Increased monoamine oxidase activity and vitamin B-12 deficiency in dementia disorders

  • L. Oreland
  • Y. Hiraga
  • S. S. Jossan
  • B. Regland
  • C. G. Gottfries
Part of the New Vistas in Drug Research book series (DRUG RESEARCH, volume 1)


MAO-B activity increases with age in the human brain and is further increased in AD/SDAT, Huntington’s chorea, and Parkinson’s disease. The cause is likely to be a reactive gliosis, presumably astrocytosis.

Demented patients with low serum B-12 levels have high platelet MAO-B activity. Evidence is presented favouring the hypothesis that low B-12, causing an increased level of homocysteic acid, an excitotoxic compound, is involved in the etio-pathogenesis of neurodegenerative states.


Monoamine Oxidase Pernicious Anaemia Senile Dementia Monoamine Oxidase Activity Homocysteic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams RD, Kubic CS (1944) Subacute degeneration of the brain in pernicious anaemia. N Engl J Med 231: 1–9CrossRefGoogle Scholar
  2. Adolfsson R, Gottfries CG, Oreland L, Wiberg °~, Winblad B (1980) Increased activity of brain and platelet monoamine oxidase in dementia of Alzheimer type. Life Sci 27: 1029–1034Google Scholar
  3. Agamanolis DP, Victor M, Harris JW, Hines JD, Chester EM, Kark JA (1978) An ultrastructural study of subacute combined degeneration of the spinal cord in vitamin B-12 deficient rhesus monkeys. J Neuropathol Exp Neurol 37: 273–299PubMedCrossRefGoogle Scholar
  4. Alexopoulos GS, Lieberman KW, Young RC, et al (1984) Platelet MAO activity and age at onset of depression in elderly depressed women. Am J Psychiatry 141: 1276–1278PubMedGoogle Scholar
  5. Alexopoulos GS, Young RC, Leiberman KW, Shamoian CA (1987) Platelet MAO activity in geriatric patients with depression and dementia. Am J Psychiatry 144: 1480–1483PubMedGoogle Scholar
  6. Arai Y, Stenström A, Oreland L (1985) The effect of age on extra-and intraneuronal MAO-A and -B activities in the rat brain. Biogen Amin 2: 65–71Google Scholar
  7. Arai Y, Kinemuchi H (1988) Differences between monoamine oxidase concentrations in striatum and forebrain of aged and young rats. J Neural Transm 72: 99–105PubMedCrossRefGoogle Scholar
  8. Banks RGS, Henderson RJ, Pratt JM (1968) Reactions of gases in solution. Part III. Some reactions of nitrous oxide with transition-metal complexes. J Chem Soc (A): 2886–2889Google Scholar
  9. Belendiuk K, Belendiuk GW, Freedman DX (1980) Blood monoamine me- tabolism in Huntingtons’s disease. Arch Gen Psychiatry 37: 325–332PubMedCrossRefGoogle Scholar
  10. Boast CA, Gerhardt SC, Pastor G, Lehmann J, Etienne PE, Liebman JM (1988) The N-methyl-D-aspartate antagonists CGS 19755 and CPP reduce ischemic brain damage in gerbils. Brain Res 442: 345–348PubMedCrossRefGoogle Scholar
  11. Brizzee KR, Ordy JM, Hansche J, Kaack B (1976) Quantitative assessment of change in neuron and glial cell packing density and lipofuscin accumulation with age in the cerebral cortex of a non-human primate (Macaca mulatta). In: Terry, Gershon (eds) Neurobiology of aging, vol 3. Raven Press, New York, pp 229–244Google Scholar
  12. Carmel R, Karnaze DS (1986) Physician response to low serum cobalamin levels. Arch Int Med 146: 1161–1165CrossRefGoogle Scholar
  13. Carmel R, Sinow RM, Karnaze DS (1987) Atypical cobalamin deficiency. Subtle biochemical evidence of deficiency is commonly demonstrable in patients without megaloblastic anemia and is often associated with protein-bound cobalamin malabsorption. J Lab Clin Med 109: 454–463Google Scholar
  14. Cole MG, Prchal JF (1984) Low serum vitamin B-12 in Alzheimer type dementia. Age Ageing 13: 101–105PubMedCrossRefGoogle Scholar
  15. Cowburn R, Hardy J, Roberts P, Briggs R (1988) Presynaptic and postsynaptic glutamatergic function in Alzheimer’s disease. Neurosci Lett 86: 109–113PubMedCrossRefGoogle Scholar
  16. Coyle J, Molliver M, Kuhar M (1978) In situ injections of kainic acid: a new method for selectively lesioning cell bodies while sparing axons of passage. J Comp Neurol 180: 301–323PubMedCrossRefGoogle Scholar
  17. Cross AJ, Slater P, Reynolds GP (1986) Reduced high-affinity glutamate uptake sites in the brains of patients with Huntington’s disease. Neurosci Lett 67: 198–202PubMedCrossRefGoogle Scholar
  18. Cross AJ, Slater P, Simpson M, Royston C, Deakin JEW, Perry RH, Perry EK (1987) Sodium dependent D-[3H]aspartate binding in cerebral cortex in patients with Alzheimer’s and Parkinson’s diseases. Neurosci Lett 79: 213–217PubMedCrossRefGoogle Scholar
  19. Danielczyk W, Streifler M, Konradi C, Riederer P, Moll G (1988) Platelet MAO-B activity and the psychopathology of Parkinson’s disease, senile dementia and multi-infarct dementia. Acta Psychiatr Scand 78: 730–736PubMedCrossRefGoogle Scholar
  20. Demarest KT, Smith DJ, Azzaro AJ (1980) The presence of the type A form of monoamine oxidase within nigrostriatal dopamine-containing neurons. J Pharmacol Exp Ther 215: 461–468PubMedGoogle Scholar
  21. Do KQ, Herrling PL, Streit P, Turski WA, Cuénod M (1986 a) In vitro release and electrophysiological effects in situ of homocysteic acid, an endogeneous N-methyl-(D)-aspartic acid agonist, in the mammalian striatum. J Neurosci 6: 2226–2234Google Scholar
  22. Do KQ, Mattenberger M, Streit P, Cuénod M (1986 b) In vitro release of endogeneous excitatory sulfur-containing amino acids from various rat brain regions. J Neurochem 46: 779–786Google Scholar
  23. Do KQ, Herrling PL, Streit P, Cuénod M (1988) Release of neuroactive substances: homocysteic acid as an endogeneous agonist of the NMDA receptor. J Neural Transm 72: 185–190PubMedCrossRefGoogle Scholar
  24. Droller H, Dossett JA (1959) Vitamin B-12 levels in senile dementia and confusional states. Geriatrics 14: 367–373PubMedGoogle Scholar
  25. Duffy PE, Rapport M, Graf L (1980) Glial fibrillary acidic protein and Alzheimer-type senile dementia. Neurology 30: 778–782PubMedGoogle Scholar
  26. Englund E, Brun A, Gustafsson L (1989) A white-matter disease in dementia of Alzheimer’s type — clinical and neuropathological correlates. Int J Geriatr Psychiatry 4: 87–102CrossRefGoogle Scholar
  27. Fagervall I, Ross SB (1986) A and B forms of monoamine oxidase within the monoaminergic neurons of the rat brain. J Neurochem 47: 569–576PubMedCrossRefGoogle Scholar
  28. Ferraro A, Arieti S, English WH (1945) Cerebral changes in the course of pernicious anaemia and their relationship to psychiatric symptoms. J Neuropathol Exp Neurol 217–239Google Scholar
