Advertisement

Senile dementia of Alzheimer’s type and Parkinson’s disease: neurochemical overlaps and specific differences

  • P. Riederer
  • E. Sofic
  • G. Moll
  • A. Freyberger
  • I. Wichart
  • W. Gsell
  • K. Jellinger
  • G. Hebenstreit
  • M. B. H. Youdim
Part of the New Vistas in Drug Research book series (DRUG RESEARCH, volume 1)

Summary

Parkinson’s disease (PD) is characterized by a clear rank order with respect to neuropathological findings. Both substantia nigra (SN) and locus coeruleus (LC) are severely damaged, whilst nucleus raphe dorsalis (NRD) and nucleus basalis of Meynert (NbM) are only moderately affected. In senile dementia of Alzheimer’s type (SDAT) the rank order is less clearly defined, SN being slightly and LC, NRD, and NbM being moderately damaged. The loss of neurotransmitter concentrations found in PD and SDAT by neurochemical analysis only partly corresponds to the neuronal loss found in SN, LC, NDR, and NbM. This may indicate the ability of the neurotransmitter systems to compensate neuronal loss. Possible pathomechanisms underlying PD and SDAT are discussed.

Keywords

Substantia Nigra Ventral Tegmental Area Locus Coeruleus Nucleus Raphe Dorsalis Senile Dementia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birkmayer W, Riederer P (1975) Responsibility of extrastriatal areas for the apperance of psychotic symptoms. J Neural Transm 37: 175–182PubMedCrossRefGoogle Scholar
  2. Birkmayer W, Riederer P (1985) Die Parkinson-Krankheit: Biochemie, Klinik, Therapie, 2. Aufl. Springer, Wien New YorkGoogle Scholar
  3. Bondareff N, Mountjoy CQ, Roth M (1982) Loss of neurons of origin of the adrenergic projections to the cerebral cortex (nucleus locus coeruleus) in senile dementia. Neurology (NY) 32: 165–168Google Scholar
  4. Burns BT, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin I (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by Nmethyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci 80: 4546–4550PubMedCrossRefGoogle Scholar
  5. Cadet JL (1988) A unifying theory of movement and madness: involvement of free radicals in disorders of the isodentritic core of the brain stem. Med Hypotheses 27: 59–63PubMedCrossRefGoogle Scholar
  6. D’Amato RJ, Zweig RM, Whitehouse PJ, Wenk GL, Singer HS, Mayeux R, Price DL, Snyder S (1987) Aminergic systems in Alzheimer’s disease and Parkinson’s disease. Ann Neurol 22: 229–236PubMedCrossRefGoogle Scholar
  7. Davies GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, Kopin I (1979) Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1: 249–254CrossRefGoogle Scholar
  8. Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52: 381–389PubMedCrossRefGoogle Scholar
  9. Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin and Dopamin (3-Hydroxytyramin) im Gehirn des Menschen and ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin Wschr 38: 1236–1239PubMedCrossRefGoogle Scholar
  10. Etienne P, Robitaille Y, Wood P, Gauthier S, Nair NPV, Quirion R (1986) Nucleus basalis neuronal loss, neuritic plaques and choline acetyltransferase activity in advanced Alzheimer’s disease. Neuroscience 19: 1279–1291PubMedCrossRefGoogle Scholar
  11. Fonnum F (1975) A rapid radiochemical method for the determination of choline acetyltransferase. J Neurochem 24: 407–409PubMedCrossRefGoogle Scholar
  12. Gaspar P, Gray F (1984) Dementia in idiopathic Parkinson’s disease. A neuropathological study of 32 cases. Acta Neuropathol (Berl) 64: 43–52CrossRefGoogle Scholar
  13. Gibb WRG (1988) The neuropathology of parkinsonian disorders. In: Jankovic J, Tolowa E (eds) Parkinson’s disease and movement disorders. Urban & Schwarzenberg, Baltimore Munich, pp 205–223Google Scholar
  14. Gibb WRG, Lees AJ (1987) The progression of idiopathic Parkinson’s disease is not explained by age-related changes. Clinical and pathological comparisons with post-encephalitic parkinsonian syndrome. Acta Neuropathol (Berl) 73: 195–201CrossRefGoogle Scholar
  15. Hirsch E, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334: 345–348PubMedCrossRefGoogle Scholar
  16. Hornykiewicz O, Kish SJ (1986) Biochemical pathophysiology of Parkinson’s disease. In: Yahr MD, Bergmann KJ (eds) Advances in neurology, vol 45. Raven Press, New York, pp 19–34Google Scholar
  17. Ichimija Y, Arai H, Kosaka K, Iizuka R (1986) Morphological and biochemical changes in the cholinergic and monoaminergic system in Alzheimer-type dementia. Acta Neuropathol (Berl) 70: 112–116CrossRefGoogle Scholar
  18. Ingram VM, Koenig JH, Miller CH, Moore HE, Blanchard B, Perry DE (1987) The locus coeruleus: computer assisted 3-dimensional analysis of degeneration in Alzheimer’s and Down’s disease. In: Wurtman RJ, Corkin SH, Growden JH (eds) Alzheimer’s disease: advances in basic research and therapy. Center for brain science and metabolism charitable trust, Cambridge, pp 435–440Google Scholar
  19. Jellinger K ( 1986 a) Pathology of parkinsonism. In: Fahn S, Marsden CD, Jenner P, Teychenne R (eds) Recent developments in parkinsonism. Raven Press, New York, pp 33–66Google Scholar
  20. Jellinger K ( 1986 b) Overview of morphological changes in Parkinson’s disease. In: Yahr MD, Bergmann KJ (eds) Advances in neurology, vol 45. Raven Press, New York, pp 1–18Google Scholar
  21. Jellinger K ( 1987 a) The pathology of parkinsonism. In: Marsden CD, Fahn S (eds) Movement disorders 2. Butterworth, London, pp 124–165Google Scholar
  22. Jellinger K (1987 c) Quantitative changes in some subcortical nuclei in aging, Alzheimer’s disease and Parkinson’s disease. Neurobiol Aging 8: 556–561Google Scholar
  23. Jellinger K (1989) Pathology of Parkinson’s syndrome. In: Caine DB (ed) Handbook of experimental pharmacology, vol 88. Springer, Berlin Heidelberg New York, pp 47–112Google Scholar
  24. Jellinger K (1989) Pathology of Parkinson’s syndrome. In: Caine DB (ed) Handbook of experimental pharmacology, vol 88. Springer, Berlin Heidelberg New York, pp 47–112Google Scholar
  25. Kish SJ, Mortio C, Hornykiewicz 0 (1985) Glutathione peroxidase activity in Parkinson’s disease brain. Neurosci Lett 58: 343–346PubMedCrossRefGoogle Scholar
  26. Mann DMA, Yates PO (1983) Pathological basis for neurotransmitter changes in Parkinson’s disease. Neuropathol Appl Neurobiol 9: 3–19PubMedCrossRefGoogle Scholar
  27. Mann DMA, Yates PO, Hawkes J (1983) The pathology of the human locus coeruleus. Clin Neuropathol 2: 1–7PubMedGoogle Scholar
  28. Mann DMA, Yates PO, Marcyniuk B (1985) Correlation between senile plaque and neurofibrillary tangle counts in cerebral cortex and subcortical structures in Alzheimer’s disease. Neurosci Lett 56: 51–55PubMedCrossRefGoogle Scholar
  29. Mann DMA, Tucken CM, Yates PO (1987) The topographic distribution of senile plaques and neurofibrillary tangles in the brain of non-demented persons of different ages. Neuropathol Appl Neurobiol 13: 123–139PubMedCrossRefGoogle Scholar
  30. Perry TL, Godin DV, Hansen S (1982) Parkinson’s disease: a disorder due to nigral glutathione deficiency? Neurosci Lett 33: 305–310PubMedCrossRefGoogle Scholar
  31. Riederer P, Wuketich S (1976) Time course of nigrostriatal degeneration in Parkinson’s disease. J Neural Transm 38: 271–301CrossRefGoogle Scholar
  32. Riederer P, Birkmayer W, Seemann D, Wuketich S (1977) Brain-noradrenaline and 3-methoxy-4-hydroxyphenylglycol in Parkinson’s syndrome. J Neural Transm 41: 241–251PubMedCrossRefGoogle Scholar
  33. Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52: 515–520PubMedCrossRefGoogle Scholar
  34. Scatton B, Javoy-Agid F, Rouquier L, Dubois B, Agid Y (1984) Neurochemistry of monoaminergic neurons in Parkinson’s disease. In: Usdin E, Carlsson A, Dahlström A, Engel J (eds) Catecholamines: neuropharmacology and central nervous system — therapeutic aspects. A Liss, New York, pp 43–52Google Scholar
  35. Sofic E (1986) Untersuchung von biogenen Aminen, Metaboliten, Ascorbinsäure und Glutathion mittels HPLC-ECD und deren Verhalten in ausgewählten Lebensmitteln und im Organismus von Mensch und Tier. Thesis, Technical University of ViennaGoogle Scholar
  36. Tomlinson BE, Irving D, Blessed G (1981) Cell loss in the locus coeruleus in senile dementia of Alzheimer’s type. J Neurol Sci 49: 419–428PubMedCrossRefGoogle Scholar
  37. Tomonaga M (1983) Neuropathology of the locus coeruleus: a semiquantitative study. J Neurol 230: 231–240PubMedCrossRefGoogle Scholar
  38. Uhl GR, Hedreen JC, Price DL (1985) Parkinson’s disease: loss of neurons from the ventral tegmental area contralateral to therapeutic surgical lesions. Neurology 35: 1215–1218PubMedGoogle Scholar
  39. Whitehouse PJ, Hendreen JC, White CL, Price DL (1983) Basal forebrain neurons in the dementia of Parkinson’s disease. Ann Neurol 13: 243–248PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1990

Authors and Affiliations

  • P. Riederer
    • 1
  • E. Sofic
    • 1
  • G. Moll
    • 1
  • A. Freyberger
    • 1
  • I. Wichart
    • 2
  • W. Gsell
    • 1
  • K. Jellinger
    • 2
  • G. Hebenstreit
    • 3
  • M. B. H. Youdim
    • 4
  1. 1.Clinical Neurochemistry, Department of PsychiatryUniversity of WürzburgFederal Republic of Germany
  2. 2.Ludwig-Boltzmann-Institute of Clinical NeurobiologyLainz HospitalViennaAustria
  3. 3.Department of PsychiatryLandeskrankenhaus Mauer/ AmstettenAustria
  4. 4.Department of PharmacologyTechnionHaifaIsrael

Personalised recommendations