). Improvement of the Protein Quality of Seeds by Genetic Engineering. In: Dennis, E.S., Llewellyn, D.J. (eds) Molecular Approaches to Crop Improvement. Plant Gene Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9108-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9108-8_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9110-1

  • Online ISBN: 978-3-7091-9108-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics