Advertisement

Abstract

The dithiophenes and trithiophenes reviewed in this article are part of a large group of biogenetieally related molecules found in plants of the family Compositae (Asteraceae). They include compounds having a variable number of unsaturations, particularly double bonds and triple bonds, which occur singly or in combinations. The first report of a naturally occurring trithiophene, α-terthienyl in the flowers of Tagetes erecta, appeared in 1947 (270); the first naturally occurring dithiophene was isolated from Bidens radiata and described in 1961 (142). The book Naturally Occurring Acetylenes, by BOHLMANN et al (29), is a superb review of the field up to 1972. Interestingly, out of its more than 500 pages, only two were devoted to physiological and pharmacological aspects. BOHLMANN and ZDERO later contributed one chapter, “Naturally Occurring Thiophenes”, to a volume Thiophenes and its Derivatives which appeared in 1985 (57). This chapter presents a survey of such thiophenes based on biogenetic considerations, includes an extensive analysis of the distribution of these compounds, and discusses methods of analysis based on UV, 1H-NMR, 13C-NMR, and mass spectra. The most recent references in the chapter came from publications appearing in 1981.

Keywords

Singlet Oxygen Thiophene Ring Magnetic Circular Dichroism Grignard Reagent Generate Singlet Oxygen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnason, T., G.F.Q. Chan, C.K. Wat, K. Downum, and G.H.N. Towers: Oxygen Requirement for Near-UV Mediated Cytotoxicity of α-Terthienyl to Escherichia coli and Saccharomyces cerevisiae. Photochem. Photobiol. 33, 821 (1981).Google Scholar
  2. 2.
    Arnason, J.T., B.J.R. Philogene, C. Berg, A. Maceachern, J. Kaminski, L.C. Leitch, P. Morand, and J. Lam: Phototoxicity of Naturally Occurring and Synthetic Thiophene and Acetylene Analogues to Mosquito Larvae. Phytochem. 25, 1609 (1986).Google Scholar
  3. 3.
    Arnason, J.T., B.J.R. Philogene, F. Duval, C.W. Berg, S. Iyengar, and P. Morand: Efficacy of Formulations of the Phototoxic Insecticide, α-Terthienyl Towards Aedes spp. Bioact. Mol. (Chem. Biol. Nat.-Occurring Acetylenes Relat. Compd.) 7, 305 (1988).Google Scholar
  4. 4.
    Arnason, J.T., B.J.R. Philogene, P. Morand, K. Imrie, S. Iyengar, F. Duval, C. Soucy-Breau, J.C. Scaiano, N.H. Werstiuk, B. Hasspieler, and A.E.R. Downe: Naturally Occurring and Synthetic Thiophenes as Photoactivated Insecticides. ACS Symp. Ser. 339, 164 (1989).Google Scholar
  5. 5.
    Arnason, J.T., B.J.R. Philogene, P. Morand, J.C. Scaiano, N. Werstiuk, and J. Lam: Thiophenes and Acetylenes: Phototoxic agents to Herbivorous and Blood-feeding Insects. ACS Symp. Ser. 339, 255 (1987).Google Scholar
  6. 6.
    Arnason, T., J.R. Stein, E. Graham, C.K. Wat, G.H.N. Towers, and J. Lam: Phototoxicity to Selected Marine and Freshwater Algae of Polyacetylenes from Species in the Asteraceae. Can. J. Bot. 59, 54 (1981).Google Scholar
  7. 7.
    Arnason, T., T. Swain, C.-K. Wat, E.A. Graham, S. Partington, G.H.N. Towers, and J. Lam: Mosquito Larvicidal Activity of Polyacetylenes from Species in the Asteraceae. Biochim. Syst. Ecol. 9, 63 (1981).Google Scholar
  8. 8.
    Asano, T., S. Ito, N. Saito, and K. Hatakeda: A Simple Synthesis of 2,2′,5′,2″-Terthienyl. Heterocycles 6, 317 (1977).Google Scholar
  9. 9.
    Ashwood-Smith, M.J., G.A. Poulton, O. Ceska, M. Liu, and E. Furniss: An ultrasensitive Bioassay for the Detection of Furanocoumarins and Other Photosensitizing Molecules. Photochem. Photobiol. 38, 113 (1983).Google Scholar
  10. 10.
    Atkinson, R.E.: Bi- and Terthienyl Compounds as Fluorescent Whiteners. Brit. GB 1273986 10 May 1972.Google Scholar
  11. 11.
    Atkinson, R.E., R.F. Curtis, and G.T. Phillips: Bithienyl Derivatives from Tagetes minuta L. Tetrahedron Lett. 1964, 3159.Google Scholar
  12. 12.
    — — —: Naturally-Occurring Thiophenes. Bithienyls from Tagetes minuta L. J. Chem. Soc. 1965, 7109.Google Scholar
  13. 13.
    — — —: Naturally Occurring Thiophenes. IV. Synthesis of some 2,2′-Bithienyl Derivatives from Cuprous Acetylides. J. Chem. Soc. (C), 1967, 2011.Google Scholar
  14. 14.
    Bakker, J., F.J. Gommers, I. Nieuwenhuis, and H. Wynberg: Photoactivation of the Nematicidal Compound α-Terthienyl from Roots of Marigolds (Tagetes Species). A Possible Singlet Oxygen Role. J. Biol. Chem. 254, 1841 (1979).Google Scholar
  15. 15.
    Baldwin, J.E. Rules for Ring Closure. J.C.S. Chem. Commun. 1976, 734.Google Scholar
  16. 16.
    Barbieri, A.: Sensibilizadores Fluorescentes como Larvicidas. Accion Fotodinamica de la Luz. Riv. Malariol. 7, 456 (1928).Google Scholar
  17. 17.
    Bastos, M.M.S.M., A. Kijjoa, J.M. Cardoso, A.B. Gutierrez, and W. Herz: Lignans and Other Constituents of Centaurea sphaerocephala ssp. polyacantha. Planta Med. in press (1990).Google Scholar
  18. 18.
    Bazin, M., R. Santus, and J. Kagan: Unpublished results.Google Scholar
  19. 19.
    Bennett, W.J., J.L. Maas, S.A. Sweeney, and J. Kagan: Phototoxicity in Aquatic Organisms: the Protecting effect of Beta-Carotene. Chemosphere 15, 781 (1986).Google Scholar
  20. 20.
    Bestmann, H. J., and W. Schaper: Reaktionen von Thioacylalkylidentriphenylphosphoranen-Eine neue Thiophensynthese. Tetrahedron Lett. 1979, 243.Google Scholar
  21. 21.
    Birnbaum, D., and B.E. Kohler: Lowest Energy Excited Singlet State of 2,2:5′,2″-Terthiophene, an Oligomer of Polythiophene. J. Chem. Phys. 90, 3506 (1989).Google Scholar
  22. 22.
    Bohlmann, F., M. Ahmed, R.M. King, and H. Robinson: Polyacetylenic Compounds. Part 262. Acetylenic Compounds from Bidens graveolens. Phytochemistry 22, 1281 (1983).Google Scholar
  23. 23.
    Bohlmann, F., W.R. Abraham, R.M. King, and H. Robinson: Polyacetylenic compounds. Part 257. Thiophene Acetylenes and Flavanols from Pterocaulon virgatum. Phytochemistry 20, 825 (1981).Google Scholar
  24. 24.
    Bohlmann, F., C. Arndt, K.M. Kleine, and H. Bornowski: Polyacetylenic Compounds. 69. The Acetylene Compounds of the Genus Echinops. Chem. Ber. 98, 155 (1965).Google Scholar
  25. 25.
    Bohlmann, F., C. Arndt, K.M. Kleine, and M. Wotschokowsky: Polyacetylenic Compounds. 75. New Constituents from Bidens Species. Chem. Ber. 98, 1228 (1965).Google Scholar
  26. 26.
    Bohlmann, F., R.N. Baruah, and X. Dominguez: A Further Dithienyl Derivative from Porophyllum scoparia. Planta Med. 1, 77 (1985).Google Scholar
  27. 27.
    Bohlmann, F., and E. Berger: Polyacetylenic Compounds. 73. The Polyynes of the Genus Buphthalmum. Chem. Ber. 98, 883 (1965).Google Scholar
  28. 28.
    Bohlmann, F., and E. Bresinsky, Polyacetylenic Compounds. 120. Conversion of Reactive Acetylene Compounds with Sulfur Compounds. Chem. Ber. 100, 107 (1967).Google Scholar
  29. 29.
    Bohlmann, F., T. Burkhardt, and C. Zdero: Naturally Occurring Acetylenes, New York: Academic Press (1973).Google Scholar
  30. 30.
