Advertisement

Abstract

For a long time, amino acid or peptide containing lipids were considered as unusual components of bacteria. Isolation was mainly confined to “lipo-amino acids” which appeared to be transitory intermediates in cellular metabolism. Not much progress has been made on their metabolism.

Keywords

Mycobacterium Avium Hydroxy Fatty Acid Lactone Ring Peptide Antibiotic Rhodococcus Erythropolis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Houtsmuller, U.M.T., and L.L.M. van Deenen: On the Accumulation of Amino Acid Derivatives of Phosphatidylglycerol in Bacteria. Biochim. Biophys. Acta 84, 96 (1964).Google Scholar
  2. 2.
    Lerouge, P., M.-H. Lebas, C. Agapakis-Causse, and J.-C. Prome: Isolation and Structural Characterization of a New Non-phosphorylated Lipoamino Acid from Mycobacterium phlei. Chem. Phys. Lipids 49, 161 (1988).Google Scholar
  3. 3.
    Kates, M.: Techniques of Lipidology, 2nd edition, Elsevier, Amsterdam, p. 109 (1986).Google Scholar
  4. 4.
    Wells, M.A., and J.C. Dittmer: The Use of Sephadex for the Removal of Non-lipid Contaminants from Lipid Extracts. Biochemistry 2, 1259 (1963).Google Scholar
  5. 5.
    Williams, J.P., and P.A. Merrilees: The Removal of Water and Non-lipid Contaminants from Lipid Extracts. Lipids 5, 367 (1969).Google Scholar
  6. 6.
    Cartwright, N.J.: Serratamic acid, a Derivative of l-Serine Produced by Organisms of the Serratia group. Biochem. J. 60, 238 (1955).Google Scholar
  7. 7.
    Cartwright, N.J.: The Structure of Serratamic acid. Biochem. J. 67, 663 (1957).Google Scholar
  8. 8.
    Wasserman, H.H., J.J. Keggi, and J.E. McKeon: Serratamolide, A Metabolic Product of Serratia. J. Am. Chem. Soc. 83, 4107 (1961).Google Scholar
  9. 9.
    Wasserman, H.H., J.J. Keggi, and J.E. McKeon: The Structure of Serratamolide. J. Am. Chem. Soc. 84, 2978 (1962).Google Scholar
  10. 10.
    Shemyakin, M.M., Yu. Ovchinnikov, V.K. Antonov, A.A. Kiryushkin, V.T. Ivanov, V.I. Shchelokov, and A.M. Shkrob: Total Synthesis of Serratamolide. I. Synthesis of O,O′-Diacetylserratamolide. Tetrahedron Letters 47 (1964).Google Scholar
  11. 11.
    Bermingham, M.A.C., B.S. Deol, and J.L. Still: The Occurrence of Bound Serine in Acetone Extracts of Serratia marcescens Exclusively in Compounds of a Cyclic Depsipeptide Structure Related to Serratamolide. Biochem. J. 116, 759 (1970).Google Scholar
  12. 12.
    Bermingham, M.A.C., B.S. Deol, and J.L. Still: The Relationship Between Prodigiosin Biosynthesis and Cyclic Depsipeptides in Serratia marcescens. J. Gen. Microbiol. 67, 319 (1971).Google Scholar
  13. 13.
    Kawai, Y., I. Yano, and K. Kaneda: Various Kinds of Lipoamino Acids Including a Novel Serine-containing Lipid in an Opportunistic Pathogen Flavobacterium. Their Structures and Biological Activities on Erythrocytes. Eur. J. Biochem. 171, 73 (1988).Google Scholar
  14. 14.
    Gendre, T., and E. Lederer: Sur les substances azotées des phosphatides de quelques mycobactéries. Ann. Acad. Sci. Fennicae, Ser. A II, 60, 313 (1955).Google Scholar
  15. 15.
    Laneelle, M.A., G. Laneelle, and J. Asselineau: Sur la présence d’ornithine dans des lipides bactériens. Biochim. Biophys. Acta 70, 99 (1963).Google Scholar
  16. 16.
    Laneelle, M.A., G. Laneelle, P. Bennet, and J. Asselineau: Sur les lipides d’une souche non-photochromogène de mycobactérie. Bull. Soc. chim. biol. 47, 2047 (1965).Google Scholar
  17. 17.
    Gorchein, A.: Ornithine in Rhodopseudomonas sphaeroides. Biochim. Biophys. Acta 84, 356 (1964).Google Scholar
  18. 18.
    Gorchein, A.: Studies on the Structure of an Ornithine-Containing Lipid from Non-sulfur Purple bacteria. Biochim. Biophys. Acta 152, 358 (1968).Google Scholar
  19. 19.
