Genetic Transformation of Potato to Enhance Nutritional Value and Confer Disease Resistance

  • Luis Destéfano-Beltrán
  • Pablito Nagpala
  • Kim Jaeho
  • John H. Dodds
  • Jesse M. Jaynes
Part of the Plant Gene Research book series (GENE)


The potato is one of the most important calorie and protein sources in many developed and developing countries with total production yielding about 95 million tons of tubers worth about $ 24 billion dollars (1984 figures). The nutritional quality of the potato tuber protein, although relatively high, is, like for most plant proteins, deficient in certain essential amino acids, e.g. lysine and methionine. The expression of synthetic genes encoding proteins rich in essential amino acids, along with normal protein production within the tuber, may increase the overall nutritional quality of the potato as well as its aggregated value in the market especially for the food industry.


Hairy Root Genetic Transformation Essential Amino Acid Chloramphenicol Acetyl Transferase Antibacterial Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrios GN (1978) Plant pathology, 2nd edn. Academic Press, New YorkGoogle Scholar
  2. Ando K, Okada M, Natori S (1987) Purification of sarcotoxin II, antibacterial proteins of Sarcophaga peregrina (flesh fly) larvae. Biochemistry 26: 226–230PubMedCrossRefGoogle Scholar
  3. Andreu D, Merrifield RB, Steiner H, Boman HG (1985) N-terminal analogues of cecropin A: Synthesis, antibacterial activity, and conformational properties. Biochemistry 24: 1683–88PubMedCrossRefGoogle Scholar
  4. Anonymous (1960) Index of plant diseases in the United States. Agriculture Handbook no 165. US Dept of Agriculture, Washington, DCGoogle Scholar
  5. Boman HG, Hultmark D (1987) Cell-free immunity in insects. Annu Rev Microbiol 41: 103–26PubMedCrossRefGoogle Scholar
  6. Boman HG, Faye I, van Hofsten P, Kockum K, Lee J-Y, Xanthopoulos KG, Bennich H, Engstrom A, Merrifield RB, Andreu D (1985) On the primary structure of Lysoiyme, Cecropins, and Attacins from Hyalophora cecropia. Dev Comp Immunol 9: 551–558PubMedCrossRefGoogle Scholar
  7. Casteels P, Ampe C, Jacobs F, Vaeck M, Tempst P (1989) Apidaecins: antibacterial peptides from honeybees. EMBO J 8: 2387–2391PubMedGoogle Scholar
  8. Destéfano-Beltran L, Nagpala P, Cetiner S, Dodds JH, Jaynes JM (1990) Enhancing bacterial fungal disease resistance in plants: application to potato. In: Vayda M, Park W (eds) The molecular and cellular biology of the potato. C.A.B. International, Wallindford, pp 205–221Google Scholar
  9. Engstrom A, Xanthopoulos K, Boman HG, Bennich H (1985) Amino acid and cDNA sequences of lysozyme from Hyalophora cecropia. EMBO J 4: 2119–2122PubMedGoogle Scholar
  10. Espinoza NO, Estrada R, Tovar P, Bryan J, Dodds JH (1984) Specialized potato technology, vol 1. International Potato Center, Lima, Peril, pp 1–20Google Scholar
  11. Flyg C, Dalhammar G, Rasmuson B, Boman HG (1987) Insect immunity. Inducible antibacterial activity in Drosophila. Insect Biochem. 17: 153–160CrossRefGoogle Scholar
  12. Fraley RT, Rogers SG, Horsch RB, Kishore GM, Beachy R, Tumer N, Fischhoff DA, Delannay X, Klee HJ, Shah DM (1988) Genetic engineering for crop improvement. In: Gustafson JP, Appels R (eds) Chromosome structure and function. Plenum, New York, pp 283–298CrossRefGoogle Scholar
  13. Hansen R (1979) Food intake index. In: Hansen, RG, Wyse, BW, Sorenson AW (eds) Nutritional quality index of foods. AVI, Westport CT, pp 169–543Google Scholar
  14. Horsch RB, Fry J, Hoffman N, Eichholtz D (1985) A simple and general method for transferring genes into plants. Science 223: 1229–1231Google Scholar
  15. Hultmark D, Engstrom A, Andersson K, Steiner H, Bennich H, Boman HG (1983) Insect immunity: attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J 2: 571–576PubMedGoogle Scholar
  16. Hultmark D, Steiner H, Rasmusson T, Boman HG (1980) Purification and properties of three inducible bactericidal proteins from the hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem 106: 7–16PubMedCrossRefGoogle Scholar
  17. Jaynes JM (1989) Lytic peptides portend an innovative age in the management and treatment of human disease. Drug News Perspect 3: 69–78Google Scholar
  18. Jaynes JM, Juban M, Julian GJ, Miller MA (1990) Natural lytic peptides and their synthetic counterparts: a working structural model. (In preparation)Google Scholar
  19. Jaynes JM, Julian GR, Jeffers GW, White KL, Enright FM (1989) In vitro cytocidal effect of lytic peptides on several transformed mammalian cell lines. Peptide Res 2: 157–160Google Scholar
  20. Jaynes JM, Burton CA, Barr SB, Jeffers GW, Julian GR, White KL, Enright FM, Klei TR, Laine RA (1988) In vitro cytocidal effect of novel lytic peptides on Plasmodium falciparum and Trypanosoma cruzi. FASEB J 2: 2878–2883PubMedGoogle Scholar
  21. Jaynes JM, Xanthopoulos KG, Destéfano-Beltran L, Doods JH (1987) Increasing bacterial disease resistance in plants utilizing antibacterial genes from insects. BioEssays 6: 263–270CrossRefGoogle Scholar
  22. Jaynes JM, Langridge P, Anderson K, Bond C, Sands D, Newman CW, Newman R (1985) Construction and expression of synthetic DNA fragments coding for polypeptides with elevated levels of essential amino acids. Appl Microbiol Biotech 21: 200–205CrossRefGoogle Scholar
  23. Newman CW, Jaynes JM, Stands DC (1980) Poly-L-lysine: a nutritional resource of lysine. Nutr Rep Int 22: 707–715Google Scholar
  24. Okada M, Natori S (1983) Purification and characterization of an antibacterial protein from haemolymph of Sarcophaga peregrina (flesh fly) larvae. Biochem J 211: 727–734PubMedGoogle Scholar
  25. Qu X, Steiner H, Engstrom A, Bennich H, Boman HG (1982) Insect immunity: isolation and structure of cecropins B and D from pupae of the Chinese oak silk moth, Antheraea pernyi. Eur J Biochem 127: 219–224PubMedCrossRefGoogle Scholar
  26. Rich AE (1983) Potato disease. Academic Press, New YorkGoogle Scholar
  27. Rogers S, Klee H, Horsch RB, Fraley RT (1988) Use of cointegrating Ti plasmid vectors. In: Gelvin SB, Schilperoot RA (eds) Plant molecular biology manual. Kluwer, Dordrecht, pp A2: 1–12Google Scholar
  28. Sawyer RL (1984) Potatoes for the developing world. International Potato Center, Lima, PeruGoogle Scholar
  29. Shiba T, Ueki Y, Kubota I, Teshima T, Sugiyama Y, Oba Y, Kikuchi M (1984) Structure of lepidopteran, a self-defense substance produced by silkworm. In: Munekata E (ed) Peptide chemistry 1983. Protein Research Foundation, Osaka, pp 209–214Google Scholar
  30. Spies AG, Karlinsey JE, Spence KD (1986) Antibacterial hemolymph proteins of Manduca sexta. Comp Biochem Physiol B 83: 125–133PubMedCrossRefGoogle Scholar
  31. Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292: 246–248PubMedCrossRefGoogle Scholar
  32. van Hofsten P, Faye I, Kockum K, Lee J-Y, Xanthopoulos KG, Boman IA, Boman HG, Engstrom A, Andreu D, Merrifield RB (1985) Molecular cloning, cDNA sequencing, and chemical synthesis of cecropin B from Hyalophora cecropia. Proc Natl Acad Sci USA 82: 2240–2243PubMedCrossRefGoogle Scholar
  33. Wellman FL (1972) Tropical american plant disease. Scarecrow, Metuchen, NJGoogle Scholar
  34. Xanthopoulos K, Lee JY, Gan R, Kockum K, Faye I, Boman HG (1988) The structure of the gene for cecropin B, an antibacterial immune protein from Hyalophora cecropia. Eur J Biochem 1: 371–376CrossRefGoogle Scholar
  35. Yang MS, Espinoza NO, Nagpala PG, Dodds JH, White FF, Schnorr KL, Jaynes JM (1989) Expression of a synthetic gene for improved protein quality in transformed potato plants. Plant Sci 64: 99–111CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1991

Authors and Affiliations

  • Luis Destéfano-Beltrán
    • 1
  • Pablito Nagpala
    • 1
  • Kim Jaeho
    • 1
  • John H. Dodds
    • 2
  • Jesse M. Jaynes
    • 1
  1. 1.Department of BiochemistryLouisiana State UniversityBaton RougeUSA
  2. 2.International Potato CenterLimaPeru

Personalised recommendations