    Bohlmann, F., et al: Unpublished results in reference (29).Google Scholar
  31. 31.
    Bohlmann, F., et al.: Unpublished results in reference (57).Google Scholar
  32. 32.
    Bohlmann, F., U. Fritz, R.M. King, and H. Robinson: Naturally Occurring Terpene Derivatives. Part 301. Fourteen Heliangolides from Calea Species. Phytochemistry 20, 743 (1981).Google Scholar
  33. 33.
    Bohlmann, F., and M. Grenz: Naturally Occurring Terpene Derivatives. Part 172. A New Germacranolide from Munnozia maronii. Phytochemistry 18, 334 (1979).Google Scholar
  34. 34.
    Bohlmann, F., M. Grenz, M. Wotschokowsky, and E. Berger: Polyacetylene Compounds. 134. New Thiophenacetylene Compounds. Chem. Ber. 100, 2518 (1967).Google Scholar
  35. 35.
    Bohlmann, F., R.K. Gupta, R.M. King, and H. Robinson: Naturally Occurring Terpene Derivatives. Part 448. Two Furanoheliangolides from Calea angusta. Phytochemistry 21, 2117 (1982).Google Scholar
  36. 36.
    Bohlmann, F., and P. Herbst: Polyacetylenic Derivatives. 43. The Constituents of Tagetes Species. Chem. Ber. 95, 2945 (1962).Google Scholar
  37. 37.
    Bohlmann, F., and U. Hinz: Polyacetylenic Compounds. 72. Biogenetic Conversions of Tridecenepentayne. Chem. Ber. 98, 876 (1965).Google Scholar
  38. 38.
    Bohlmann, F., J. Jakupovic, H. Robinson, and R.M. King: Polyacetylene Compounds. Part 258. A Dithienylacetylene from Porophyllum ruderale. Phytochemistry 19, 2760 (1980).Google Scholar
  39. 39.
    Bohlmann, F., and K.M. Kleine: Polyacetylenic Compounds. 47. The Polyynes from Flaveria rependa. Chem. Ber. 96, 1229 (1963).Google Scholar
  40. 40.
    Bohlmann, F., K.M. Kleine, and C. Arndt: Polyacetylene Compounds. 57. Naturally Occurring Thiopheneacetylene Compounds. Chem. Ber. 97, 2125 (1964).Google Scholar
  41. 41.
    Bohlmann, F., N. Le Van, and J. Pickardt: Naturally Occurring Terpene Derivatives, 108. An Anomalous Sesquiterpene from Berkhey a radula (Harv.) De Willd. Chem. Ber. 110, 3777 (1977).Google Scholar
  42. 42.
    Bohlmann, F., M. Lonitz, and K.H. Knoll: New lignan derivatives from the Heliantheae family. Phytochemistry 17, 330 (1978).Google Scholar
  43. 43.
    Bohlmann, F., and D. Mohammadi: A Further Bithienyl Derivative from Berkheya zeyheri. Phytochemistry 22, 2856 (1983).Google Scholar
  44. 44.
    Bohlmann, F., D. Mohammadi, and J. Jakupovic: Sesquiterpene Lactones from Berkheya species. Planta Med. 50, 192 (1984).Google Scholar
  45. 45.
    Bohlmann, N. Le Van, V.C.P. Thi, J. Jacupovic, A. Schuster, V. Zabel, and W.H. Watson: Naturally Occurring Terpene Derivatives. 226. β-Isocomene, a New Sesquiterpene from Berkheya species. Phytochemistry 18, 1831 (1979).Google Scholar
  46. 46.
    Bohlmann, F., K.M. Rode, and C. Zdero: Polyacetylenic Compounds. 121. Polyyines from Helenieae Tribe. Chem. Ber. 100, 537 (1967).Google Scholar
  47. 47.
    Bohlmann, F., and A. Suwita: Polyacetylenic compounds. 231. Further Constituents from Species of the Tribe Arctotideae. Chem. Ber. 108, 515 (1975).Google Scholar
  48. 48.
    — — —: A new Guaianolide and a Secoguaianolide from Helicrysum splendidum. Phytochem. 18, 885 (1979).Google Scholar
  49. 49.
    Bohlmann, F., M. Wotschokowsky, U. Hinz, and W. Lucas: Polyacetylenic Compounds. 95. Biogenesis of Certain Thiophene Compounds. Chem. Ber. 99, 984 (1966).Google Scholar
  50. 50.
    Bohlmann, F., and C. Zdero: Polyacetylene Compounds. 173. Constituents of Eclipta erecta. Chem. Ber. 103, 834 (1970).Google Scholar
  51. 51.
    — —: Polyacetylene Compounds. 190. Constituents of Buphthalmum salicifolium. Chem. Ber. 104, 958 (1971).Google Scholar
  52. 52.
    — —: Polyacetylene Compounds. 205. On the Constituents of the Tribe Arctotideae. Chem. Ber. 105, 1245 (1972).Google Scholar
  53. 53.
    — —: Polyacetylenic Compounds, 238. On the Constituents of the genus Dyssodia. Chem. Ber. 109, 901 (1976).Google Scholar
  54. 54.
    — —: On the Constituents of the Tribe Mutisieae. Phytochem. 16, 239 (1977).Google Scholar
  55. 55.
    — —: New Germacrolides from Platycarpha glomerata. Phytochem. 16, 1832 (1977).Google Scholar
  56. 56.
    — —: Naturally Occurring Terpene Derivatives. Part 173. Dimeric Terpene Ketones from Tagetes gracilis. Phytochemistry 18, 341 (1979).Google Scholar
  57. 57.
    — —: Naturally Occurring Thiophenes. In: The Chemistry of Heterocyclic Compounds. Vol 44: Thiophenes and its Derivatives (Gronowitz, S., ed.), p 261. New York: John Wiley & Sons (1985).Google Scholar
  58. 58.
    Bohlmann, F., C. Zdero, W.R. Abraham, A. Suwita, and M. Grenz: Naturally Occurring Terpene Derivatives. Part 256. New Diterpene and new Dihydrochalcone Derivatives Together with Further Components from Helichrysum species. Phytochemistry 19, 873 (1980).Google Scholar
  59. 59.
    Bohlmann, F., C. Zdero, and W. Gordon: Polyacetylene Compounds. 123. Components of Berkheya adlami. Chem. Ber. 100, 1193 (1967).Google Scholar
  60. 60.
    Bohlmann, F., C. Zdero, and M. Grenz: Polyacetylene Compounds. Part 241. Constituents of some Genera of the Tribes Helenieae and Senecioneae. Phytochemistry 15, 1309 (1976).Google Scholar
  61. 61.
    Bohlmann, F., C. Zdero, R.M. King, and H. Robinson: Naturally Occurring Terpene Derivatives. Part 469. Thymol Derivatives from Porophyllum riedelii. Phytochemistry 22, 1035 (1983).Google Scholar
  62. 62.
    Bohlmann, F., C. Zdero, and N. Le Van: Naturally Occurring Terpene Derivatives. Part 168. New Geranylcoumarin Derivatives and Further Constituents of the tribe Mutisieae. Phytochemistry 18, 99 (1979).Google Scholar
  63. 63.
    Bohlmann, F., C. Zdero, and P. Mahanta: Naturally-Occurring Terpene Derivatives. Part 105. New Diterpenes from Dimorphotheca and Viguiera Species. Phytochemistry 16, 1073 (1977).Google Scholar
  64. 64.
    Bohlmann, F., C. Zdero, and M. Silva: Two Further Eremophylane Derivatives from Tessaria absynthioides. Phytochem. 16, 1302 (1977).Google Scholar
  65. 65.
    Borovsky, D., J.R. Linley, and J. Kagan: Polycyclic Aromatic Compounds as Phototoxic Larvicides. J. Am. Mosq. Control Assoc. 3, 246 (1987).Google Scholar
  66. 66.
    Bryzgis, M., S.N. Dhawan, J. Kagan, K. Reid, S.P. Singh, and L. Tow: The Reaction of Phosphorus Pentachloride with 2-Acetylthiophene and Acetophenone. J. Org. Chem. 48, 703 (1983).Google Scholar
  67. 67.
    Campbell, G., J.D.H. Lambert, T. Arnason, and G.H.N. Towers: Allelopathic Properties of α-Terthienyl and Phenylheptatriyne. Naturally Occurring Compounds from Species of Asteraceae. J. Chem. Ecol. 8, 961 (1982).Google Scholar
  68. 68.
