Skip to main content

Choline metabolism in Alzheimer’s disease: hints as to possible markers

  • Chapter
Book cover Early Markers in Parkinson’s and Alzheimer’s Diseases

Part of the book series: New Vistas in Drug Research ((DRUG RESEARCH,volume 1))

Summary

For diagnostic and therapeutic purposes, it would be very important to have reliable early markers for Alzheimer’s disease. Since there’s still a lack of agreement between clinical diagnosis and histopathological examinations, we must try to find new diagnostic markers which allow us to characterize the course of the disease and determine the specificity of the dementia. Cholinergic deficits characterize Alzheimer brains and, recently, attention has been focused on the presence of cholinergic receptors on peripheral elements and on their role as peripheral markers for Alzheimer’s disease. A decrease in the number of muscarinic and nicotinic receptors has been measured in lymphocytes from Alzheimer patients. Another interesting finding is the presence of cholinergic neuron antibodies in serum and CSF (see McRae, this symposium).

In vivo imaging techniques, such as positron emission tomography (PET), are promising techniques for the study of cholinergic receptor activity in human brain. In the attempt to visualize nicotinic receptors in vivo, the (+) and the (−) isomers of 11C-nicotine were given intravenously to Alzheimer patients and a lower uptake of both isomers (especially the (+) form) has been observed in the cortical areas of the brain compared to age-matched healthy volunteers. This observation prompts further PET studies in patients with a different progression of Alzheimer’s disease, as well as in other types of dementia and following different therapeutic strategies. An in vitro acetylcholine release model using autopsy human brain tissue allows studies on functional cholinergic activity and its interaction with potential drugs in pathological tissue. This model will be a useful tool for the development of new drugs of potential use in the treatment of Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adern A, Nordberg A, Bucht G, Winblad B (1986 a) Extraneuronal cholinergic markers in Alzheimer’s and Parkinson’s diseases. Prog Neuropsychopharmacol Biol Psychiatry 10: 247–257

    Google Scholar 

  • Adern A, Nordberg A, Slanina P (1986 b) A muscarinic receptor type in human lymphocyte in comparison of 3H-QNB binding to intact lymphocytes and lysed lymphocyte membranes. Life Sci 38: 1359–1368

    Google Scholar 

  • Attack JR, Perry EK, Bonham JR, Perry RH, Tomlinson BE, Blessed G, Fairbain A (1983) Molecular forms of AChE in senile dementia of Alzheimer type: selective loss of the intermediate (10 S) form. Neurosci Lett 40: 199–204

    Article  Google Scholar 

  • Bering B, Moises HW, Muller WE (1987) Muscarinic cholinergie receptors on intact human lymphocytes—properties and subclass characterization. Biol Psychiatry 22: 1451–1458

    Article  PubMed  CAS  Google Scholar 

  • Burns A, Tune L, Steele C, Folstein M (1989) Positron emission tomography in dementia: a clinical review. Int J Ger Psych 4: 67–72

    Article  CAS  Google Scholar 

  • Chipperfield B, Newman PM, Moyes ICA (1981) Decreased erythrocyte cholinesterase activity in dementia. Lancet ii: 199

    Google Scholar 

  • Davies P (1979) Neurotransmitter-related enzymes in senile dementia of Alzheimer’s type. Brain Res 171: 319–327

    Article  PubMed  CAS  Google Scholar 

  • Davies P, Maloney AJF (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet ii: 1403

    Google Scholar 

  • Dodd PR, Hambley JW, Cowburn RF, Hardy J (1988) A comparison of methodologies for the study of functional transmitter neurochemistry in human brain. J Neurochem 50: 1333–1345

    Article  PubMed  CAS  Google Scholar 

  • Friedland RP, Budinger TF, Koss E, Ober BA (1985) Alzheimer’s disease: anterior-posterior and lateral hemispheric alterations in cortical glucose utilization. Neurosci Lett 53: 235–240

    Article  PubMed  CAS  Google Scholar 

  • Gauthier S, Diksic M, Yamamoto L, Tyler F, Feindel W (1985) Positron emission tomography with 11C-choline in human subjects. Can J Neurol Sci 12: 214

    Google Scholar 

  • Glen AIM, Yates CM, Simpson J, Christie JE, Shering A, Whalley LJ, Jellineh EH (1981) Choline uptake in patients with Alzheimer pre-senile dementia. Psychol Med 11: 469–476

    Article  PubMed  CAS  Google Scholar 

  • Gottfries CG (1985) Alzheimer’s disease and senile dementia: biochemical characteristics and aspects of treatment. Psychopharmacology 86: 245–252

    Article  PubMed  CAS  Google Scholar 

  • Hardy JA, Adolfsson R, Alafuzoff I, Bucht G, Marcusson J, Nyberg P, Perdahl E, Wester P, Winblad B (1985) Transmitter deficits in Alzheimer’s disease. Neurochem Int 7: 545–563

    Article  PubMed  CAS  Google Scholar 

  • Holman BL, Gibson RE, Hill TC, Eckelman WC, Albert M, Rebz RC (1985) Muscarinic acetylcholine receptors in Alzheimer’s disease. In vivo imaging with iodine 123-labeled I-quinuclidinyl-4-iodobenzilate and emission tomography. JAMA 254: 3063–3066

