Hydrodynamic Model

  • Wilfried Hänsch
Part of the Computational Microelectronics book series (COMPUTATIONAL)


In the last chapter, we derived the Boltzmann equation from a calculation based on first principles. In reaching the desired result, we had to make approximations and simplifications in our general approach to obtain the equation that gives us the particle distribution f in classical phase space of the variables R, T, and k. There are other, more heuristic ways of deriving the Boltzmann equation based on the mechanics of classical particles in a slowly varying electric field (Madelung 1978). It is certainly possible to view the Boltzmann equation as a transport model for classical particles quite apart from its relationship to the more fundamental non-equilibrium statistical mechanics. This is the historical context in which it was derived and used for many years. As we shall see later, it is useful to go beyond the classical understanding of the equation towards possible extensions which are not contained in the purely classical picture.


Boltzmann Equation Drift Velocity Hydrodynamic Model Nonlinear Response Collision Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baranger H. U. (1986) Ballistic Electrons in a Submicron Semiconducting Structure: A Boltzmann Equation Approach. Thesis. Cornell University, Ithaca, New York.Google Scholar
  2. Blakemore J. (1982): J. Appi. Phys. 53, R123.Google Scholar
  3. Blotekjaer K., Lunde E. B. (1969): Physica Status Solidi 35, 581.CrossRefGoogle Scholar
  4. Blotekjaer K. (1970): IEEE Trans. Electron. Devices ED17, 38.CrossRefGoogle Scholar
  5. Brunetti R., Jacoboni C., Nava F., Reggiani L., Bosman G., Zijlstra R. J. J. (1981): J. Appi. Phys. 52, 6713.CrossRefGoogle Scholar
  6. Chelikowsky J. R., Cohen M. L. (1976): Phys. Rev. B14, 556.CrossRefGoogle Scholar
  7. Conwell E. M. (1967): High Field Transport in Semiconductors. In: Solid State Physics Suppl. 9 (eds. F. Seitz, D. Thornbull, H. Ehrenreich ). Academic Press, New York.Google Scholar
  8. Cook R. K., Frey J. (1982): COMPEL 1, 65.CrossRefGoogle Scholar
  9. Fischetti M. V., Laux S. E. (1989): Phys. Rev. b38, 9721.Google Scholar
  10. Forghieri A., Guerrieri R., Camoloni P., Gnudi A. Rudan M., Baccarani G. (1986): NUPAD Symposium, Santa Clara.Google Scholar
  11. Fukuma M., Übbing R. H. (1984): IEDM Digest 621.Google Scholar
  12. Hänsch W, Jacobs H. (1989): IEEE Electr. Device Lett. EDL7, 285.CrossRefGoogle Scholar
  13. Hänsch W., Miura-Mattausch M. (1986): J. Appl. Phys. 60, 650.CrossRefGoogle Scholar
  14. Hänsch W., Schmeisser C. (1989): J. Appl. Math. Phys. (ZAMP) 40, 440.CrossRefGoogle Scholar
  15. Hänsch W., Selberherr S. (1986): IEEE Trans. Electr. Devices ED34, 1074.CrossRefGoogle Scholar
  16. Hilsum C. (1974): Electron. Lett. 10, 259.CrossRefGoogle Scholar
  17. Houston P. A., Evans A. G. (1977): Solid State Electr. 20, 197.CrossRefGoogle Scholar
  18. Jacoboni C, Lugli P. (1989): The Monte Carlo Method for Semiconductor Device Simulation. In: Computational Microelectronics (ed. S. Selberherr ). Springer, Wien.Google Scholar
  19. Jaggi R. (1969): Helv. Phys. Acta 42, 941.Google Scholar
  20. Madelung O. (1978): Introduction to Solid State Theory. Springer Series in Solid State Science Vol. 2. Springer, Berlin.Google Scholar
  21. Mahan G. D. (1981): Many-Particle Physics. Plenum, New York.Google Scholar
  22. Maloney T. J., Frey J. (1977): J. Appl. Phys. 48, 781.CrossRefGoogle Scholar
  23. Nakagawa A. (1986): IEEE Trans. Electr. Devices ED33, 167.CrossRefGoogle Scholar
  24. Nichols K. H., Yee C. M., Wolfe C. M. (1980): Solid State Electr. 23, 109.CrossRefGoogle Scholar
  25. Ohmi T. (1967): Proc. IEEE, October 1967.Google Scholar
  26. Onsager L. (1931a): Phys. Rev. 37, 405.CrossRefGoogle Scholar
  27. Onsager L. (1931b): Phys. Rev. 38, 2265.CrossRefGoogle Scholar
  28. Reggiani L., Brunetti R., Normantes E. (1986): J. Appl. Phys. 59, 1212.CrossRefGoogle Scholar
  29. Ruch J., Kino G. (1968): Phys. Rev. 174, 921.CrossRefGoogle Scholar
  30. Selberherr S. (1984): Analysis and Simulation of Semiconductor Devices. Springer, Wien.Google Scholar
  31. Stratton R. (1957): Proc. R. Soc. A242, 355.CrossRefGoogle Scholar
  32. Thoma R., Emunds A, Meinerzhagen B., Pfeifer H., Engl W. L. (1989): IEDM 89 Technical Digest 139.Google Scholar
  33. Wingreen N. S., Stanton C. B, Wilkins W. (1986): Phys. Rev. Lett. 57, 1084.CrossRefGoogle Scholar
  34. Yourgau W., Van Der Merwe A., Raw G. (1982): Treatise on Irreversible and Statistical Thermophysics. Dover, New York.Google Scholar

Copyright information

© Springer-Verlag/Wien 1991

Authors and Affiliations

  • Wilfried Hänsch
    • 1
  1. 1.CharlotteUSA

Personalised recommendations