    Carpita, A., and R. Rossi: Palladium-Catalyzed Syntheses of Bi- and Terthiophenes. Gazz. Chim. Ital 115, 575 (1985).Google Scholar
  69. 69.
    Carpita, A., R. Rossi, and C.A. Veracini: Synthesis and Carbon-13 NMR Characterization of Some π-Excessive Heteropolyaromatic Compounds. Tetrahedron 41, 1919 (1985).Google Scholar
  70. 70.
    Castro, A. V., and C.O. Castro: Natural Derivatives of Thiophene in the Root of Tagetes microglosa. Rev. Latinoam. Quim. 9, 204 (1978).Google Scholar
  71. 71.
    Castro, C.O., and C.L. Munoz: Natural Thiophene Derivatives From the Roots of Tagetes jalisciencis. Rev. Latinoam. Quim. 13, 36 (1982).Google Scholar
  72. 72.
    Challenger, F., and J.L. Holmes: The Orientation of Substitution in the Isomeric Thiophthens. The Synthesis of Solid Thiophthen [Thiopheno(3′:2′-2:3)thiophen]. J. Chem. Soc. 1953, 1837.Google Scholar
  73. 73.
    Champagne, D.E., J.T. Arnason, B.J.R. Philogene, G. Campbell, and D.G. Mclachlan: Photosensitization and Feeding Deterrence of Euxoa messoria (Lepidoptera: Noctuiidae) by α-Terthienyl, a Naturally Occurring Thiophene from the Asteraceae. Experientia 40, 577 (1984).Google Scholar
  74. 74.
    Chan, G.F.Q., M.M. Lee, J. Glushka, and G.H.N. Towers: Photosensitizing Thiophenes in Porophyllum, Tessaria and Tagetes. Phytochemistry 18, 1566 (1979).Google Scholar
  75. 75.
    Chan, G.F.Q., M. Prihoda, G.H.N. Towers, and J.C. Mitchell: Phototoxicity Evoked by Alpha-Terthienyl. Contact Dermatitis 3, 215 (1977).Google Scholar
  76. 76.
    Chan, G.F.Q., G.H.N. Towers, and J.C. Mitchell: Ultraviolet-Mediated Antibiotic Activity of Thiophene Compounds of Tagetes. Phytochemistry 14, 2295 (1975).Google Scholar
  77. 77.
    Chodkiewicz, W.: Contribution to the Synthesis of Acetylenic Compounds. Ann. Chimie 1957, 819.Google Scholar
  78. 78.
    Cooper, G.K., and C.I. Nitsche: Alpha-Terthienyl, Phototoxic Allelochemical. Review of Research on its Mechanism of Action. Bioorg. Chem. 13, 362 (1985).Google Scholar
  79. 79.
    Corey, E.J., and P.L. Fuchs: A Synthetic Method for Formyl→Ethynyl conversion. Tetrahedron Lett. 1972, 3769.Google Scholar
  80. 80.
    Cosio, E.G., R.A. Norton, E. Towers, A.J. Finlayson, E. Rodriguez, and G.H.N. Towers: Production of Antibiotic Thiarubrines by a Crown Gall Tumor Line of Chaenactis douglasii. J. Plant Physiol. 124, 155 (1986).Google Scholar
  81. 81.
    Couture, A., and A. Lablache-Combier: Thiophene Chemistry. Chem. Commun. 1969, 524.Google Scholar
  82. 82.
    Croes, A.F., M. Bosveld, and G.J. Wullems: Control of Thiophene Accumulation in Tagetes. Bioact. Mol. (Chem. Biol. Nat.-Occurring Acetylenes Relat. Compd.) 7, 255 (1988).Google Scholar
  83. 84.
    Daniels, Jr., F.: A Simple Microbiological Method for Demonstrating Phototoxic Compounds. J. Invest. Dermatol. 44, 259 (1965).Google Scholar
  84. 85.
    Daub, M.E.: The Fungal Photosensitizer Cercosporin and its Role in Plant Disease. A.C.S. Symp. Ser. 339, 271 (1987).Google Scholar
  85. 86.
    Daulton, R.A.C., and R.F. Curtis: The Effects of Tagetes spp. on Meloidogyne javanica in Southern Rhodesia. Nematologica 9, 357 (1963).Google Scholar
  86. 87.
    D’auria, M., A. De Mico, F. D’onofrio, and G. Piancatelli: Photochemical Approach to Naturally Occurring Bithiophenes. Synthesis of a Bithienyl Component of Tagetes erecta. Gazz. Chim. Ital 116, 747 (1986).Google Scholar
  87. 88.
    — — —: Synthesis of Naturally Occurring Bithiophenes: a Photochemical Approach. J. Org. Chem. 52, 5243 (1987).Google Scholar
  88. 89.
    — — —: Photochemical Synthesis of 5-Ethynyl-5′-(l-propynyl)-2,2′-bithiophene. Synth. Commun. 17, 491 (1987).Google Scholar
  89. 90.
    — — —: Photochemical Synthesis of Bithienyl derivatives. J. Chem. Soc., Perkin Trans. I, 1987 1777.Google Scholar
  90. 91.
    Davies, G.M., P.S. Davies, W.E. Paget, and J.M. Wardleworth: Borinic Acids: Novel intermediates in Regiospecific Synthesis of Biaryls. Tetrahedron Lett. 1976, 795.Google Scholar
  91. 92.
    Dhawan, S.N., J. Jaworski, and J. Kagan: The Singlet Oxygen Sensitizing Ability of Several Butadiynes and Thiophene Derivatives Compared to 8-Methoxypsoralen and Methylene Blue. Photobiophys. Photobiochem. 8, 25 (1984).Google Scholar
  92. 93.
    Dicosmo, F., R.A. Norton, and G.H.N. Towers: Fungal Culture-Filtrate Elicits Aromatic Polyacetylenes in Plant Tissue Culture. Naturwiss. 69, 550 (1982).Google Scholar
  93. 94.
    Dicosmo, F., G.H.N. Towers, and J. Lam: Photoinduced Fungicidal Activity Elicited by Naturally Occurring Thiophene Derivatives. Pestic. Sci. 13, 589 (1982).Google Scholar
  94. 95.
    Dominguez, X.A., G. Vazquez, and R.N. Baruah: Constituents from Chrysactinia mexicana. J. Nat. Prod. 48, 681 (1985).Google Scholar
  95. 96.
    Downum, K.R.: Personal Communication.Google Scholar
  96. 97.
    Downum, K.R., R.E.W. Hancock, and G.H.N. Towers: Mode of Action of α-Terthienyl on Escherichia coli: Evidence for a Photodynamic Effect on Membranes. Photochem. Photobiol. 36, 517 (1982).Google Scholar
  97. 98.
    Downum, K.R., R.E.W. Hancock, and G.H.N. Towers: Photodynamic Action on Escherichia coli of Natural Acetylenic Thiophenes, Particularly 5-(buten-l-ynyl)-2,2′-bithienyl. Photobiochem. Photobiophys. 6, 145 (1983).Google Scholar
  98. 99.
    Downum, K.R., D.J. Keil, E. Rodriguez: Distribution of Acetylenic Thiophenes in the Pectidinae. Biochem. Syst. Ecol. 13, 109 (1985).Google Scholar
  99. 100.
    Downum, K.R., D. Provost, and L. Swain: Acetylenic Thiophenes and C4 Photosynthesis: Their Evolutionary Relationship in the Asteraceae. Bioact. Mol. (Chem. Biol. Nat-Occurring Acetylenes Relat. Compd.) 7, 151 (1988).Google Scholar
  100. 101.
    Downum, K.R., G.A. Rosenthal, and G.H.N. Towers: Phototoxicity of the Allelochemical, α-terthienyl, to larvae of Manduca sexta (L.) (Sphingidae). Pest. Biochem. Physiol. 22, 104 (1984).Google Scholar
  101. 102.
    Downum, K.R., and G.H.N. Towers: Analysis of Thiophenes in the Tageteae (Asteraceae) by HPLC. J. Nat. Prod. 46, 98 (1983).Google Scholar
  102. 103.
    Evans, C.H., and J.C. Scaiano: Photochemical Generation of Radical Cations from α-Terthienyl and Related Thiophenes: Kinetic Behavior and Magnetic Field Effects on Radical-Ion Pairs in Micellar Solution. J. Am. Chem. Soc. 112, 2694–2701 (1990).Google Scholar
  103. 104.
    Evans, C., D. Weir, J.C. Scaiano, A. Mac Eachern, J.T. Arnason, P. Morand, B. Hellebone, L.C. Leitch, and B.J.R. Philogene. Photochemistry of the Botanical Phototoxin α-Terthienyl and Some Related Compounds. Photochem. Photobiol. 44, 441 (1986).Google Scholar
  104. 105.