    Gorchein, A.: Structure of the Ornithine-Containing Lipid from Rhodopseudomonas sphaeroides. Biochim. Biophys. Acta 306, 137 (1973).Google Scholar
  20. 20.
    Gorchein, A.: Distribution and Metabolism of Ornithine in Rhodopseudomonas sphaeroides. Proc. Roy. Soc., Ser. B, 170, 265 (1968).Google Scholar
  21. 21.
    Marinetti, G.V., and K. Cattieu: Lipid Analysis of Cells and Chromatophores of Rhodopseudomonas sphaeroides. Chem. Phys. Lipids 28, 241 (1981).Google Scholar
  22. 22.
    Rivas, E.A., N.L. Kerber, A.A. Viale, and A.F. Garcia: Isolation of a “Basic Membrane” Fraction Enriched in an Ornithine-Containing Lipid, from a Blue-green Mutant of Rhodospirillum rubrum. FEBS-Letters 11, 37 (1970).Google Scholar
  23. 23.
    Brooks, J.L., and A.A. Benson: Studies on the Structure of an Ornithine-Containing Lipid from Rhodospirillum rubrum. Arch. Biochem. Biophys. 152, 347 (1972).Google Scholar
  24. 24.
    Thiele, O.W., J. Oulevey, and D.H. Huneman: Ornithine-Containing Lipids in Thiobacillus A2 and Achromobacter Sp. Eur. J. Biochem. 139, 131 (1984).Google Scholar
  25. 25.
    Ghosh, M., and A.K. Mishra: Occurrence, Identification and Possible Significance of Ornithine Lipid in Thiobacillus ferrooxidans. Biochem. Biophys. Res. Comm. 142, 925 (1987).Google Scholar
  26. 26.
    Knoche, H.W., and J.M. Shively: The structure of an Ornithine-Containing Lipid from Thiobacillus thiooxidans. J. Biol. Chem. 247, 170 (1972).Google Scholar
  27. 27.
    Dees, C., and J. M. Shively: Localization and Quantitation of the Ornithine Lipid of Thiobacillus thiooxidans. J. Bacteriol. 149, 798 (1982).Google Scholar
  28. 28.
    Wilkinson, S.G.: Cell Walls of Pseudomonas Species Sensitive to Ethylenediamine Tetraacetic acid. J. Bacteriol. 104, 1035 (1970).Google Scholar
  29. 29.
    Minnikin, D.E., and H. Abdolrahimzadeh: The Replacement of Phosphatidylethanolamine and Acidic Phospholipids by an Ornithine-Amide Lipid and Minor Phosphorus-free Lipids in Pseudomonas fluorescens NCMB 129. FEBS-Letters 43, 257 (1974).Google Scholar
  30. 30.
    Pitta, T.P., E.R. Leadbetter, and W. Godchaux: Increase of Ornithine Amino Lipid Content in a Sulfonolipid-Deficient Mutant of Cytophaga johnsonae. J. Bacteriol. 171, 952 (1989).Google Scholar
  31. 31.
    Prome, J.-C, C. Lacave, and M.-A. Laneelle: Sur les structures de lipides à ornithine de Brucella melitensis et de Mycobacterium bovis (BCG). Compt. Rend. Acad. Sci. (Paris) Ser. C, 269, 1664 (1969).Google Scholar
  32. 32.
    Tahara, Y., Y. Yamada, and K. Kondo: A New Lysine-Containing Lipid Isolated from Agrobacterium tumefaciens. Agr. Biol. Chem. 40, 1449 (1976).Google Scholar
  33. 33.
    Kimura, A., and H. Otsuka: The Changes of Lysine- and Ornithine-Lipids in Streptomyces sioyaensis. Agr. Biol. Chem. 33, 781 (1969).Google Scholar
  34. 34.
    Thiele, O.W., and G. Schwinn: The Free Lipids of Brucella melitensis and Bordetella pertussis. Eur. J. Biochem. 34, 333 (1973).Google Scholar
  35. 35.
    Thiele, O.W., and G. Schwinn: Bakterielle Ornithin-Lipid. Zeits. allg. Mikrobiol. 14, 435 (1974).Google Scholar
  36. 36.
    Kawanami, J., A. Kimura, and H. Otsuka: Siolipin, a New Lipoamino Acid Ester Isolated from Streptomyces sioyaensis. Biochim. Biophys. Acta 152, 808 (1968).Google Scholar
  37. 37.
    Kawanami, J.: Lipids of Streptomyces toyocaensis. On the Structure of Siolipin. Chem. Phys. Lipids 7, 159 (1971).Google Scholar
  38. 38.
    Laneelle, M.A., G. Laneelle, D. Prome, and J.C. Prome: Ornithine Lipids of Mycobacterium tuberculosis and Some Other Mycobacteria. J. Gen. Microbiol., 136, 773 (1990).Google Scholar
  39. 39.
