Characterisation of Parkinson’s disease using positron emission tomography

  • K. L. Leenders
Part of the New Vistas in Drug Research book series (DRUG RESEARCH, volume 1)


Positron emission tomography (PET) can be applied in the study of the pathophysiology of Parkinson’s disease (PD) and other conditions. An early diagnosis of PD should in principle be possible, since in this condition dopamine turnover is markedly decreased while dopamine D2 receptor-density is generally unimpaired. In other neurodegenerative conditions accompanied by parkinsonism both “pre” and “post-synaptic” binding of tracers seems to be impaired.

In PD the loss of cells within the nigrostriatal pathway seems less outspoken when compared to the severe decrease of endogenous dopamine concentration.


Positron Emission Tomography Positron Emission Tomography Tomograph Dopamine Receptor Binding Positron Emission Tomography Group Fluorodopa Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aquilonius SM, Bergström K, Eckernäs SA, Hartvig P, Leenders KL, Lundqvist H, Antoni G, Gee A, Rimland A, Uhlin J, Lângström (1987) In vivo evaluation of striatal dopamine reuptake sites using 11C-nomi-fensine and positron emission tomography. Acta Neurol Scand 76: 283–287PubMedCrossRefGoogle Scholar
  2. Baron JC, Maziere B, Loc’h C, Sgouropoulos P, Bonnet AM, Agid Y (1985) Progressive supranuclear palsy: loss of striatal dopamine receptors demonstrated in vivo by positron tomography. Lancet 2: 1163–1164CrossRefGoogle Scholar
  3. Bokobza B, Ruberg M, Scatton B, Javoy-Agid F, Agid Y (1984) (3-H)spiperone binding, dopamine and HVA concentrations in Parkinson’s disease and supranuclear palsy. Eur J Pharmacol 99: 167–175CrossRefGoogle Scholar
  4. Boyes RE, Cumming P, Martin WRW, McGeer EG (1986) Determination of plasma [18F]-6-fluorodopa during positron emission tomography: elimination and metabolism in carbidopa-treated subjects. Life Sci 39: 2243–2252PubMedCrossRefGoogle Scholar
  5. Cumming P, Boyes BE, Martin WRW, Adam M, Ruth T, McGeer EG (1987) Altered metabolism of [18F1–6-fluorodopa in the hooded rat following inhibition of catechol-0-methyltransferase with U-0521. Biochem Pharmacol 36: 2527–2531PubMedCrossRefGoogle Scholar
  6. Eckernäs SA, Aquilonius SM, Hartvig P, et al (1987) Positron emission tomography (PET) in the study of dopamine receptors in the primate brain: evaluation of a kinetic model using 11C-N-methyl-spiperone. Acta Neurol Scand 75: 168–178PubMedCrossRefGoogle Scholar
  7. Farde L, Ehrin E, Eriksson L, Greitz T, Hall H, Hedstrom CG, Litton JE, Sedvall G (1985) Substituted benzamides as ligands for visualisation of dopamine receptor binding in the human brain by positron emission tomography. Proc Natl Acad Sci USA 82: 3863–3867PubMedCrossRefGoogle Scholar
  8. Farde L, Hall H, Ehrin E, Sedvall G (1986) Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science 231: 258–261PubMedCrossRefGoogle Scholar
  9. Firnau G, Sood S, Chirakal R, Nahmias C, Garnett ES (1987) Cerebral metabolism of 6-[F-18]Fluoro-L-dopa in the primate. J Neurochem 48: 1077–1082PubMedCrossRefGoogle Scholar
  10. Fowler JS, Arnett CD, Wolf AP, Shiue C-Y, MacGregor RR, Halldin C, Längström B, Wagner Jr HN (1986) A direct comparison of the brain uptake and plasma clearance of N-(11C)methylspiroperidol and (18F)Nmethylspiroperidol in baboon using PET. Nucl Med Biol 13 (3): 281–284CrossRefGoogle Scholar
  11. Frost JJ, Smith AC, Kuhar MJ, Dannals RF, Wagner Jr HN (1987) In vivo binding of 3H-N-methylspiperone to dopamine and serotonin receptors. Life Sci 40: 987–995PubMedCrossRefGoogle Scholar
  12. Garnett ES, Firnau G, Nahmias C (1983) Dopamine visualized in the basal ganglia of living man. Nature 305: 137–138PubMedCrossRefGoogle Scholar
  13. Hägglund J, Aquilonius SM, Eckernäs SA, Hartvig P, Lundquist H, Gullberg P, Längström B (1987) Dopamine receptor properties in Parkinson’s disease and Huntington’s chorea evaluated by positron emission tomography using 11C-N-methyl-spiperone. Acta Neurol Scand 75: 87–94PubMedCrossRefGoogle Scholar
  14. Leenders KL, Herold S, Palmer A J, Turton D, Quinn N, Jones T, Frackowiak RSJ, Marsden CD (1985) Human cerebral dopamine system measured in vivo using PET. J Cereb Blood Flow Metab 5 [Suppl]: 517–518CrossRefGoogle Scholar
  15. Leenders KL, Frackowiak RJS, Quinn N, Marsden CD (1986 a) Brain energy metabolism and dopaminergic function in Huntington’s disease measured in vivo using positron emission tomography. Movement Disorders 1: 69–77CrossRefGoogle Scholar
  16. Leenders KL, Palmer AJ, Quinn N, Clark JC, Firnau G, Garnett ES, Nahmias C, Jones T, Marsden CD (1986 b) Brain dopamine metabolism in patients with Parkinson’s disease measured with positron emission tomography. J Neurol Neurosurg Psychiatry 49: 853–856CrossRefGoogle Scholar
  17. Leenders KL, Poewe WH, Palmer AJ, Brenton DP, Frackowiak RSJ (1986 c) Inhibition of L-[18F]fluorodopa uptake into human brain by amino acids demonstrated by positron emission tomography. Ann Neurol 20: 258–262CrossRefGoogle Scholar
  18. Leenders KL, Aquilonius SM, Bergström K, Bjurling P, Crossman AR, Eckernäs SA, Gee AG, Hartvig P, Lundqvist H, Lângström B, Rimland A, Tedroff J (1988 a) Unilateral MPTP lesion in a Rhesus monkey: effects on the striatal dopaminergic system measured in vivo with PET using various novel tracers. Brain Res 445: 61–67PubMedCrossRefGoogle Scholar
  19. Leenders KL, Frackowiak RJS, Lees AJ ( 1988 b) Steele-Richardson-Olszewski syndrome. Brain energy metabolism, blood flow and fluorodopa uptake measured by positron emission tomography. Brain 111: 615–630PubMedCrossRefGoogle Scholar
  20. Lindvall O, Björklund A, Nobin A, Stenevi U (1974) The adrenergic innervation of the rat thalamus as revealed by the glyoxylic acid fluorescence method. J Comp Neurol 154: 317–348PubMedCrossRefGoogle Scholar
  21. Lindvall O, Backlund EO, Farde L, Sedvall G, Freedman R, Hoffer B, Nobin A, Seiger A, Olson L (1987) Transplantation in Parkinson’s disease: two cases of adrenal medullary grafts to the putamen. Ann Neurol 22: 457–468PubMedCrossRefGoogle Scholar
  22. Leenders KL, Frackowiak RJS, Lees AJ ( 1988 b) Steele-Richardson-Olszewski syndrome. Brain energy metabolism, blood flow and fluorodopa uptake measured by positron emission tomography. Brain 111: 615–630PubMedCrossRefGoogle Scholar
  23. Nagatsu T, Kato T, Nagatsu I, Kondo Y, Inagaki S, lizuka R, Narabayashi H (1979) Catecholamine-related enzymes in the brain of patients with parkinsonism and Wilson’s disease. Adv Neurol 24: 283–292Google Scholar
  24. Patlak CS, Blasberg RG (1985) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 5: 584–590PubMedCrossRefGoogle Scholar
  25. Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3: 1–7PubMedCrossRefGoogle Scholar
  26. Scatton B, Dubois A, Dubocovitch ML, Zahniser NR, Fage D (1984) Quantitative autoradiography of 3H-nomifensine binding sites in rat brain. Life Sci 36: 815–822CrossRefGoogle Scholar
  27. Slater P, Crossman AR (1984) Autoradiographic distribution of [3H]-nomifensine in brain. In: Linford-Rees W, Priest RG (eds) Nomifensine. A pharmacological and clinical profile. The Royal Society of Medicine, London, pp 15–19Google Scholar
  28. Tedroff J, Aquilonius SM, Hartvig P, Lundquist H, Gee AG, Uhlin J, Lângström B (1988) Monoamine re-uptake sites in the human brain evaluated in vivo by means of 11C-nomifensine and positron emission tomography: the effects of age and Parkinson’s disease. Acta Neurol Scand 77: 192–201PubMedCrossRefGoogle Scholar
  29. Wagner HN, Burns HD, Dannals RF, Wong DF, Langstrom B, Duelfer T, Frost JJ, Ravert HT, Links JM, Rosenbloom SB, Lukas SE, Kramer AV, Kuhar MJ (1983) Imaging dopamine receptors in the human brain by positron tomography. Science 221: 1264–1266PubMedCrossRefGoogle Scholar
  30. Wong DF, Wagner Jr HN, Dannals RF, Links JM, Frost J J, Ravert HT, Wilson AA, Rosenbaum AE, Gjedde A, Douglass KH, Petronis JD, Folstein MF, Toung JKT, Burns HD, Kuhar MJ (1984) Effects of age on dopamine and serotonin receptors measured by positron tomography in the living human brain. Science 226: 1393–1396PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1990

Authors and Affiliations

  • K. L. Leenders
    • 1
  1. 1.PET GroupPaul Scherrer InstituteVilligenSwitzerland

Personalised recommendations