    Flores, H.E., J.J. Pickard, and M.W. Hoy: Production of Polyacetylenes and Thiophenes in Heterotrophic and Photosynthetic Root Cultures of Asteraceae. Bioact. Mol. (Chem. Biol. Nat.-Occurring Acetylenes Relat. Compd.) 7, 233 (1988).Google Scholar
  105. 106.
    Foote, C.S.: Type I and Type II Mechanisms of Photodynamic Action. ACS Symp. Ser. 339, 22 (1987).Google Scholar
  106. 107.
    Garcia, F.J., E. Yamamoto, Z. Abramowski, K. Downum, and G.H.N. Towers: Comparison of the Phototoxicity of α-Terthienyl with that of a Selenium and of an Oxygen Analogue. Photochem. Photobiol. 39, 521 (1984).Google Scholar
  107. 108.
    Gommers, F.J.: Increase of the Nematocidal Activity of α-Terthienyl and Related Compounds by Light. Nematologica 18, 458 (1972).Google Scholar
  108. 109.
    —: Nematocidal Principles in Compositae. Meded. Landbouwhogesch. Wageningen 73–17, 1 (1973).Google Scholar
  109. 110.
    Gommers, F.J., and J. Bakker: Mode of Action of α-Terthienyl and Related Compounds May Explain the Suppressant Effects of Tagetes species on Populations of Free Living Endoparasitic Plant Nematodes. Bioact. Mol. (Chem. Biol. Nat.-Occurring Acetylenes Relat. Compd.) 7, 61 (1988).Google Scholar
  110. 111.
    — —: Physiological Diseases Induced by Plant Responses or Products. In: Diseases of Nematodes (G.O. Poinar, Jr. and H.-B. Jansson, eds), Vol 1, p. 1. Boca Raton, FA: CRC Press. (1989).Google Scholar
  111. 112.
    Gommers, F.J., J. Bakker, and L. Smits: Effects of Singlet Oxygen Generated by the Nematicidal Compound α-Terthienyl from Tagetes on the Nematode Aphelenchus avenae. Nematologica 26, 369 (1980).Google Scholar
  112. 113.
    Gommers, F.J., J. Bakker, and H. Wynberg. Dithiophenes as Singlet Oxygen Sensitizers. Photochem. Photobiol. 35, 615 (1982).Google Scholar
  113. 114.
    Gommers, F.J., and D.J.M. Voor in ’T Holt: Chemotaxonomy of Compositae Related to Their Host Suitability for Pratylenchus penetrans. Neth. J. PL Path. 82, 1 (1976).Google Scholar
  114. 115.
    Gong, H.-H., J. Kagan, R. Seitz, A.B. Stokes, F.A. Meyer, and R.W. Tuveson: The Phototoxicity of Phenylheptatriyne: Oxygen Dependent Hemolysis of Human Erythrocytes and Inactivation of Escherichia coli. Photochem. Photobiol. 47, 55 (1988).Google Scholar
  115. 116.
    Graham, K., E.A. Graham, and G.H.N. Towers. Cercaricidal Activity of Phenylheptatriyne and α-Terthienyl, Naturally Occurring Compounds in Species of Asteraceae (Compositae). Can. J. Zool. 58, 1955 (1980).Google Scholar
  116. 117.
    Groneman, A.F., M.A. Posthumus, L.G.M.T. Tuinstra, and W.A. Traag: Identification and Determination of Metabolites in Plant Cell Biotechnology by Gas Chromatography and Gas Chromatography/Mass Spectrometry. Application to Nonpolar Products of Chrysanthemum cinerariaefolium and Tagetes species. Anal. Chim. Acta 163, 43 (1984).Google Scholar
  117. 118.
    Handelé, M.J.: The Synthesis, Spectra and Nematocidal Activity of 1,2-Dithienyl-ethenes and l-Phenyl-2-Thienylethenes. Thesis, Wageningen Agricultural University, The Netherlands (1972).Google Scholar
  118. 119.
    Harvey, Jr., J.: Method for the Control of Plant Growth. US Pat 3,086,854, Apr. 23, 1963.Google Scholar
  119. 120.
    Hasspieler, B.M., J.T. Arnason, and A.E.R. Downe. Toxicity, Localization and Elimination of the Phototoxin, Alpha-Terthienyl, in Mosquito Larvae. J. Am. Mosq. Control Assoc. 4, 479 (1988).Google Scholar
  120. 121.
    Helsper, J.P.F.G., D.H. Ketel, A.C. Hulst, and H. Breteler: Production and Secretion of Thiophenes by Differentiated Cell Cultures of Tagetes. Bioact. Mol. (Chem. Biol. Nat.-Occurring Acetylenes Relat. Compd.) 7, 279 (1988).Google Scholar
  121. 122.
    Herz, W., P. Kulanthaivel, and V.L. Goedken: Structures of the Ratibidanolides, Sesquiterpene Lactones With a New Carbon Skeleton, and Unusual Xanthanolides from Ratibida columnifera. J. Org. Chem. 50, 610 (1985).Google Scholar
  122. 123.
    Hogstad, S., J. Loehre, and T. Anthonsen: Possible Confusion of Pyrethrins with Thiophenes in Tagetes Species. Acta Chem. Scand., Ser. B B38, 902 (1984).Google Scholar
  123. 124.
    Horn, D.H.S., and J.A. Lamberton: The Nematocidal Principles of Tagetes Roots. Austral. J. Chem. 16, 475 (1963).Google Scholar
  124. 125.
    Hotz, C.Z., P. Kovacic, I.A. Khoury: Synthesis and Properties of Polythienylenes. J. Polym. Sci., Polym. Chem. Ed. 21, 2617 (1983).Google Scholar
  125. 126.
    Hudson, J.B.: Antiviral Compounds from Plants. Boca Raton, FA: CRC Press (1989).Google Scholar
  126. 127.
    —: Plant Photosensitizers with Antiviral Properties. Antivir. Res. 12, 55 (1989).Google Scholar
  127. 128.
    Hudson, J.B., E.A. Graham, G. Chan, A.J. Finlayson, and G.H.N. Towers: Comparison of the Antiviral Effects of Naturally Occurring Thiophenes and Polyacetylenes. Planta Medica 6, 453 (1986).Google Scholar
  128. 129.
    Hudson, J.B., E.A. Graham, N. Miki, L. Hudson, and G.H.N. Towers: Antiviral Activity of the Photoactive Thiophene α-Terthienyl. Photochem. Photobiol. 44, 477 (1986).Google Scholar
  129. 130.
    Hudson, J.B., E.A. Graham, N. Miki, G.H.N. Towers, L.L. Hudson, R. Rossi, A. Carpita, and D. Neri (1989) Photoactive Antiviral and Cytotoxic Activities of Synthetic Thiophenes and Their Acetylenic Derivatives. Chemosphere 18, 2317 (1989).Google Scholar
  130. 131.
    Hudson, J.B., E.A. Graham, and G.H.N. Towers: Investigation of the Antiviral Action of the Photoactive Compound Phenylheptatriyne. Photochem. Photobiol. 43, 27 (1986).Google Scholar
  131. 132.
    Hudson, J.B., and G.H.N. Towers: Antiviral Properties of Photosensitizers. Photochem. Photobiol. 48, 289 (1988).Google Scholar
  132. 133.
    Hudson, J.B., G.H.N. Towers, Z. Abramowski, L. Hudson, R. Rossi, A. Carpita, and D. Neri: Ultraviolet-Mediated Antibiotic Activity of Synthetic Thiophenes and their Acetylenic Derivatives. Chemosphere 18, 2317 (1989).Google Scholar
  133. 134.
    Ito, Y., T. Konoike, and T. Saegusa. Synthesis of 1,4-Diketones by the Reaction of Silyl Enol Ethers with Ag2O. A Regiospecific Formation of Silver (I) Enolate Intermediates. J. Amer. Chem. Soc. 97, 649 (1975).Google Scholar
  134. 135.
    Iyengar, S., J.T. Arnason, B.J.R. Philogene, P. Morand, N.H. Werstiuk, and G. Timmins: Toxicokinetics of the Phototoxic Allelochemical Alpha-Terthienyl in Three Herbivorous Lepidoptera. Pestic. Biochem. Physiol. 29, 1 (1987).Google Scholar
  135. 136.
    Jain, S., and P. Singh: A Dithienylacetylene Ester from Eclipta erecta Linn. Indian J. Chem., Sect. B 27B, 99 (1988).Google Scholar
  136. 137.