    Google Scholar 

  • Jacust W J, Friedland RR, Budinger TF, Koss E, Ober B (1988) Longitudinal studies of regional cerebral metabolism in Alzheimer’s disease. Neurology 38: 909–912

    Google Scholar 

  • Marquis JK, Vollicer L, Direnfeld LK, Freeman M (1984) Assay of cholinesterase in plasma, erythrocytes and cerebrospinal fluid (CSF) of SDAT patients and normal controls. In: Wurtman RJ, Corkin SJ, Growdon JH (eds) Alzheimer’s disease: advances in basic research and therapies. Springer, Wien New York, pp 161–182

    Google Scholar 

  • Mash DC, Flynn DD, Potter LT (1985) Loss of M 2 muscarinic receptors in the cerebral cortex in Alzheimer’s disease and experimental cholinergie denervation. Science 228: 1115–1117

    Article  PubMed  CAS  Google Scholar 

  • Nilsson L, Nordberg A, Hardy J, Wester P, Winblad B (1986) Physostigmine restores 3H-acetylcholine efflux from Alzheimer brain slices to normal level. J Neural Transm 67: 275–285

    Article  PubMed  CAS  Google Scholar 

  • Nilsson L, Adern A, Hardy J, Winblad B (1987) Do tetrahydroaminoacridine (THA) and physostigmine restore acetylcholine in AD/SDAT brains via nicotinic receptors? J Neural Transm 70: 357–368

    Article  PubMed  CAS  Google Scholar 

  • Nordberg A, Winblad B (1986 a) Brain nicotinic and muscarinic receptors in normal aging and dementia. In: Fisher A, Hanin I, Lachman C (eds) Alzheimer’s and Parkinson’s diseases: strategies for research and development. Plenum Press, New York, pp 95–108 (Advances in behavioral biology, vol 29)

    Google Scholar 

  • Nordberg A, Winblad B (1986b) Reduced number of 3H-nicotine and 3H-acetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci Lett 72: 115–119

    Article  PubMed  CAS  Google Scholar 

  • Nordberg A, Nilsson-Hâkansson L (1990) Modulation of cholinergic activity in Alzheimer brains by potential drugs. In: Bunney WE, Hippius H, Laakman G (eds) Neuropsychopharmacology proceedings of the XVIth CINP Congress (in press)

    Google Scholar 

  • Nordberg A, Adern A, Nilsson L, Winblad B (1987) Cholinergic deficits in CNS and peripheral non-neuronal tissue in Alzheimer dementia. In: Dowdall M, Hawthorne J (eds) Cellular and molecular basis of cholinergic function. Ellis Horwood, Chichester, pp 858–868

    Google Scholar 

  • Nordberg A, Adern A, Hardy J, Winblad B (1988a) Changes in nicotinic receptor subtypes in temporal cortex of Alzheimer brains. Neurosci Lett 86: 317–321

    Article  PubMed  CAS  Google Scholar 

  • Nordberg A, Nilsson L, Adern A, Hardy J, Winblad B (1988b) Effect of THA on acetylcholine release and cholinergic receptors in Alzheimer brains. In: Giacobini E, Becker R (eds) Current research in Alzheimer therapy — cholinesterase inhibitors. Taylor & Francis, New York, pp 247–257

    Google Scholar 

  • Nordberg A, Hartvig P, Lundqvist H, Antoni G, Ulin J, Lângström B (1989a) Uptake and distribution of (+) — (R) and (—) — (S)-N-(methyl —11C)-nicotine in the brain of Rhesus monkeys — an attempt to study nicotinic receptors in vivo. J Neural Transm [PD-Sect] 1: 195–205

    Article  CAS  Google Scholar 

  • Nordberg A, Nilsson-Hâkansson L, Adern A, Hardy J, Alafuzoff I, Lai Z, Herrera-Marschitz, Winblad B (1989b) In: Nordberg A, Fuxe K, Holmstedt B, Sundvall A (eds) Nicotinic receptors in the CNS — their role in synaptic transmission. Prog Brain Res 79: 353–362

    Chapter  Google Scholar 

  • Nordberg A, Nilsson-Hâkansson L, Adern A, Lai Z, Winblad B (1989c) Multiple actions of THA on cholinergic neurotransmission in Alzheimer brains. In: Iqbal H, Wiesnewski H, Winblad B (eds) Alzheimer’s disease and related disorders. Alan Liss, New York, pp 1169–1178

    Google Scholar 

  • Nordberg A, Hartvig P, Lilja A, Viitanen M, Amberla K, Lundqvist H, Andersson Y, Ulin J, Winblad B, Lângström B (1990) Decreased uptake and binding of 11C-nicotine in brain of Alzheimer patients as visualized by positron emission tomography. J Neural Transm [P-D Sect] 2: 215–224

    Article  CAS  Google Scholar 

  • Nybäck H, Nordberg A, Längström B, Halldin C, Shlin A, Schwan C-G, Sedvall G (1989) Attempts to visualize nicotinic receptors in the brain of monkey and man by positron emission tomography. In: Nordberg A, Fuxe K, Holmstedt B, Sundwall A (eds) Nicotinic receptors in the CNS — their role in synaptic transmission. Prog Brain Res 79: 313–319

    Google Scholar 

  • Perry E (1980) The cholinergic system in old age and Alzheimer’s disease. Age Aging 9: 1–8

    Article  CAS  Google Scholar 

  • Perry E (1986) The cholinergic hypothesis: ten years on. Br Med Bull 42: 63–69

    PubMed  CAS  Google Scholar 

  • Perry EK, Perry RH, Gibson RH, Blessed G, Tomlinson BE (1977) A cholinergic connection between normal aging and senile dementia in the human hippocampus. Neurosci Lett 6: 85–89

    Article  PubMed  CAS  Google Scholar 

  • Peterson C, Ratan RR, Shelanski ML, Goldman JE (1986) Cytosolic free calcium and cell spreading decrease in fibroblasts from aged and Alzheimer donors. Proc Natl Acad Sci USA 83: 7999–8001

    Article  PubMed  CAS  Google Scholar 

  • Pope A, Hess HH, Levin E (1965) Neurochemical pathology of the cerebral cortex in presenile dementias. Trans Am Neuro Assoc 89: 15–16

    Google Scholar 

  • Ravizza L, Ferrero P, Eva C, Rocca P, Tarenzi L, Benna P (1988) Peripheral cholinergic changes and pharmacological aspects in Alzheimer’s disease. In: Giacobini E, Becker R (eds) Current research in Alzheimer therapy. Taylor & Francis, New York, pp 355–363

    Google Scholar 

  • Richman DP, Arnason BGW (1979) Nicotinic acetylcholine receptor: evidence for a functionally-distinct receptor on human lymphocytes. Proc Natl Acad Sci 76: 4632–4635

    Article  PubMed  CAS  Google Scholar 

  • Riekkinen PJ, Laulumaa V, Sirviö J, Soininen H, Helkala EL (1987) Recent progress in research in Alzheimer’s disease. Med Biol 65: 83–88

    PubMed  CAS  Google Scholar 

  • Rylett RJ, Bull MJ, Colhoun EH (1983) Evidence for high affinity choline transport in synaptosomes prepared from hippocampus and neocortex of patients with Alzheimer’s disease. Brain Res 289: 169–175

    Article  PubMed  CAS  Google Scholar 

  • Sherman K, Gibson GE, Blass JP (1986) Human red blood cells choline uptake with age and Alzheimer’s disease. Neurobiol Aging 7: 205–209

    Article  PubMed  CAS  Google Scholar 

  • Sim NR, Smith CCT, Davison AN, Bowen DM, Flack RHA, Snowden JS (1980) Glucose metabolism and acetylcholine synthesis in relation to neuronal activity in Alzheimer’s disease. Lancet is 333–336

    Google Scholar 

  • Smith RC, Ho BT, Hsu L, Vroulis G, Claghorn J, Schoolar J (1982) Cholinesterase enzymes in the blood of patients with Alzheimer’s disease. Life Sci 30: 543–546

    Google Scholar 

  • Soininen HS, Jolkkonen JT, Reini-Kainen KJ, Haolnen TO, Riekkinen PJ (1984) Reduced cholinesterase activity and somatostatin-like immunoreactivity in cerebrospinal fluid of patients with dementia of the Alzheimer type. J Neurol Sci 63: 167–172

    Article  PubMed  CAS  Google Scholar 

  • Strom TB, Lane MA, George R (1981) The parallel, time dependent bio model change in lymphocyte-mediated cytotoxicity after lymphocyte activation. J Immunol 127: 705–710

    PubMed  CAS  Google Scholar 

  • Todorov AB, Go RCP, Constantinidis J, Elston RC (1975) Specificity of the clinical diagnosis of dementia. J Neurol Sci 26: 81–98

    Article  PubMed  CAS  Google Scholar 

  • White P, Goodhardt MJ, Keet J, Hiley CR, Carrasco LH, Williams IEI (1977) Neocortical cholinergic neurons in elderly people. Lancet is 668–670

    Google Scholar 

  • Wood PL, Etienne P, Lal S, Gauthier S, Cajal S, Nair NPV (1982) Reducèd lumbar CSF somatostatin levels in Alzheimer’s disease. Life Sci 31: 2073–2079

    Article  PubMed  CAS  Google Scholar 

  • Zubenko GS, Cohen BM, Boller F, Malinakova I, Keefe N, Chojnacki B (1987) Platelet membrane abnormality in Alzheimer’s disease. Ann Neurol 22: 237–244

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag/Wien

About this chapter

Cite this chapter

Nordberg, A. (1990). Choline metabolism in Alzheimer’s disease: hints as to possible markers. In: Dostert, P., Riederer, P., Strolin Benedetti, M., Roncucci, R. (eds) Early Markers in Parkinson’s and Alzheimer’s Diseases. New Vistas in Drug Research, vol 1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9098-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9098-2_23

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9100-2

  • Online ISBN: 978-3-7091-9098-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics