Advertisement

Carrier Transport in an Inversion Channel

  • Wilfried Hänsch
Part of the Computational Microelectronics book series (COMPUTATIONAL)

Abstract

In the previous two chapters, we directed our attention to basic questions of carrier transport in bulk material. We derived the Boltzmann equation in Chapter 1 and in Chapter 2 studied its consequences for low- and high-field transport in an electron-impurity-phonon system. We did not consider the influence of a finite domain containing interfaces on the transport properties. Interfaces are essential in device operation. Every contact is related to an interface problem. Neither ohmic nor Schottky contacts have hitherto been described self-consistently within the framework of the drift-diffusion approximation. Modeling efforts are based on heuristic arguments and more or less do the job. We will not go into the details of how to formulate a suitable theory for current-carrying contacts. In Chapter 1, we mentioned that a self-consistent incorporation of tunneling in the transport problem is the key feature of such a theory and that Eqs. (1.151) or (1.163) are a possible starting point. Tunneling is a quantum-mechanical phenomenon and is therefore not included in the drift-diffusion approximation.

Keywords

Classical Limit Carrier Transport Vertex Function Channel Mobility Inversion Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cooper J. A., Nelson D. F. (1981): IEEE Electr. Device Lett. EDL2, 171.CrossRefGoogle Scholar
  2. Greene R. F, Frankel D. R., Zemel J. (1960): Phys. Rev. 118, 967.CrossRefGoogle Scholar
  3. Hänsch W., Mahan G. D. (1983): Phys. Rev. B28, 1902.CrossRefGoogle Scholar
  4. Hänsch W., Vogelsang Th., Kircher R., Orlowski M. (1989): Solid State Electr. 32, 839.CrossRefGoogle Scholar
  5. Hiroki A., Odanaka S., Ohe K., Esaki H. (1987): IEEE Electr. Device Lett. EDL8, 231.CrossRefGoogle Scholar
  6. Hsing C. T, Kennedy D. P, Sutherland A. D, Van Vliet K. M. (1979): Physica Status Solidi 56a, 129.CrossRefGoogle Scholar
  7. Kadanoff L. P., Baym G. (1962): Quantum Statistical Mechanics. Benjamin, London.Google Scholar
  8. Laux S. E, Warren A. C. (1986): IEDM 86 Technical Digest 567.Google Scholar
  9. Mahan G. D. (1981): Many-Particle Physics. Plenum, New York.Google Scholar
  10. Schrieffer J. R. (1955): Phys. Rev. 97, 641.CrossRefGoogle Scholar
  11. Schwarz S. A., Russek S. E. (1983): IEEE Trans. Electr. Devices. ED30, 1634.CrossRefGoogle Scholar
  12. Selberherr S., Hänsch W., Seayey M., Slotboom J. W. (1990): Solid State Electr., to be published.Google Scholar
  13. Stern F. (1972): Phys. Rev. 35, 4891.Google Scholar
  14. Stern F., Howard W. E. (1967): Phys. Rev. 163, 816.CrossRefGoogle Scholar
  15. Sze S. M. (1981): Physics of Semiconductor Devices ( 2nd Edition ). John Wiley, New York.Google Scholar
  16. Takagi S., Iwase ML, Toriumi A. (1988): IEDM 88 Technical Digest 398.Google Scholar
  17. Übensee H., Paasch G., Zöllner J. P., Fiedler Th., Grobsch G. (1985): Physica Status Solidi 130b, 387.CrossRefGoogle Scholar
  18. Walker A. J., Woerlee P. H. (1988): J. Phys. Colloque C4, 265.Google Scholar
  19. Yamaguchi K. (1979): IEEE Trans. Electr. Devices ED26, 1068.CrossRefGoogle Scholar
  20. Yamaguchi K. (1983): IEEE Trans. Electr. Devices ED30, 658.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1991

Authors and Affiliations

  • Wilfried Hänsch
    • 1
  1. 1.CharlotteUSA

Personalised recommendations