    Jakupovic, J., N. Misra, T.V. Chau Thi, F. Bohlmann, and V. Castro: Cuauthemone Derivatives from Tessaria integrifolia and Pluchea symphytifolia. Phytochemistry 24, 3053 (1985).Google Scholar
  137. 138.
    Jayasuriya, N.: Polythiophenes: Synthetic Approaches. Diss. Abstr. Int. B. 49, 3196 (1988).Google Scholar
  138. 139.
    Jayasuriya, N., and J. Kagan: The Synthesis of Bithienyls and Terthienyls by Nickel-Catalyzed Coupling of Grignard reagents. Heterocycles 24, 2261 (1986).Google Scholar
  139. 140.
    — —: The Synthesis of 2,3′:2′,3″-, 2,3′:4′,3″-, 2,3′:5′,3″-, and 2,2′:4′,3″-Terthienyls. Heterocycles 24, 2901 (1986).Google Scholar
  140. 141.
    Jayasuriya, N., J. Kagan, J.E. Owens, E.P. Kornak, and D.M. Perrine. The Photocyclization of Terthiophenes. J. Org. Chem. 54, 4203 (1989).Google Scholar
  141. 142.
    Jensen, S. L., and N. A. Sörensen: Studies Related to Naturally Occurring Acetylene Compounds. 29. Preliminary Investigations in the Genus Bidens: I. Bidens radiata Thuill and Bidens ferulaefolia (Jacq.) DC. Acta Chim. Scand. 15, 1885 (1961).Google Scholar
  142. 143.
    Jente, R., E. Richter, F. Bosold, and G.A. Olatunji: Experiments on Biosynthesis and Metabolism of Acetylenes and Thiophenes. Bioact. Mol. (Chem. Biol. Nat.-Occurring Acetylenes Relat. Compd.) 7, 187 (1988).Google Scholar
  143. 144.
    Jente, R., G.A. Olatunji, and F. Bosold: Formation of Natural Thiophene Derivatives from Acetylenes by Tagetes patula. Phytochemistry 20, 2169 (1981).Google Scholar
  144. 145.
    Kagan, J., et al. Unpublished Results.Google Scholar
  145. 146.
    Kagan, J., and S.K. Arora: 2,5-Di(2′-thienyl)furan and an Improved Synthesis of Alpha-Terthienyl. Heterocycles 20, 1941 (1983).Google Scholar
  146. 147.
    — —: The Synthesis of Alpha-Thiophene Oligomers by Oxidative Coupling of 2-Lithiothiophenes. Heterocycles 20, 1937 (1983).Google Scholar
  147. 148.
    — —: The Synthesis of Alpha-Thiophene Oligomers via Organoboranes. Tetrahedron Letters 24, 4043 (1983).Google Scholar
  148. 149.
    Kagan, J., S.K. Arora, and A. Ustunol: 2,2′:5′,2″-Terthiophene-5-carboxylic acid and 2,2′: 5′,2″-Terthiophene-5,5″-dicarboxylic acid. J. Org. Chem. 48, 4076 (1983).Google Scholar
  149. 150.
    Kagan, J., M. Bazin, and R. Santus. Photosensitization with α-Terthienyl: Production of Superoxide Ion in Aqueous Media. J. Photochem. Photobiol. B. 3, 165 (1989).Google Scholar
  150. 151.
    Kagan, J., W.J. Bennett, E.D. Kagan, J.L. Maas, S.A. Sweeney, I.A. Kagan, E. Seigneurie, and V. Bindokas: Alpha-terthienyl as Photoactive Insecticide: Toxic Effects on Non-Target Organisms. ACS Symp. Ser. 339, 176 (1987).Google Scholar
  151. 152.
    Kagan, J., J.-P. Beny, G. Chan, S.N. Dhawan, J.A. Jaworski, E.D. Kagan, P.D. Kassner, M. Murphy, and J.A. Rogers, The Phototoxicity of Some 1,3-Butadiynes and Related Thiophenes Against Larvae of the Mosquito Aedes aegypti and the Fruitfly Drosophila melanogaster. Insect Sci. Application 4, 377 (1983).Google Scholar
  152. 153.
    Kagan, J., and G. Chan: The Photoovicidal Activity of Plant Components Toward Drosophila melanogaster. Experientia 39, 402 (1983).Google Scholar
  153. 154.
    Kagan, J., and R. Gabriel: Candida utilis as a Convenient and Safe Substitute for the Pathogenic Yeast Candida albicans in Daniels’ Phototoxicity Test. Experientia 36, 587 (1980).Google Scholar
  154. 155.
    Kagan, J., R. Gabriel, and S.A. Reed: Alpha-terthienyl, a Non-Photodynamic Phototoxic Compound. Photochem. Photobiol. 31, 465 (1980).Google Scholar
  155. 156.
    Kagan, J., M. Hasson and F. Grynspan: The Inactivation of Acetylcholinesterase by Alpha-Terthienyl and Ultraviolet Light. Studies in vitro and in Larvae of the Mosquito Aedes aegypti. Biochem. Biophys. Acta 802, 442 (1984).Google Scholar
  156. 157.
    Kagan, J., P.A. Kagan, and H. Buhse, Jr.: Light-Dependent Toxicity of Alpha-Terthienyl and Anthracene Toward Late Embryonic Stages of Rana pipiens. J. Chem. Ecol. 10, 1117 (1984).Google Scholar
  157. 158.
    Kagan, J., E.D. Kagan, and E. Seigneurie: Alpha-Terthienyl, a Powerful Fish Poison with Light-Dependent Activity. Chemosphere 15, 49 (1986).Google Scholar
  158. 159.
    Kagan, J., E. Kagan, S. Patel, D. Perrine, V. Bindokas: Light-Dependent Effects of Alpha-Terthienyl in Eggs, Larvae, and Pupae of Mosquito Aedes aegypti. J. Chem. Ecol. 13, 593 (1987).Google Scholar
  159. 160.
    Kagan, J., K. Tadema-Wielandt, G. Chan, S.N. Dhawan, J. Jaworski, I. Prakash, and S.K. Arora: Oxygen Requirement for Near-uv Mediated Cytotoxicity of Phenylheptatriyne to Escherichia coli. Photochem. Photobiol. 39, 465 (1984).Google Scholar
  160. 161.
    Kagan, J., and R.W. Tuveson: Are There any Photocytotoxic Reactions of Phenylheptatriyne Which are not Oxygen Dependent?. Bioact. Mol. (Chem. Biol. Nat.-Occurring Acetylenes Relat. Compd.) 7, 71 (1988).Google Scholar
  161. 162.
    Kato, A.: Secondary Organic-Electrolyte Battery. Jpn. Kokai Tokkyo Koho JP 61110975 A2 29 May 1986.Google Scholar
  162. 163.
    Kellogg, R.M., and H. Wynberg: The Photochemistry of Thiophenes. V. Investigation of Phenylthiophene Photorearrangements by Deuterium Labeling Techniques. J. Amer. Chem. Soc. 89, 3495 (1967).Google Scholar
  163. 164.
    Kellogg, R.M., and H. Wynberg: Quenching of an Excited Singlet State of 2-Phenylthiophene. Tetrahedron Letters 1968, 5895.Google Scholar
  164. 165.
    Ketel, D.H.: Accumulation of Thiophenes by Cell Cultures of Tagetes patula and the Release of 5-(4-Hydroxy-l-Butynyl)-2,2′-Bithiophene into the Medium. Planta Med. 54, 400 (1988).Google Scholar
  165. 166.
    Ketel, D.H., and H. Breteler: Morphogenesis and Thiophene Production in Cell Cultures of Tagetes species. Bioact. Mol. (Chem. Biol. Nat-Occurring Acetylenes Relat. Compd.) 7, 267 (1988).Google Scholar
  166. 167.
    Kooreman, H.J., and H. Wynberg. The Chemistry of Polythienyls. Part III. The Synthesis of Terthienyls. Rec. Trav. Chim. 86, 37 (1967).Google Scholar
  167. 168.
    Krishnaswamy, N.R., and S. Prasanna: Occurrence of Desmethylwedelolactone and 2-Formyl-α-Terthienyl in Eclipta alba and the Facile Oxidation of α-Terthienylmethanol. Indian J. Chem. 8, 761 (1970).Google Scholar
  168. 169.
    Krishnaswamy, N.R., T.R. Seshadri, B.R. Sharma: The Structure of a New Polythienyl from Eclipta alba. Tetrahedron Lett. 1966, 4227.Google Scholar
  169. 170.
    Lablache-Combier, A.: Photochemical Reactions of Thiophenes. In: Thiophene and its Derivatives, Part 1 (S. Gronowitz, ed.), p. 745. New York: John Wiley (1985).Google Scholar
  170. 171.
    Lam, J., and T. Thomasen: Complexing Agents for Protection of Highly Conjugated Compounds Against Photodegradation. Bioact. Mol. (Chem. Biol. Nat-Occurring Acetylenes Relat. Compd.) 7, 47 (1988).Google Scholar
  171. 172.
    Lin, J.W.P., and L.P. Dudek: Synthesis and Properties of Poly (2,5-Thienylene). J. Polym. Sci., Polym. Chem. Ed. 18, 2869 (1980).Google Scholar
  172. 173.
    Macrae, W.D., G.F.Q. Chan, C.-K. Wat, G.H.N. Towers, and J. Lam: Examination of Naturally Occurring Polyacetylenes and α-Terthienyl for Their Ability to Induce Cytogenetic Damage. Experientia 36, 1096 (1980).Google Scholar
  173. 174.
    Macrae, W.D., D.A.J. Irwin, T. Bisalputra, and G. H. N. Towers: Membrane Lesions in Human Erythrocytes Induced by the Naturally Occurring Compounds α-Terthienyl and Phenylheptatriyne. Photobiochem. Photobiophys. 1, 309–318 (1980).Google Scholar
  174. 175.
    Makjanic, J., R.D. Vis, A.F. Groneman, F.J. Gommers, and S. Henstra: Investigation of P and S Distribution in the Roots of Tagetes patula L. Using Micro-PIXE. J. Exp. Bot. 39, 1523 (1988).Google Scholar
  175. 176.
    Maldonado, Z., M. Hoeneisen, and M. Silva: A Dithiophene from Aphyllocladus denticulauts. Phytochemistry 27, 2993 (1988).Google Scholar
  176. 177.
    Mandoli, D.F. and W.R. Briggs, Fiber-Optic Plant Tissues: Spectral Dependence in Dark-Grown and Green Tissues. Photochem. Photobiol. 39, 709–715 (1984).Google Scholar
  177. 178.
    Marchant, Y.Y., and G.K. Cooper: Structure and Function Relationships in Polyacetylene Photoactivity. ACS Symp. Ser. 339, 241 (1987).Google Scholar
  178. 179.
    Marchant, Y.Y., and G.H.N. Towers: Phototoxicity of Polyacetylenes to Cryptococcus Laurentii. Biochem. Syst. Ecol. 14, 565 (1986).Google Scholar
  179. 180.
    — —; Phylloplane Fungi of Hawaiian Plants and their Photosensitivity to Polyacetylenes from Bidens Species. Biochem. Syst. Ecol. 15, 9 (1987).Google Scholar
  180. 181.
    McDougall, C., B.J.R. Philogene, J.T. Arnason, and N. Donskov. Comparative Effects of Two Plants Secondary Metabolites on Host-Parasitoid Association. J. Chem. Ecol. 14, 1239 (1988).Google Scholar
  181. 182.
    McLachlan, D., J.T. Arnason, B.R. Hollebone, and J. Lam: Excited States of Phototoxic Polyacetylenes Elucidated by Magnetic Circular Dichroism. Photobiochem. Photobiophys. 9, 233 (1985).Google Scholar
  182. 183.
    McLachlan, D., T. Arnason, and J. Lam: The Role of Oxygen in Photosensitizations with Polyacetylenes and Thiophene Derivatives. Photochem. Photobiol. 39, 177 (1984).Google Scholar
  183. 184.
    — — —: Structure-Function Relationships in the Phototoxicity of Acetylenes from the Asteraceae. Biochem. Syst. Ecol. 14, 17 (1986).Google Scholar
  184. 185.
    McRae, D.G., E. Yamamoto, and G.H.N. Towers: The Mode of Action of Polyacetylene and Thiophene Photosensitizers on Liposome Permeability to Glucose. Biochim. Biophys. Acta 821, 488 (1985).Google Scholar
  185. 186.
    Metschulat, G., and Sütfeld, R.: Acetyl-CoA: 4-Hydroxybutynylbithiophene O-Acetyltransferase from Tagetes patula Seedlings. Z. Naturforsch. 42, 885 (1987).Google Scholar
  186. 187.
    Moriarty, R.M., O. Prakash, and M. Duncan: Synthesis of 3,2′:5′,3″-Terthiophene and 2,5-Di(3′-Thienyl)furan. Synth. Commun. 15, 789 (1985).Google Scholar
  187. 188.
    Munoz, L.C., C.O. Castro, C.R. Lopez, A.R. Arias, F. Pignani, and J. Calzada: Potential Natural Nematocides from Plants of the Genus Tagetes (Compositae). Ing. Cienc. Quim. 6, 158 (1982).Google Scholar
  188. 189.
    Murase, M., A. Usuki, Y. Kitahara: Polymeric Photoelectric Transducer. Jpn. Kokai Tokkyo Koho JP 61125090 A2, 12 Jun 1986.Google Scholar
  189. 190.
    Nakayama, J., Y. Nakamura, T. Tajiri, and M. Hoshino: Preparation of Naturally Occurring α-Terthiophenes (2,2:5′,2″-Terthiophenes). Heterocycles 24, 637 (1986).Google Scholar
  190. 191.
    Norton, R.A., A.J. Finlayson, and G.H.N. Towers: Two Dithiacyclohexadiene Polyacetylenes form Chaenactis douglasii and Eriophyllum lanatum. Phytochemistry 24, 356 (1985).Google Scholar
  191. 192.
    — — —: Thiophene Production by Crown Gall and Callus Tissue of Tagetes patula. Phytochemistry 24, 719 (1985).Google Scholar
  192. 193.
    Obata, S., M. Youshikura, T. Washino: Components of the Roots of Arctium lappa. Nippon Nogei Kagaku Kaishi 44, 437–46 (1970).Google Scholar
  193. 194.
    Okuhara, K.: Introduction and Extension of Ethynyl Group using l,l-dichloro-2,2-Difluoroethylene. A Convenient Route to Lithium Acetylides and Derived Acetylenic Compounds. J. Org. Chem. 41, 1487 (1976).Google Scholar
  194. 195.
    Onishi, T., S. Yokoishi, and Y. Nonobe: Polythienylene Electrochromic Display Apparatus. Jpn. Kokai Tokkyo Koho JP 62288037 A2 14 Dec 1987.Google Scholar
  195. 196.
    Palaszek, M.: Biosynthesis of Polythienyls in Tagetes erecta. Diss. Abstr. B 27, 727 (1966).Google Scholar
  196. 197.
    Parodi, F.J., N.H. Fischer, and H.E. Flores: Benzofuran and Bithiophenes from Root Cultures of Tagetes patula. J. Nat. Prod. 51, 594 (1988).Google Scholar
  197. 198.
    Patrick, T.B., J.M. Disher, and W.J. Probst: Synthesis and Metalation of 2-Ethynylthiophene. J. Org. Chem. 37, 4467 (1972).Google Scholar
  198. 199.
    Patrick, T.B., and J.L. Honegger: Synthesis of 5-Ethynyl-2,2′-Bithienyl and Related Compounds. J. Org. Chem. 39, 3791 (1974).Google Scholar
  199. 200.
    Pensl, R. and Sütfeld, R.: Occurrence of 3,4-Diacetoxybutynylbithiophene in Tagetes patula and its Enzymatic Conversion. Z. Naturforsch. 40c, 3 (1985).Google Scholar
  200. 201.
    Philogene, B.J.R., J.T. Arnason, C.W. Berg, F. Duval, D. Champagne, R.G. Taylor, L.C. Leitch, and P. Morand: Synthesis and Evaluation of the Naturally Occurring Phototoxin, α-Terthienyl, as a Control Agent for Larvae of Aedes intrudens, Aedes atropalpus (Diptera: Culicidae) and Simulium verecundum (Diptera: Simuliidae). J. Econ. Entomol. 78, 121 (1985).Google Scholar
  201. 202.
    Philogene, B.J.R., J.T. Arnason, C. W. Berg, F. Duval, and P. Morand: Efficacy of the Plant Phototoxin α-Terthienyl Against Aedes intrudens and Effects on Non-Target Organisms. J. Chem. Ecol. 12, 893 (1986).Google Scholar
  202. 203.
    Rampone, W.M., J.L. McCullough, G.D. Weinstein, G.H.N. Towers, M.W. Berns, and N. Abeysekera: Characterization of Cutaneous Phototoxicity Induced by Topical Alpha-terthienyl and Ultraviolet A Radiation. J. Invest. Dermatol. 87, 354 (1986).Google Scholar
  203. 204.
