Skip to main content

Characterisation of Parkinson’s disease using positron emission tomography

  • Chapter
Early Markers in Parkinson’s and Alzheimer’s Diseases

Part of the book series: New Vistas in Drug Research ((DRUG RESEARCH,volume 1))

  • 75 Accesses

Summary

Positron emission tomography (PET) can be applied in the study of the pathophysiology of Parkinson’s disease (PD) and other conditions. An early diagnosis of PD should in principle be possible, since in this condition dopamine turnover is markedly decreased while dopamine D2 receptor-density is generally unimpaired. In other neurodegenerative conditions accompanied by parkinsonism both “pre” and “post-synaptic” binding of tracers seems to be impaired.

In PD the loss of cells within the nigrostriatal pathway seems less outspoken when compared to the severe decrease of endogenous dopamine concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aquilonius SM, Bergström K, Eckernäs SA, Hartvig P, Leenders KL, Lundqvist H, Antoni G, Gee A, Rimland A, Uhlin J, Lângström (1987) In vivo evaluation of striatal dopamine reuptake sites using 11C-nomi-fensine and positron emission tomography. Acta Neurol Scand 76: 283–287

    Article  PubMed  CAS  Google Scholar 

  • Baron JC, Maziere B, Loc’h C, Sgouropoulos P, Bonnet AM, Agid Y (1985) Progressive supranuclear palsy: loss of striatal dopamine receptors demonstrated in vivo by positron tomography. Lancet 2: 1163–1164

    Article  Google Scholar 

  • Bokobza B, Ruberg M, Scatton B, Javoy-Agid F, Agid Y (1984) (3-H)spiperone binding, dopamine and HVA concentrations in Parkinson’s disease and supranuclear palsy. Eur J Pharmacol 99: 167–175

    Article  Google Scholar 

  • Boyes RE, Cumming P, Martin WRW, McGeer EG (1986) Determination of plasma [18F]-6-fluorodopa during positron emission tomography: elimination and metabolism in carbidopa-treated subjects. Life Sci 39: 2243–2252

    Article  PubMed  CAS  Google Scholar 

  • Cumming P, Boyes BE, Martin WRW, Adam M, Ruth T, McGeer EG (1987) Altered metabolism of [18F1–6-fluorodopa in the hooded rat following inhibition of catechol-0-methyltransferase with U-0521. Biochem Pharmacol 36: 2527–2531

    Article  PubMed  CAS  Google Scholar 

  • Eckernäs SA, Aquilonius SM, Hartvig P, et al (1987) Positron emission tomography (PET) in the study of dopamine receptors in the primate brain: evaluation of a kinetic model using 11C-N-methyl-spiperone. Acta Neurol Scand 75: 168–178

    Article  PubMed  Google Scholar 

  • Farde L, Ehrin E, Eriksson L, Greitz T, Hall H, Hedstrom CG, Litton JE, Sedvall G (1985) Substituted benzamides as ligands for visualisation of dopamine receptor binding in the human brain by positron emission tomography. Proc Natl Acad Sci USA 82: 3863–3867

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Hall H, Ehrin E, Sedvall G (1986) Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science 231: 258–261

    Article  PubMed  CAS  Google Scholar 

  • Firnau G, Sood S, Chirakal R, Nahmias C, Garnett ES (1987) Cerebral metabolism of 6-[F-18]Fluoro-L-dopa in the primate. J Neurochem 48: 1077–1082

    Article  PubMed  CAS  Google Scholar 

  • Fowler JS, Arnett CD, Wolf AP, Shiue C-Y, MacGregor RR, Halldin C, Längström B, Wagner Jr HN (1986) A direct comparison of the brain uptake and plasma clearance of N-(11C)methylspiroperidol and (18F)Nmethylspiroperidol in baboon using PET. Nucl Med Biol 13 (3): 281–284

    Article  CAS  Google Scholar 

  • Frost JJ, Smith AC, Kuhar MJ, Dannals RF, Wagner Jr HN (1987) In vivo binding of 3H-N-methylspiperone to dopamine and serotonin receptors. Life Sci 40: 987–995

    Article  PubMed  CAS  Google Scholar 

  • Garnett ES, Firnau G, Nahmias C (1983) Dopamine visualized in the basal ganglia of living man. Nature 305: 137–138

    Article  PubMed  CAS  Google Scholar 

  • Hägglund J, Aquilonius SM, Eckernäs SA, Hartvig P, Lundquist H, Gullberg P, Längström B (1987) Dopamine receptor properties in Parkinson’s disease and Huntington’s chorea evaluated by positron emission tomography using 11C-N-methyl-spiperone. Acta Neurol Scand 75: 87–94

    Article  PubMed  Google Scholar 

  • Leenders KL, Herold S, Palmer A J, Turton D, Quinn N, Jones T, Frackowiak RSJ, Marsden CD (1985) Human cerebral dopamine system measured in vivo using PET. J Cereb Blood Flow Metab 5 [Suppl]: 517–518

    Article  Google Scholar 

  • Leenders KL, Frackowiak RJS, Quinn N, Marsden CD (1986 a) Brain energy metabolism and dopaminergic function in Huntington’s disease measured in vivo using positron emission tomography. Movement Disorders 1: 69–77

    Article  CAS  Google Scholar 

  • Leenders KL, Palmer AJ, Quinn N, Clark JC, Firnau G, Garnett ES, Nahmias C, Jones T, Marsden CD (1986 b) Brain dopamine metabolism in patients with Parkinson’s disease measured with positron emission tomography. J Neurol Neurosurg Psychiatry 49: 853–856

    Article  Google Scholar 

  • Leenders KL, Poewe WH, Palmer AJ, Brenton DP, Frackowiak RSJ (1986 c) Inhibition of L-[18F]fluorodopa uptake into human brain by amino acids demonstrated by positron emission tomography. Ann Neurol 20: 258–262

    Article  CAS  Google Scholar 

  • Leenders KL, Aquilonius SM, Bergström K, Bjurling P, Crossman AR, Eckernäs SA, Gee AG, Hartvig P, Lundqvist H, Lângström B, Rimland A, Tedroff J (1988 a) Unilateral MPTP lesion in a Rhesus monkey: effects on the striatal dopaminergic system measured in vivo with PET using various novel tracers. Brain Res 445: 61–67

    Article  PubMed  CAS  Google Scholar 

  • Leenders KL, Frackowiak RJS, Lees AJ ( 1988 b) Steele-Richardson-Olszewski syndrome. Brain energy metabolism, blood flow and fluorodopa uptake measured by positron emission tomography. Brain 111: 615–630

    Article  PubMed  Google Scholar 

  • Lindvall O, Björklund A, Nobin A, Stenevi U (1974) The adrenergic innervation of the rat thalamus as revealed by the glyoxylic acid fluorescence method. J Comp Neurol 154: 317–348

    Article  PubMed  CAS  Google Scholar 

  • Lindvall O, Backlund EO, Farde L, Sedvall G, Freedman R, Hoffer B, Nobin A, Seiger A, Olson L (1987) Transplantation in Parkinson’s disease: two cases of adrenal medullary grafts to the putamen. Ann Neurol 22: 457–468

    Article  PubMed  CAS  Google Scholar 

  • Leenders KL, Frackowiak RJS, Lees AJ ( 1988 b) Steele-Richardson-Olszewski syndrome. Brain energy metabolism, blood flow and fluorodopa uptake measured by positron emission tomography. Brain 111: 615–630

    Article  PubMed  Google Scholar 

  • Nagatsu T, Kato T, Nagatsu I, Kondo Y, Inagaki S, lizuka R, Narabayashi H (1979) Catecholamine-related enzymes in the brain of patients with parkinsonism and Wilson’s disease. Adv Neurol 24: 283–292

    CAS  Google Scholar 

  • Patlak CS, Blasberg RG (1985) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 5: 584–590

    Article  PubMed  CAS  Google Scholar 

  • Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Scatton B, Dubois A, Dubocovitch ML, Zahniser NR, Fage D (1984) Quantitative autoradiography of 3H-nomifensine binding sites in rat brain. Life Sci 36: 815–822

    Article  Google Scholar 

  • Slater P, Crossman AR (1984) Autoradiographic distribution of [3H]-nomifensine in brain. In: Linford-Rees W, Priest RG (eds) Nomifensine. A pharmacological and clinical profile. The Royal Society of Medicine, London, pp 15–19

    Google Scholar 

  • Tedroff J, Aquilonius SM, Hartvig P, Lundquist H, Gee AG, Uhlin J, Lângström B (1988) Monoamine re-uptake sites in the human brain evaluated in vivo by means of 11C-nomifensine and positron emission tomography: the effects of age and Parkinson’s disease. Acta Neurol Scand 77: 192–201

    Article  PubMed  CAS  Google Scholar 

  • Wagner HN, Burns HD, Dannals RF, Wong DF, Langstrom B, Duelfer T, Frost JJ, Ravert HT, Links JM, Rosenbloom SB, Lukas SE, Kramer AV, Kuhar MJ (1983) Imaging dopamine receptors in the human brain by positron tomography. Science 221: 1264–1266

    Article  PubMed  CAS  Google Scholar 

  • Wong DF, Wagner Jr HN, Dannals RF, Links JM, Frost J J, Ravert HT, Wilson AA, Rosenbaum AE, Gjedde A, Douglass KH, Petronis JD, Folstein MF, Toung JKT, Burns HD, Kuhar MJ (1984) Effects of age on dopamine and serotonin receptors measured by positron tomography in the living human brain. Science 226: 1393–1396

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag/Wien

About this chapter

Cite this chapter

Leenders, K.L. (1990). Characterisation of Parkinson’s disease using positron emission tomography. In: Dostert, P., Riederer, P., Strolin Benedetti, M., Roncucci, R. (eds) Early Markers in Parkinson’s and Alzheimer’s Diseases. New Vistas in Drug Research, vol 1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9098-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9098-2_8

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9100-2

  • Online ISBN: 978-3-7091-9098-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics