High Energetic Carriers

  • Wilfried Hänsch
Part of the Computational Microelectronics book series (COMPUTATIONAL)


High energetic carriers are electrons (holes) that occupy energetic states far above (below) the conduction (valence) band edge. An example of the characteristic energy is the threshold energy for impact ionization ε imp which is of the order of the bandgap E G . A carrier possessing this energy can transfer its energy via collision to an electron in the valence band and move it into the conduction band. In this process, which is called impact ionization, an electron-hole pair is created and the original high energetic carrier is scattered into a state of considerably lower energy. Another energy range of interest is the conduction and valence-band barriers between bulk silicon (E G = 1.12eV) and the large-gap oxide SiO2 (E G ≈ 9 eV). These range from 3.2 eV to about 5 eV for the conduction and valence bands, respectively. Carriers with comparable energies can enter the oxide and accumulate electrical charge in traps. This eventually leads to a failure of the device. To minimize this oxide charging is a major concern of device design. We will treat it in the next chapter. We use the substrate and gate currents of a MOSFET for the experimental verification of high energetic carriers. Both are very indirect measures of device degradation due to oxide damage because the damage is caused by filling up traps in the oxide, which requires an understanding of the trap mechanisms. Furthermore, the substrate and gate currents are very sensitive to uncertainties in device processing. This is particularly so in the accuracy of the doping profiles which determine the electric field in the device.


Free Path Boltzmann Equation Optical Phonon Impact Ionization Acoustical Phonon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antoncik E., Landsberg P. T. (1963): Proc. Phys. Soc. 82, 337.CrossRefGoogle Scholar
  2. Baraff G. (1962): Phys. Rev 128, 2507.CrossRefGoogle Scholar
  3. Beattie A. R, Landsberg P. T. (1959): Proc. Roy. Soc. A249, 16.CrossRefGoogle Scholar
  4. Chynoweth A. G. (1959): Phys. Rev. 109, 1537.CrossRefGoogle Scholar
  5. Conwell E. M. (1967): High Field Transport in Semiconductors. In: Solid State Physics Suppl. 9, ed. F. Seitz, D. Thornbull, H. Ehrenreich. Academic Press, New York.Google Scholar
  6. Davydov B. I. (1937). JETP 7, 1069.Google Scholar
  7. Druyvesteyn M. J., Penning F. M. (1940): Rev. Modern Phys. 72, 87.CrossRefGoogle Scholar
  8. Fukuma ML, Lui W. W. (1987): IEEE Electr. Device Lett. EDL8, 214.CrossRefGoogle Scholar
  9. Hall R. N. (1952): Phys. Rev. 87, 387.CrossRefGoogle Scholar
  10. Haug A. (1972): Theoretical Solid State Physics Vol. II. International Series of Monographs in Natural Philosophy Vol. 36. Pergamon Press, Oxford.Google Scholar
  11. Hänsch W., Schwerin A. (1989): J. Appl. Phys. 66, 1435.CrossRefGoogle Scholar
  12. Henning A. K., Chan N. C., Watt J. T., Plummer J. (1987): IEEE Trans. Electr. Devices ED34, 64.CrossRefGoogle Scholar
  13. Jacoboni C., Lugli P. (1989): The Monte Carlo Method for Semiconductor Device Simulation. In Computational Microelectronics (ed. S. Selberherr ). Springer, Wien.Google Scholar
  14. Kane E. O. (1967): Phys. Rev. 159, 624.CrossRefGoogle Scholar
  15. Keldysh L. V. (1959): JETP 37, 713 [Sov. Phys. JETP 10, 509 (I960)].Google Scholar
  16. Keldysh L. V. (1965): JETP 48, 1692 [Sov. Phys. JETP 21, 1135 ].Google Scholar
  17. Kunert R, Werner C, Schütz A. (1985): IEEE Trans. Electr. Devices ED32, 1057.CrossRefGoogle Scholar
  18. Lochmann W. (1977): Physica Status Solidi 40, 285.CrossRefGoogle Scholar
  19. Meinerzhagen B, Engl W. L. (1988): IEEE Trans. Electr. Devices ED35, 689.CrossRefGoogle Scholar
  20. Morse P. M., Feshbach H. (1953): Methods of Theoretical Physics. McGraw-Hill, New York.Google Scholar
  21. Ridley B. K. (1983): J. Phys. C16, 3373.Google Scholar
  22. Scharoch P., Abram R. A. (1988): Semicond. SCI. Technol. 3, 973.CrossRefGoogle Scholar
  23. Selberherr S. (1984): Analysis and Simulation of Semiconductor Devices. Springer, Wien.Google Scholar
  24. Shockley W. (1958): Solid State Electr. 2, 1537.Google Scholar
  25. Shockley W, Read W. T. (1952): Phys. Rev. 87, 835.CrossRefGoogle Scholar
  26. Slotboom J. W., Streuker G., Davis G, Hartog P. (1987): IEDM 87, Technical Digest.Google Scholar
  27. Takashima M. (1981): Phys. Rev. B23, 6625.CrossRefGoogle Scholar
  28. Thurgate T., Chaii N. (1985): IEEE Trans. Electr. Devices ED32, 400.CrossRefGoogle Scholar
  29. Wolff P. A. (1954): Phys. Rev. 95, 1415.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1991

Authors and Affiliations

  • Wilfried Hänsch
    • 1
  1. 1.CharlotteUSA

Personalised recommendations