    Reyftmann, J.P., J. Kagan, R. Santus, and P. Morliere. Excited State Properties of α-Terthienyl and Related Molecules. Photochem. Photobiol. 41, 1 (1985).Google Scholar
  204. 205.
    Rossi, R.: Highly Selective Syntheses of Naturally-Occurring Acetylenes and Their Structural Analogues by Palladium-Catalyzed Carbon-Carbon Bond Forming Reactions. Bioact. Mol. (Chem. Biol. Nat.-Occurring Acetylenes Relat. Compd.) 7, 29 (1988).Google Scholar
  205. 206.
    Rossi, R., Carpita, A., and A. Lezzi: Palladium-Catalyzed Synthesis of Naturally-Occurring Acetylenic Thiophenes and Related Compounds. Tetrahedron 40, 2773 (1984).Google Scholar
  206. 207.
    Rudisii, D.E., and J.K. Stille: Palladium-Catalyzed Synthesis of 2-Substituted Indoles. J. Org. Chem. 54, 5856 (1989).Google Scholar
  207. 208.
    Scaiano, J.C.: Personal Communication.Google Scholar
  208. 209.
    Scaiano, J.C., C. Evans, and J.T. Arnason: Characterization of the α-Terthienyl Radical Cation: Evidence Against Electron Transfer to Oxygen in vitro. J. Photochem. Photobiol., B: Biol. 3, 411 (1989).Google Scholar
  209. 210.
    Scheeren, J.W., P.H.J. Ooms, and R.J.F. Nivard: A General Procedure for the Conversion of a Carbonyl Group Into a Thione Group with Tetraphosphorus Decasulfide. Synthesis 1973, 149.Google Scholar
  210. 211.
    Scaiano, J.C., R.W. Redmond, B. Mehta, and J.T. Arnason: Efficiency of the Photoprocesses Leading to Singlet Oxygen (1Δg) Generation by α-Terthienyl: Optical Absorption, Optoacoustic Calorimetry and Infrared Luminescence Studies. Photochem. Photobiol. 54, 655 (1990).Google Scholar
  211. 212.
    Showa Denko K.K., Japan. Crystalline Poly(2,5-thienylene) and its Preparation. Jpn. Kokai Tokkyo Koho JP 59221330 A2, 12 Dec 1984.Google Scholar
  212. 213.
    Schuetz, R.D., T.B. Waggoner, and R.U. Byerrum: Biosynthesis of 2,2′;5′,2″-Terthienyl in the Common Marigold. Biochem. 4, 436 (1965).Google Scholar
  213. 214.
    Schulte, K.E., and S. Foerster: Is Bithienylbutynene the Biogenetic Precursor of α-Terthienyl? Tetrahedron Lett. 1966, 773.Google Scholar
  214. 215.
    Schulte, K.E., G. Henke, G. Rücker and S. Foerster: Beitrag zur Biogenese des α-Terthienyls. Tetrahedron 24, 1899 (1968).Google Scholar
  215. 216.
    Schulte, K.E., J. Reisch, and L. Hörner: Thiophene aus Alkinen, I. Chem. Ber. 95, 1943 (1962),Google Scholar
  216. 217.
    Selva, A., A. Arnone, R. Mondelli, V. Sprio, L. Ceraulo, S. Petruso, S. Plescia, and L. Lamartina: Cardopatine and Isocardopatine, Two Novel Cyclobutane substances from Cardopatium corymbosum. Phytochemistry 17, 2097 (1978).Google Scholar
  217. 218.
    Sinclair, J.A., and H.C. Brown: Synthesis of Unsymmetrical Conjugated Diynes via the Reaction of Lithium Dialkynyldialkylborates with Iodine. J. Org. Chem. 41, 1078 (1976).Google Scholar
  218. 219.
    Sinclair, J., and T. Arnason: The effect of Alpha-Terthienyl on Photosynthesis. Can. J. Bot. 60, 2565 (1982).Google Scholar
  219. 220.
    Singh, P.: Naturally-occurring Thiophene Derivatives from Eclipta Species. Bioact. Mol. (Chem. Biol. Nat.-Occurring Acetylenes Relat. Compd.) 7, 179 (1988).Google Scholar
  220. 221.
    Singh, P., A.K. Sharma, K.C. Joshi, and F. Bohlmann: A Further Dithienylacetylene from Eclipta erecta. Phytochemistry 24, 615 (1985).Google Scholar
  221. 222.
    Singh, S.P., P. Sharma and L.K. Vats: Light-Dependent Toxicity of the Extract of Plant Tagetes erecta and Alpha-Terthienyl Toward Larvae of Mosquito Culextritaeniorhynchus. Toxic. Environ. Chem. 16, 81 (1987).Google Scholar
  222. 223.
    Skatteböl, L.: Studies Related to Naturally Occurring Acetylene Compounds, XXVI. The synthesis of 5-(l-Propynyl)-2-Formylthiophene, Junipal, and trans Methyl 5-(l-Propynyl)-2-Thienylacrylate. Acta Chem. Scand 13, 1460 (1959).Google Scholar
  223. 224.
    Sprio, V., S. Plescia, and S. Petruso: Chemical Investigation of the Roots of Cardopatium corymbosum. Ann. Chim. (Rome) 62, 568 (1972).Google Scholar
  224. 225.
    Stetter, H.: Catalyzed Addition of Aldehydes to Activated Double Bonds — A New Synthetic Approach. Angew. Chem., Int. Ed. Engl. 15, 639 (1976).Google Scholar
  225. 226.
    Stich, H.F, P. Lam, L.W. Lo, DJ. Koropatnick, and R.H.C. San: The Search for Relevant Short Term Bioassays for Chemical Carcinogens:The Tribulation of a Modern Sisyphus. Can. J. Genet. Cytol. 17, 471 (1975).Google Scholar
  226. 227.
    Sütfeld, R. and G.H.N. Towers: 5-(4-Acetoxy-l-Butynyl)-2,2′-Bithiophene: Acetate Esterase from Tagetes patula. Phytochemistry 21, 277 (1982).Google Scholar
  227. 228.
    Sütfeld, R.: Distribution of Thiophene Derivatives in Different Organs of Tagetes patula Seedlings Grown under Various Conditions. Planta 156, 536 (1987).Google Scholar
  228. 229.
    Sütfeld, R.: Enzymological Investigations into the Metabolism of Bithiophene Derivatives. Bioact. Mol. (Chem. Biol. Nat.-Occurring Acetylenes Relat. Compd.) 7, 201 (1988).Google Scholar
  229. 230.
    Sütfeld, R., and H. Breteler, Effects of Plant Material and Extract Treatment on the Yield of Natural Products from Tagetes. Bioact. Mol. (Chem. Biol. Nat.-Occurring Acetylenes Relat. Compd.) 7, 101 (1988).Google Scholar
  230. 231.
    Tamaru, Y., Y. Yamada, and Z. Yoshida. The Palladium Catalyzed Thienylation of Allylic Alcohols with 2- and 3-Bromothiophenes and their Derivatives. Tetrahedron 35, 329 (1979).Google Scholar
  231. 232.
    Tang, C.S., C.K. Wat, and G.H.N. Towers: Thiophenes and Benzofurans in the Undisturbed Rhizosphere of Tagetes patula L. Plant Soil 98, 93 (1987).Google Scholar
  232. 233.
    Tosi, B., G. Lodi, F. Dondi, and A. Bruni: Thiophene Distribution during the Ontogenesis of Tagetes patula. Bioact. Mol. (Chem. Biol. Nat.-Occurring Acetylenes Relat. Compd.) 7, 209 (1988).Google Scholar
  233. 234.
    Towers, G.H.N., T. Arnason, C.-K. Wat, E.A. Graham, J. Lam, and J.C. Mitchell: Phototoxic Polyacetylenes and Their Thiophene Derivatives [Effects on human skin]. Contact Dermatitis 5, 140 (1979).Google Scholar
  234. 235.
    Towers, G.H.N., J.T. Arnason, C.K. Wat, and J.D.H. Lambert: Controlling Pests Using a Naturally Occurring Polyacetylene. Can. CA 1173743 A1, 4 Sept 1984; Chem. Abstr. 102, P41602r (1985).Google Scholar
  235. 236.
    Towers, G.H.H., J.T. Arnason, C.K. Wat, and J.D. Lambert: Cercaricidal Compositions Containing a Naturally Occurring Conjugated Polyacetylene and Method for Controlling Cercariae Using It. Can. CA 1169767 A1, 26 Jun 1984; Chem. Abstr. 101, P146144a (1984).Google Scholar
  236. 237.
    Towers, G.H.N., and J.B. Hudson: Potentially Useful Antimicrobial and Antiviral Phototoxins From Plants. Photochem. Photobiol. 46, 61 (1987).Google Scholar
  237. 238.
    Towers, G.H.N., C.-K. Wat, E.A. Graham, R.J. Bandoni, G.F.Q. Chan, J.C. Mitchell and J. Lam: Ultraviolet-Mediated Antibiotic Activity of Species of Compositae Caused by Polyacetylenic Compounds. Lloydia 40, 487 (1977).Google Scholar
  238. 239.
    Tuveson, R.W., M.R. Berenbaum, and E.E. Heininger: Inactivation and Mutagenesis by Phototoxins using Escherichia coli Strains Differing in Sensitivity to Near and Far-Ultraviolet Light. J. Chem. Ecol. 12, 933 (1986).Google Scholar
  239. 240.
    Tuveson, R.W., R.A. Larson, and J. Kagan: The Role of Cloned Carotenoid Genes Expressed in Escherichia coli in Protecting Against Inactivation by Far-UV, Near-UV, and Specific Phototoxic Molecules. J. Bacteriol. 170, 4675 (1988).Google Scholar
  240. 241.
    Tuveson, R.W., and G.-R. Wang: Unpublished Results.Google Scholar
  241. 242.
    Tyler, J.: Proceedings of the Root-Knot Nematode Conference Held in Atlanta, GA. Pl. Dis. Rep. 109, 133 (1938).Google Scholar
  242. 243.
    Uhlenbroek, J.H., and J.D. Bijloo: Investigation on Nematicides I. Isolation and Structure of a Nematicidal Principle occurring in Tagetes roots. Rec. Trav. Chim. 77, 1004 (1958).Google Scholar
  243. 244.
    Uhlenbroek, J.H., and J.D. Bijloo: Investigation on Nematicides II. Structure of a Second Nematicidal Principle Isolated from Tagetes Roots. Rec. Trav. Chim. 78, 382 (1959).Google Scholar
  244. 245.
    — —: Investigation on Nematicides III. Polythienyls and Related Compounds. Rec. Trav. Chim. 79, 1181 (1960).Google Scholar
  245. 246.
    Van Bolhuis, F., H. Wynberg, E.E. Havinga, E.W. Meijer, and E.G.J. Staring: The X-Ray Structure and MNDO Calculations of α-Terthienyl: a Model for Polythiophenes. Synth. Met. 30, 381 (1989).Google Scholar
  246. 247.
    Van Fleet, D.S.: Histochemistry of Plants in Health and Disease: In: Structural and Functional Aspects of Phytochemistry (V.C. Runeckles and T.C. Tso, eds), p. 165. New York: Academic Press (1972).Google Scholar
  247. 248.
    Waltman, R.J., J. Bargon, and A.F. Diaz: Electrochemical Studies of Some Conducting Polythiophene Films. J. Phys. Chem. 87, 1459 (1983).Google Scholar
  248. 249.
    Wang, T.P., and J. Kagan: Ageing of Human Erythrocytes: Effects on Photosensitized Hemolysis. Chemosphere 19, 1345 (1990).Google Scholar
  249. 250.
    Wang, T.P, J. Kagan, R.W. Tuveson, and G.R. Wang: α-Terthienyl Photosensitizes Damage to pBR 322 DNA. Photochem. Photobiol., in press (1990).Google Scholar
  250. 251.
    Warren, R.A., J.B. Hudson, K.R. Downum, E.A. Graham, R. Norton, and G.H.N. Towers: Bacteriophages as Indicators of the Mèchanism of Action of Photosensitizing Agents. Photobiochem. Photobiophys. 1, 385 (1980).Google Scholar
  251. 252.
    Washino, T., M. Yoshikura, and S. Obata: New Sulfur-containing Acetylenic compounds. Agric. Biol. Chem. 50, 263 (1986).Google Scholar
  252. 253.
    Washino, T., M. Yoshikura, and S. Obata: Synthesis of 5′-(1-Propynyl)-2,2′-Bithienyl-5-yl Derivatives. Agr. Biol. Chem. 50, 565 (1986).Google Scholar
  253. 254.
    Wat, C.-K., R.K. Biswas, E.A. Graham, L. Bohm, G.H.N. Towers, and E.R. Waygood. J. Natl. Prod. 42, 103 (1977).Google Scholar
  254. 255.
    Wat, C.-K., W.D. Macrae, E. Yamamoto, G.H.N. Towers, and J. Lam: Phototoxic Effects of Naturally Occurring Polyacetylenes and α-Terthienyl on Human Erythrocytes. Photochem. Photobiol. 32, 167 (1980).Google Scholar
  255. 256.
    Wat, C.K, S.K. Prasad, E.A. Graham, S. Partington, T, G.H.N. Towers, J. Lam: Photosensitization of Invertebrates by Natural Polyacetylenes. Biochem. Syst. Ecol. 9, 59 (1981).Google Scholar
  256. 257.
    Wynberg, H., R.M. Kellogg, H. Van Driel, and G.E. Beekhuis: The Photochemistry of Thiophenes. VI. Photorearrangement of Phenylmethylthiophenes. J. Amer. Chem. Soc. 89, 3498 (1967).Google Scholar
  257. 258.
    — — — —: The Photochemistry of Thiophenes. III. Photochemical Rearrangement of Arylthiophenes. J. Amer. Chem. Soc. 88, 5047 (1966).Google Scholar
  258. 259.
    — — — —: The Photochemistry of Thiophenes. VII. Observations on the Mechanism of Arylthiophene Rearrangements. J. Amer. Chem. Soc. 89, 3501 (1967).Google Scholar
  259. 260.
    Wynberg, H., and J. Metselaar: A Convenient Route to Polythiophenes. Synth. Commun. 14, 1 (1984).Google Scholar
  260. 261.
    Wynberg, H., and H. Van Driel: The Photochemical Rearrangement of Arylthiophenes. J. Amer. Chem. Soc. 87, 3998 (1965).Google Scholar
  261. 262.
    — —: Further Evidence for Scrambling in the Photochemical Rearrangement of 2-Phenylthiophenes. Chem. Commun. 1966, 204.Google Scholar
  262. 263.
    Wynberg, H., H. Van Driel, R.M. Kellogg, and J. Buter: The Photochemistry of Thiophenes. IV. Observations on the Scope of Arylthiophene Rearrangements. J. Amer. Chem. Soc. 89, 3487 (1967).Google Scholar
  263. 264.
    Yamamoto, E., W.D. Macrae, F.J. Garcia, and G.H.N. Towers: Photodynamic Hemolysis Caused by α-Terthienyl. Planta Med. 50, 124 (1984).Google Scholar
  264. 265.
    Yamamoto, T, K. Osakada, T. Wakabayashi, and A. Yamamoto: Nickel and Palladium Catalyzed Dehalogenating Polycondensation of Dihaloaromatic Compounds with Zinc. A New Route to Poly(2,5-thienylene) and Poly(l,4-phenylene). Makromol. Chem., Rapid Commun. 6, 671 (1985).Google Scholar
  265. 266.
    Yamamoto, T., K. Sanechika, and A. Yamamoto: Preparation of Thermostable and Electric-Conducting Poly(2,5-thienylene). J. Polym. Sci., Polym. Lett. Ed. 18, 9 (1980).Google Scholar
  266. 267.
    Yamamoto, E., C.-K. Wat, W.D. Macrae, G.H.N. Towers, and C.F.Q. Chan: Photoinactivation of Human Erthrocyte Enzymes by α-Terthienyl and Phenylheptatriyne, Naturally Occurring Compounds in the Asteraceae. FEBS Letters 107, 134 (1979).Google Scholar
  267. 268.
    Yoneyama, H., K. Kawai, and S. Kuwabata: Light-Localized Deposition of Electro-conductive Polymers on n-Type Silicon by Utilizing Semiconductor Photocatalysis. J. Electrochem. Soc. 135, 1699 (1988).Google Scholar
  268. 269.
    Yumoto, Y., and S. Yoshimura: Synthesis and Electrical Properties of a New Conducting Polythiophene Prepared by Electrochemical Polymerization of α-Ter-thienyl. Synth. Met. 13, 185 (1986).Google Scholar
  269. 270.
    Zechmeister, L. and J.W. Sease: A Blue-Fluorescing Compound, Terthienyl, Isolated from Marigolds. J. Amer. Chem. Soc. 69, 273 (1947).Google Scholar

Copyright information

© Springer-Verlag/Wien 1991

Authors and Affiliations

  • J. Kagan
    • 1
  1. 1.Department of ChemistryUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations