An antibody in the CSF of Parkinson’s disease patients: summary of data and potential role as a diagnostic marker

  • P. M. Carvey
  • H. L. Klawans
  • L. C. Kao
  • A. Dahlström
  • A. McRae
Part of the New Vistas in Drug Research book series (DRUG RESEARCH, volume 1)


The CSF of Parkinson’s disease patients was shown to possess an antibody (IgG) which immunocytochemically reacts with dopamine cells in the substantia nigra of the rat. This dopamine neuron antibody (DNAb) was also identified in the CSF of patients with possible nigral degeneration. In contrast, control patients or patients with neurologic disease which is not associated with nigral pathology, did not possess the DNAb in their CSF.

The data is most consistent with a hypothesis which suggests that the DNAb represents a secondary autoinmune response to nigral degeneration. As such, the DNAb may be useful as a diagnostic marker for Parkinson’s disease and other disorders with nigral degeneration. Since nigral degeneration is thought to precede symptom expression by many years, the DNAb should theoretically be present in CSF prior to symptom expression and would thus represent an early, presymptomatic marker of Parkinson’s disease.


Multiple Sclerosis Aqueductal Stenosis Immunocytochemical Reactivity Olivopontocerebellar Atrophy Cogwheel Rigidity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bluestein HG (1984) Antineuronal antibodies in the pathogenesis of neuropsychiatric manifestations of systemic lupus erythematosus. In: Behan P, Spreafico F (eds) Neuroimmunology. Raven Press, New York, pp 157–165Google Scholar
  2. Carvey PM, Kroin JS, Zhang TJ, O’Dorisio TM, Yaksch TL, McRae A, Dahlstrom A, Kao LC, Goetz CG, Tanner CM, Shannon KM, Klawans HL (1988) Biochemical and immunochemical characterization of ventricular CSF from Parkinson’s disease patients with adrenal medulla transplants. Neurology 38 [Suppl 1]: 144Google Scholar
  3. Chapman J, Korczyn AD, Hareuveni M, Michaelson DM (1986) Antibodies to cholinergic cell bodies in Alzheimer’s disease. In: Fisher A, Hanin I, Lachman C (eds) Alzheimer’s and Parkinson’s disease. Strategies for research and development. Plenum Press, New York, pp 329–336Google Scholar
  4. Filit HM, Luine V, Reisberg B, Amador R, McEwen BS, Zabriske JB (1985) Studies of the specificity of autobrain antibodies in Alzheimer’s disease. In: Hutton JT, Kenny AD (eds) Senile dementia. Alan R Liss, New York, pp 307–336Google Scholar
  5. Franceschi M, Comola M, Nemni R, Pinto P, Iannaccone S, Smirne S, Canal N (1988) Neuron-binding antibodies in Alzheimer’s disease and Down’s syndrome. Neurology 38 [Suppl 1]: 285Google Scholar
  6. Gaskin F, Kingsly BS, Fu SM (1987) Autoantibodies to neurofibrillary tangles and brain tissue in Alzheimer’s disease. Establishment of Epstein-Barr virus-transformed antibody-producing cell lines. J Exp Med 165: 245–250Google Scholar
  7. Gonatas NK (1984) Immunohistopathology of experimental allergic encephalomyelitis. In: Behan P, Spreafico F (eds) Neuroimmunology. Raven Press, New York, pp 113–126Google Scholar
  8. Hornykiewicz O (1979) Compensatory biochemical changes at the striatal dopamine synapse in Parkinson’s disease and limitations of L-dopa therapy. Adv Neurol 24: 275–281Google Scholar
  9. Husby GL, van de Rijn I, Zabriskie JB, Abdin ZH, Williams RC (1976) Antibodies reacting with cytoplasm of subthalamic nuclei neurons in chorea and acute rheumatic fever. J Exp Med 144: 1094–1110PubMedCrossRefGoogle Scholar
  10. Husby GL, Davis LE, Wedege E, Kokmen E, Williams RC (1977) Antibodies to human caudate nucleus neurons in Huntington’s chorea. J Clin Invest 59: 922–932PubMedCrossRefGoogle Scholar
  11. Ishii T, Haga S (1976) Immunoelectron microscopic localization of immunoglobulins in amyloid fibrils of senile plaques. Acta Neuropathol 36: 243–249PubMedCrossRefGoogle Scholar
  12. Itagaki S, McGeer PL, McGeer EG (1987) HLA-DR reactive microglia in Parkinson’s disease. J Neuroimmunol 16 (1): 81CrossRefGoogle Scholar
  13. Johnson KP (1980) Cerebrospinal fluid and blood assays of diagnostic usefulness in multiple sclerosis. Neurology 30: 106–109PubMedGoogle Scholar
  14. McFarlin DE (1984) Immunologic abnormalities associated with neurologic diseases. In: Behan P, Spreafico F (eds) Neuroimmunology. Raven Press, New York, pp 237–245Google Scholar
  15. McFarlin DE, Strober W, Waldmann T (1972) Ataxia-telangiectasia. Medicine 51: 281–314PubMedCrossRefGoogle Scholar
  16. McRae-Degueurce A, Geffard M (1986 a) One perfusion mixture for immunocytochemical detection of noradrenaline, dopamine, serotonin and acetylcholine in the same rat brain. Brain Res 37: 217–219CrossRefGoogle Scholar
  17. McRae-Degueurce A, Gottfries CG, Karlsson I, Svennerholm L, Dahlstrom A (1986 b) Antibodies in the CSF of a Parkinson patient recognize neurons in rat mesencephalic regions. Acta Physiol Scand 126: 313–315CrossRefGoogle Scholar
  18. McRae-Degueurce A, Booj S, Haglid K, Rosengran L, Karlsson JE, Karlsson I, Wallin A, Svennerholm L, Gottfries C-G, Dahlstrom A (1987) Antibodies in cerebrospinal fluid of some Alzheimer’s disease patients recognize cholinergic neurons in the rat central nervous system. Proc Natl Acad Sci 84: 9214–9218PubMedCrossRefGoogle Scholar
  19. McRae-Degueurce A, Klawans FIL, Penn RD, Dahlstrom A, Tanner CM, Goetz CG, Carvey PM (1988 a) An antibody in the CSF of Parkinson’s disease patients disappears following adrenal medulla transplantation. Neurosci Lett 94: 192–197CrossRefGoogle Scholar
  20. McRae-Degueurce A, Rosengren L, Haglid K, Booj S, Gottfries CG, Granerus AC, Dahlstrom A (1988 b) Immunocytochemical investigations on the presence of neuron-specific antibodies in the CSF of Parkinson’s disease cases. Neurochem Res 13: 679–684CrossRefGoogle Scholar
  21. McRae A, Dahlstrom A, Klawans FIL, Goetz CG, Tanner CM, Penn RD, Carvey PM (1989) Adrenal medulla transplantation in Parkinson’s disease reduces the presence of a CSF antibody to the rat substantia nigra. Neurology 39 [Suppl 11: 364Google Scholar
  22. Penn RD, Goetz CG, Tanner CM, Klawans HL, Shannon KH, Comella CL, Witt TR (1988) The adrenal medullary transplant operation for Parkinson’s disease: clinical observations in five patients. Neurosurgery 22: 999–1004PubMedCrossRefGoogle Scholar
  23. Rao N, Costa JL (1989) Recovery in non-vascular locked-in syndrome during treatment with sinemet. Brain Injury 3: 207–211PubMedCrossRefGoogle Scholar
  24. Solimena M, Folli F, Denis-Donini S, Comi GC, Pozza G, De Camilli P, Vicari AM (1988) Autoantibodies to glutamic acid decarboxylase in a patient with stiff-man syndrome, epilepsy, and type I diabetes mellitus. N Engl J Med 318: 1012–1020PubMedCrossRefGoogle Scholar
  25. Solimena M, Folli F, Pozza G, De Camilli P (1989) Autoantibodies directed against GABAergic synapses in stiff-man syndrome. Neurology 39 [Suppl 1]: 384Google Scholar
  26. Spencer PS, Nunn PB, Hugon J, Ludolph AC, Ross SM, Roy DN, Robertson RC (1987) Guam amyotrophic lateral sclerosis-parkinsonian-dementia linked to a plant excitant neurotoxin. Science 237: 517–522PubMedCrossRefGoogle Scholar
  27. 40.
    P. M. Carvey et al.: Dopamine-neuron antibody in Parkinson’s diseaseGoogle Scholar
  28. Tourtellotte WW, Potvin AR, Potvin HH, Ma BI, Baumhefner RW, Syndulko K (1980) Multiple sclerosis de novo CNS IgG synthesis: measurement, antibody profile, significance eradication, and problems. In: Bauer HJ, Poser S, Ritter G (eds) Progress in multiple sclerosis. Springer, Berlin Heidelberg New York, pp 106–110CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1990

Authors and Affiliations

  • P. M. Carvey
    • 1
  • H. L. Klawans
    • 1
  • L. C. Kao
    • 1
  • A. Dahlström
    • 2
  • A. McRae
    • 2
    • 3
  1. 1.Department of Neurological SciencesRush-Presbyterian St Lukes Medical CenterChicagoUSA
  2. 2.Institute of NeurobiologyNeuroscience Research Center of GöteborgSweden
  3. 3.INSERM 259BordeauxFrance

Personalised recommendations