  29. Foster AC, Gill R, Kemp JA, Woodruff GN (1987) Systemic administration of MK-801 prevents N-methyl-D-aspartate-induced normal neuronal degeneration in rat brain. Neurosci Lett 76: 307–311PubMedCrossRefGoogle Scholar
  30. Foster AC, Gill R, Woodruff GN (1988) Neuroprotective effects of MK-801 in vivo: selectivity and evidence for delayed degeneration mediated by NMDA receptor activation. J Neurosci 8: 4745–4754PubMedGoogle Scholar
  31. Fowler CJ, Callingham BA (1979) The inhibition of rat heart type A monoamine oxidase by clorgyline as a method for the estimation of enzyme active centres. Mol Pharmacol 16: 546–555PubMedGoogle Scholar
  32. Fowler CJ, Oreland L (1982) Human platelet MAO — some biochemical findings. In: Kamijo K, Usdin E, Nagatsu T (eds) Monoamine oxidase: basic and clinical frontiers. Excerpta Medica, Amsterdam, pp 28–39Google Scholar
  33. Fowler CJ, Wiberg A, Oreland L, Marcusson J, Winblad B (1980) The effect of age on the activity and molecular properties of human brain monoamine oxidase. J Neural Transm 49: 1–20PubMedCrossRefGoogle Scholar
  34. Fowler CJ, Wiberg A, Gustayson KH, Winblad B (1981) Platelet monoamine oxidase in Down’s syndrome. Clin Genet 19: 307–311PubMedCrossRefGoogle Scholar
  35. Fowler JS, MacGregor RR, Wolf AP, Arnett CD, Dewey SL, Schlyer D, Christman D, Logan J, Smith M, Sachs H, Aquilonius SM, Bjurling P, Halldin C, Hartvig P, Leenders KL, Lundqkvist H, Oreland L, Stâhlnacke GG, Lângström B (1987) Mapping human brain monoamine oxidase A and B with 11C-labelled sucide inactivators and PET. Science 235: 481–485PubMedCrossRefGoogle Scholar
  36. Francis A, Pearce LB, Roth JA (1985) Cellular localization of MAO A and B in brain: evidence from kainic acid lesions in striatum. Brain Res 334: 59–64PubMedCrossRefGoogle Scholar
  37. Geinisman Y, Bondareff W, Dodge JT (1977) Age-related loss of dendritic branches and spines in the molecular layer of the rat dentate gyrus. Anat Rec 187: 186Google Scholar
  38. Glover V, Sandler M, Hughes A, Hoffbrand AV (1980) Platelet monoamine oxidase activity in megaloblastic anaemia. J Clin Pathol 33: 963–965PubMedCrossRefGoogle Scholar
  39. Gottfries CG (1985) Alzheimer’s disease and senile dementia: biochemical characteristics and aspects of treatment. Psychopharmacology (Berlin) 86: 245–252CrossRefGoogle Scholar
  40. Gottfries CG, Karlsson I, Svennerholm L (1985) Senile dementia — a “white matter” disease? In: Gottfries CG (ed) Normal aging, Alzheimer’s disease and senile dementia. Editions de l’Université de Bruxelles, Brussels, pp 111–118Google Scholar
  41. Greenamyre JT, Penney JB, D’Amato CJ, Young AB (1987) Dementia of the Alzheimer’s type: changes in hippocampal L-[3H]glutamate binding. J Neurochem 48: 543–551PubMedCrossRefGoogle Scholar
  42. Hauw J J, Duyckaerts C, Delaere P, Chaunu MP (1988) Alzheimer’s disease, amyloidosis, microglia and astrocytes. Rev Neurol 144: 155–157PubMedGoogle Scholar
  43. Hiraga Y, Jossan SS, Gottfries CG, Regland B, Oreland L (1989) Increase in rodent brain MAO-B activity after exposure to nitrous oxide. Manuscript in preparationGoogle Scholar
  44. Inada M, Toyoshima M, Kameyama M (1982 a) Brain content of cobalamin and its binders in elderly subjects. J Nutr Sci Vitaminol 28: 351–357Google Scholar
  45. Inada M, Toyoshima M, Kameyama M (1982 b) Cobalamain contents of the brains in some clinical and pathologic states. Int J Vit Nutr Res 52: 423–429Google Scholar
  46. Johnston JP (1968) Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17: 1285–1297PubMedCrossRefGoogle Scholar
  47. Jossan SS, Hiraga Y, Oreland L (1989 a) The cholinergic neurotoxin ethyl-choline mustard aziridinium (AF64A) induces an increase in MAO-B activity in the rat brain. Brain Res 476: 291–297Google Scholar
  48. Jossan SS, d’Argy R, Gillberg PG, Aquilonius SM, L?ngstr?m B, Halldin C, Bjurling P, St?lnacke CG, Fowler J, MacGregor R, Oreland L (1989 b) Localisation of monoamine oxidase B in human brain by autoradiographic use of 71C-labelled l-deprenyl. J Neural Transm 77: 55–64Google Scholar
  49. Kang SS, Wong PW, Norusis M (1987) Homocysteinemia due to folate deficiency. Metabolism 36: 458–462PubMedCrossRefGoogle Scholar
  50. Kishimoto S, Kimura H, Maeda T (1983) Histochemical demonstration for monoamine oxidase ( MAO) by coupled peroxidation method. Cell Mol Biol 29: 61–69Google Scholar
  51. Kim JP, Koh J, Choi DW (1987) L-homocysteate is a potent neurotoxin on cultured cortical neurons. Brain Res 437: 103–110PubMedCrossRefGoogle Scholar
  52. Konradi C, Riederer P, Youdim MBH (1986) Hydrogen peroxide enhances the activity of monoamine oxidase type-B but not of type-A: a pilot study. J Neural Transm [Suppl] 22: 61–73Google Scholar
  53. Kosaka K, Arai H, Kobayashi K, Inada M (1989) Changes of methylcobalamin in Alzheimer-type dementia brains. Dementia 3: 219–222Google Scholar
  54. Lange H, Thorner G, Hoff A, Schroder KF (1976) Morphometric studies of the neuropathological changes in choreic diseases. J Neurol Sci 28: 401–425PubMedCrossRefGoogle Scholar
  55. Leung TKC, Lai JCK, Lim L (1981) The regional distribution of monoamine oxidase activities towards different substrates: effects in rat brain of chronic administration of manganese chloride and of ageing. J Neurochem 36: 2037–2043PubMedCrossRefGoogle Scholar
  56. Levitt P, Pintar JE, Breakfield XO (1982) Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons. Proc Natl Acad Sci USA 79: 6385–6389PubMedCrossRefGoogle Scholar
  57. Lin JY, Kang SS, Zhou J, Wong PWK (1989) Homocysteinemia in rats induced by folic acid deficiency. Life Sci 44: 319–325PubMedCrossRefGoogle Scholar
  58. Lindenbaum J, Healton EB, Savage DG, Brust JCM, Garrett TJ, Podell ER, Marcell PD, Stabler SP, Allen RH (1988) Neuropsychiatrie disorders caused by cobalamin deficiency in the absence of anemia or macrocytosis. N Engl J Med 318: 1720–1728PubMedCrossRefGoogle Scholar
  59. Magnus EM (1986) Cobalamin and unsaturated transcobalamin values in • pernicious anaemia. Relation to treatment. Scand J Haematol 36: 457–465 Mann J J, Chiu E (1978) Platelet monoamine oxidase activity in Huntington’s chorea. J Neurol Neurosurg Psychiatry 41: 809–812Google Scholar
  60. Mann J J, Stanley M (1984) Postmortem monoamine oxidase enzyme kinetics in the frontal cortex victims and controls. Acta Psychiatr Scand 69: 135–139PubMedCrossRefGoogle Scholar
  61. Mann J J, Stanley M, Rossor M, Gershon S (1980) Mental symptoms in Huntington’s disease and a possible primary aminergic neuron lesion. Science 210: 1396–1371CrossRefGoogle Scholar
  62. Mann J J, Kaplan RD, Bird ED (1986) Elevated postmortem monoamine oxidase B activity in the caudate nucleus in Huntington’s disease compared to schizophrenics and controls. J Neural Transie 65: 277–283CrossRefGoogle Scholar
  63. Mantle TJ, Garrett NJ, Tipton KF (1976) The development of monoamine oxidase in rat liver and brain. FEBS Lett 64: 227–230PubMedCrossRefGoogle Scholar
  64. Maragos WF, Chu DCM, Young AB, D’Amato CJ, Penney JB (1987) Loss of hippocampal [3H]TCP binding in Alzheimer’s disease. Neurosci Lett 74: 371–376PubMedCrossRefGoogle Scholar
  65. Melamed E, Youdim MBH, Rosenthal J, Wester P, Winblad B (1985) In vivo effect of MPTP on monoamine oxidase activity in mouse striatum. Brain Res 359: 360–363PubMedCrossRefGoogle Scholar
  66. Murphy DL, Wright C, Buchsbaum N, Nichols A, Costa JL, Wyatt RJ (1976) Platelet and plasma amine oxidase activity in 680 normals: sex and age differences and stability over time. Biochem 1VIed 16: 254–265Google Scholar
  67. Navarro HA, Aloyo V J, Rush ME, Walker RF (1987) Serotonin pharmacodynamics in hypothalamic tissues from young and old female rats. Brain Res 421: 291–296PubMedCrossRefGoogle Scholar
  68. Norman TR, Chiu E, French MA (1987) Platelet monoamine oxidase activity in patients with Huntington’s disease. Clin Exp Pharmacol Physiol 14: 547–550PubMedCrossRefGoogle Scholar
  69. Olney J, Price M, Salles KH, Labruyere J, Frierdich G (1987 a) MK-801 powerfully protects against N-methyl aspartate neurotoxicity. Eur J Pharmacol 141: 357–361Google Scholar
  70. Olney JW, Price MT, Salles KS, Labruyere J, Ryerson R, Mahan K, Frierdich G, Samson L (1987 b) L-Homocysteic acid: an endogeneous excitotoxic ligand of the NMDA receptor. Brain Res Bull 19: 597–560 Google Scholar
  71. Oreland L, Shaskan EG (1983) Some rationale behind the use of monoamine oxidase activity as a biological marker. Trends Pharmacol Sci 4: 339–341CrossRefGoogle Scholar
  72. Oreland L, Engberg G (1986) Relation between brain MAO activity and the firing rate of locus coeruleus neurons. Naunyn-Schmiedebergs Arch Pharmacol 333: 235–239PubMedCrossRefGoogle Scholar
  73. Oreland L, Gottfries CG (1986) Platelet and brain monoamine oxidase in aging and in dementia of Alzheimer’s type. Prog Neuro Psychopharmacol Biol Psychiatry 10: 533–540CrossRefGoogle Scholar
  74. Oreland L, Fowler CJ, Carlsson A, Magnusson T (1980) The effect of hemitransection of rats upon the brain monoamine oxidase MAO-A and MAO-B activity. Life Sci 26: 139–146PubMedCrossRefGoogle Scholar
  75. Oreland L, Arai Y, Stenstr?m A (1983 a) The effect of deprenyl on intraand extraneuronal dopamine oxidation. Acta Neurol Scand [Suppl] 95: 81–85Google Scholar
  76. Oreland L, Arai Y, Stenström A, Fowler CJ ( 1983 b) Monoamine oxidase activity and localisation in the brain and activity in relation to psychiatric disorders. In: MAO in psychiatric research. Mod Probl Pharmacopsychiatry 19: 246–254Google Scholar
  77. Ozyurt E, Graham DI, Woodruff GN, McCulloch J (1988) Protective effect of the glutamate antagonist, MK-801 in focal cerebral ischaemia in the cat. J Cereb Blood Flow Metab 8: 138–143PubMedCrossRefGoogle Scholar
  78. Park CK, Nehls DG, Graham DI, Teasdale GM, McCulloch J (1988) The glutamate antagonist MK-801 reduces focal ischemic brain damage in the rat. Ann Neurol 24: 543–551PubMedCrossRefGoogle Scholar
  79. Petito CK, Navia BA, Cho ES, Jordan BD, George DC, Price RW (1985) Vacuolar myelopathy pathologically resembling subacute combined degeneration in patients with the acquired immunodeficiency syndrome. N Engl J Med 312: 874–879PubMedCrossRefGoogle Scholar
  80. Petkov VD, Stancheva SL, Petkov VV, Alova LG (1987) Age-related changes in brain biogenic monoamines and monoamine oxidase. Gen Pharmacol 18: 397–401PubMedCrossRefGoogle Scholar
  81. Ravens JR, Calvo W (1966) Neurological changes in the senile brain. In: Lüthy, Bishoff (eds) Proceedings of the 5th International Congress of Neuropathology. Excerpta Medica, Amsterdam, pp 506–512Google Scholar
  82. Regland B, Gottfries CG, Oreland L, Svennerholm L (1988) Low B-12 levels related to high activity of MAO in platelets in patients with dementia disorders. Acta Psychiatr Scand 78: 451–457PubMedCrossRefGoogle Scholar
  83. Regland B, Gottfries CG, Lindstedt G (1989 a) Dementia patients with low serum cobalamins: relationship to atrophic gastritis (submitted)Google Scholar
  84. Regland B, Gottfries CG, Oreland L (1989 b) Platelet MAO-B activity in senile dementia of Alzheimer type: a direct relationship to vitamin B-12 deficiency. [Abstract at the congress on “Aging of the brain and dementia: ten years later” in Florence (Italy) May 31—June 3 held by the World Federation of Neurology]Google Scholar
  85. Reynolds EH, Godfrey P, Toone BK, Carney MWP (1989) S-Adenosylmethionine and Alzheimer’s disease (abstract). Neurology 39 [Suppl 1]: 397Google Scholar
  86. Riederer P, Jellinger K (1983) Neurochemical insights into monoamine oxidase inhibitors, with special reference to deprenyl (selegiline). Acta Neurol Scand [Suppl] 95: 43–55CrossRefGoogle Scholar
  87. Robinson DS, Nies A, Davis JN (1972) Ageing, monoamines and monoamine-oxidase levels. Lancet is 290–291Google Scholar
  88. Robinson MB, Coyle JT (1987) Glutamate and related acidic excitatory neurotransmitters: from basic science to clinical application. FASEB J 1: 446–455PubMedGoogle Scholar
  89. Schalling D, Asberg M, Edman G, Oreland L (1987) Markers for vulnerability to psychopathology: temperament traits associated with platelet MAO activity. Acta Psychiatr Scand 76: 172–182PubMedCrossRefGoogle Scholar
  90. Schapiro MB, Ball MJ, Grady CL, Haxby JV, Kaye JA, Rapoport SI (1988) Dementia in Down’s syndrome: cerebral glucose utilization, neuropsychological assessment and neuropathology. Neurology 38: 938–942PubMedGoogle Scholar
  91. Schechter R, Yen SC, Terry RD (1981) Fibrous astrocytes in senile dementia of the Alzheimer type. J Neuropathol Exp Neurol 40: 95–101PubMedCrossRefGoogle Scholar
  92. Schneider G, Oepen H, von Wedel HR (1981) Aktivat in verschiedenen Hirngebieten and Körperorganen von Patienten mit Mb Huntington and Mb Parkinson. Arch Psychiatr Nervenk 230: 5–15CrossRefGoogle Scholar
  93. Schoepp DD, Azzaro AJ (1983) Effects of intrastriatal kainic acid injection of [3H]dopamine metabolism in rat striatal slices: evidence for postsynaptic glial cell metabolism by both the type A and B forms of monoamine oxidase. J Neurochem 40: 1340–1348PubMedCrossRefGoogle Scholar
  94. Schrumpf E, Bjelke E (1970) Vitamin B-12 in the serum and the cerebrospinal fluid. Acta Neurol Scand 46: 243–248PubMedCrossRefGoogle Scholar
  95. Scott JM, Dinn JJ, Wilson P, Weir DG (1981) Pathogenesis of subacute combined degeneration: a result of methyl group deficiency. Lancet ii: 334–337Google Scholar
  96. Siddons RC, Spence JA, Dayan AD (1975) Experimental vitamin B-12 deficiency in the baboon. In: Meldrum BS, Marsden CD (eds) Advances in neurology, vol 10. Raven Press, New York, pp 239–252Google Scholar
  97. Simpson MDC, Royston MC, Deakin JFW, Cross AJ, Mann DMA, Slater P (1988) Regional changes in [3H]D-aspartate and [3H]TCP binding sites in Alzheimer’s disease brains. Brain Res 462: 76–82PubMedCrossRefGoogle Scholar
  98. Smith RC, Ho BT, Kralik P, Vroulis G, Gordon J, Wolff J (1982) Platelet monoamine oxidase in Alzheimer’s disease. J Gerontol 37: 572–574PubMedGoogle Scholar
  99. Sprince H, Parker CM, Josephs JA, Magazino J (1969) Convulsant activity of homocysteine and other short-chain mercaptoacids: protection therefrom. Ann NY Acad Sci 166: 323–325PubMedCrossRefGoogle Scholar
  100. Stabler SP, Marcell PD, Podell ER, Allen RH, Savage DG, Lindenbaum J (1988) Elevation of total homocysteine in the serum with cobalamine or folate deficiency detected by capillary gas chromatography-mass spectrometry. J Clin Invest 81: 466–474PubMedCrossRefGoogle Scholar
  101. Stenström A, Arai Y, Oreland L (1985) Intra-and extraneuronal MAO-A and -B activities after central axotomy (hemitransection) on rats. J Neural Transm 61: 105–113PubMedCrossRefGoogle Scholar
  102. Stenström A, Hardy J, Oreland L (1987) Intra-and extra-dopamine-synaptosomal localization of monoamine oxidase in striatal homogenates from four species. Biochem Pharmacol 36: 2931–2935PubMedCrossRefGoogle Scholar
  103. Strolin-Benedetti M, Keane PE (1980) Differential changes in monoamine oxidase A and B activity in the aging rat brain. J Neurochem 35: 1026–1032CrossRefGoogle Scholar
  104. Tiggelen CJM, Peperkamp JPC, Tertoolen JFW (1983) Vitamin B-12 levels of cerebrospinal fluid in patients with organic mental disorder. J Orthomol Psychiatry 12: 305–311Google Scholar
  105. Westlund KL, Denney RM, Kochersperger LM, Rose RM, Abell CW (1985) Distinct monoamine oxidase A and B populations in primate brain. Science 230: 181–183PubMedCrossRefGoogle Scholar
  106. Yatham LN, McHale PA, Kinsella A (1988) Down’s syndrome and its as-sociation with Alzheimer’s disease. Acta Psychiatr Scand 77: 38–41PubMedCrossRefGoogle Scholar
  107. Young AB, Greenamyre JT, Hollingsworth Z, Albin R, D’Amato C, Shoul-son I, Penney JB (1988) NMDA receptor losses in putamen from patients with Huntington’s disease. Science 241: 981–983PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1990

Authors and Affiliations

  • L. Oreland
    • 1
  • Y. Hiraga
    • 1
    • 2
  • S. S. Jossan
    • 1
  • B. Regland
    • 3
  • C. G. Gottfries
    • 3
  1. 1.Department of Medical PharmacologyUniversity of UppsalaSweden
  2. 2.Zeria Pharmaceutical Co. Ltd.Japan
  3. 3.Department of Psychiatry and NeurochemistryUniversity of GothenburgSweden

Personalised recommendations