    Imhoff, J., D.J. Kushner, S.C. Kushwaha, and M. Kates: Polar Lipids in Phototrophic Bacteria of the Rhodospirillaceae and Chromataceae Families. J. Bacteriol. 150, 1192(1982).Google Scholar
  40. 40.
    Batrakov, S.G., and L.D. Bergelson: Lipids of the Streptomycetes. Structural Investigation and Biological Interrelation. Chem. Phys. Lipids 21, 1 (1978).Google Scholar
  41. 41.
    Wee, S., and B. J. Wilkinson: Increased Outer Membrane Ornithine-Containing Lipid and Lysozyme Penetrability of Paracoccus denitrificans Grown in a Complex Medium Deficient in Divalent Cations. J. Bacteriol. 170, 3283 (1988).Google Scholar
  42. 42.
    Tahara, Y., K. Shinmoto, Y. Yamada, and K. Kondo: A New Enzyme, Acyl-CoA: Nα-3-hydroxypalmitoyl-l-Ornithine O-acyl Transferase. Agr. Biol. Chem. 42, 1447 (1978).Google Scholar
  43. 43.
    Fukuda, H., S. Iwade, and A. Kimura: A New Enzyme: Long Acyl Aminoacylase from Pseudomonas diminuta. J. Biochem. (Tokyo) 91, 1731 (1982).Google Scholar
  44. 44.
    Shintani, Y., H. Fukuda, N. Okamoto, K. Murata, and A. Kimura: Isolation and Characterization of N-Long Chain Acyl Aminoacylase from Pseudomonas diminuta. J. Biochem. (Tokyo) 96, 637 (1984).Google Scholar
  45. 45.
    Tahara, Y., M. Kameda, Y. Yamada, and K. Kondo: A New Lipid, the Ornithine and Taurine-Containing “Cerilipin”. Agr. Biol. Chem. 40, 243 (1976).Google Scholar
  46. 46.
    Tahara, Y., K. Shinmoto, Y. Yamada, and K. Kondo: Enzymatic Synthesis of Tauro-ornithine Lipid in Gluconobacter cerinus. Agr. Biol. Chem. 42, 205 (1978).Google Scholar
  47. 47.
    Hilker, D.R., M.L. Gross, H.W. Knocke, and J.M. Shively: The Interpretation of the Mass Spectrum of an Ornithine-Containing Lipid from Thiobacillus thiooxidans. Biomed. Mass Spectrom. 5, 64 (1978).Google Scholar
  48. 48.
    Hilker, D.R., H.W. Knocke, and M.L. Gross: Thermolysis Chemical Ionization of Complex Polar Lipid. Biomed. Mass Spectrom. 6, 356 (1979).Google Scholar
  49. 49.
    Madhavan, V.N., J. Done, and J. Vine: Characterization of Two Ornithine-Containing Lipids from Erwinia aroideae. Chem. Phys. Lipids 28, 79 (1981).Google Scholar
  50. 50.
    Asselineau, J., F. Pichinoty, D. Prome, and J.-C. Prome: Composition des lipides complexes de Flavobacterium meningosepticum. Ann. Inst. Pasteur/Microbiol. 139, 159 (1988).Google Scholar
  51. 51.
    Gross, M.L.: Triple Sector Instrument for Tandem Mass Spectrometry. In: Tandem Mass Spectrometry, ed. by F.W. McLafferty, John Wiley & Sons Ltd., Chichester, 255 (1983).Google Scholar
  52. 52.
    Tomer, K.B., F.W. Crow, H.W. Knocke, and M.L. Gross: Fast Atom Bombardment and Mass Spectrometry/Mass Spectrometry for Analysis of Ornithine-Containing Lipids from Thiobacillus thiooxidans. Analyt. Chemistry 55, 1033 (1983).Google Scholar
  53. 53.
    Kimura, A., and H. Otsuka: Biological Activities of Siolipin (Ester of Lipoamino Acid). Agr. Biol. Chem. 33, 1291 (1969).Google Scholar
  54. 54.
    Kawai, Y., A. Moribayashi, and I. Yano: Ornithine-Containing Lipid of Bordetella pertussis. J. Bacteriol. 152, 907 (1982).Google Scholar
  55. 55.
    Kawai, Y., and I. Yano: Ornithine-Containing Lipid of Bordetella pertussis, a New Type of Hemagglutinin. Eur. J. Biochem. 136, 531 (1983).Google Scholar
  56. 56.
    Kawai, Y., and A. Moribayashi: Characteristic Lipids of Bordetella pertussis: Simple Fatty Acid Composition, Hydroxy Fatty Acids and an Ornithine-Containing Lipid. J. Bacteriol. 151, 996 (1982).Google Scholar
  57. 57.
    Kawai, Y., K. Suzuki, and T. Hagiwara: Phosphatidylserine and Ornithine-Containing Lipids of Bordetella, Hemagglutinins of Lipoamino Structure and their Control in Biomembranes. Eur. J. Biochem. 147, 367 (1985).Google Scholar
  58. 58.
    Holt, S.C., J. Doundowlakis, and B.J. Tabaks: Phospholipid Composition of Gliding Bacteria: Oral Isolates of Capnocytophaga Compared with Sporocytophaga. Infect. and Immun. 26, 305 (1979).Google Scholar
  59. 59.
    Makula, R.A., and W.R. Finnerty: Isolation and Characterization of an Ornithine-Containing Lipid from Desulfovibrio gigas. J. Bacteriol. 123, 523 (1975).Google Scholar
  60. 60.
    Tahara, Y., Y. Yamada, and K. Kondo: Occurrence of Phosphatidylcholine in Gluconobacter cerinus. Agr. Biol. Chem. 39, 2261 (1975).Google Scholar
  61. 61.
    Tahara, Y., M. Kameda, Y. Yamada, and K. Kondo: An Ornithine-Containing Lipid Isolated from Gluconobacter cerinus. Biochim. Biophys. Acta 450, 225 (1976).Google Scholar
  62. 62.
    Thiele, O., C.J. Biswas, and D.H. Huneman: Isolation and Characterization of an Ornithine-Containing Lipid from Paracoccus denitrificans. Eur. J. Biochem. 105, 267 (1980).Google Scholar
  63. 63.
    Kawai, Y., I. Yano, K. Kaneda, and E. Yabuuchi: Ornithine-Containing Lipids of some Pseudomonas Species. Eur. J. Biochem. 175, 633 (1988).Google Scholar
  64. 64.
    Cox, A.D., and S.G. Wilkinson: Polar Lipids and Fatty Acids of Pseudomonas cepacia. Biochim. Biophys. Acta 1001, 60 (1989).Google Scholar
  65. 65.
    Wilkinson, S.G.: An Ornithine-Containing Lipid from Pseudomonas rubescens. J. gen. Microbiol. 68, vi (1971).Google Scholar
  66. 66.
    Kimura, A., J. Kawanami, and H. Otsuka: Lipids of Streptomyces sioyaensis. J. Biochem. (Tokyo) 62, 384 (1967).Google Scholar
  67. 67.
    Kawanami, J., and H. Otsuka: Lipids of Streptomyces sioyaensis. VI. On the β-Hydroxy Acids in Siolipin. Chem. Phys. Lipids 3, 135 (1969).Google Scholar
  68. 68.
    Kimura, A., J. Kawanami, and H. Otsuka: Distribution of Siolipin in Comparison with Phospholipids. Agric. Biol. Chem. 33, 790 (1969).Google Scholar
  69. 69.
    Ikawa, M., E.E. Snell, and E. Lederer: Occurrence of d-Phenylalanine, d-Allo-threonine and other d-Amino acids in Peptidolipids of Bacterial Origin. Nature 188, 558 (1960).Google Scholar
  70. 70.
    Ikawa, M., and E.E. Snell: The Occurrence of d-Alloisoleucine and d-Leucine in Mycosides and Peptidolipids of Bacterial Origin. Biochim. Biophys. Acta 60, 186 (1962).Google Scholar
  71. 71.
    Marner, F.J., R.E. Moore, K. Hirotsu, and J. Clardy: Majusculamides A and B, Two Epimeric Lipodipeptides from Lyngbya majuscula Gomont. J. Org. Chem. 42, 2815 (1977).Google Scholar
  72. 72.
    Batrakov, S.G., V.B. Muratov, L.D. Bergelson, and T.V. Koronelli: Lipids of Mycobacteria. VI. Peptidolipids of the Paraffin-Oxidizing Bacterium Mycobacterium paraffinicum. Isolation and General Characterization. Bioorgan. Khim. 7,1075 (1981).Google Scholar
  73. 73.
    Batrakov, S.G., V.B. Muratov, B.V. Rozynov, L.D. Bergelson, and T.V. Koronelli: Lipids of Mycobacteria. VII. N-Acyl Tetrapeptide with a Mycolic Acid Residue from Mycobacterium paraffinicum. Bioorgan. Khim. 7, 1087 (1981).Google Scholar
  74. 74.
    Koronelli, T.V.: Investigation of the Lipids of Saprophytic Mycobacteria in the USSR. J. Chromatog. 440, 479 (1988).Google Scholar
  75. 75.
    Laneelle, G. and J. Asselineau: Isolement de peptidolipides à partir de Mycobacterium paratuberculosis. Biochim. Biophys. Acta 59, 731 (1962).Google Scholar
  76. 76.
    Laneelle, G., J. Asselineau, W.A. Wolstenholme, and E. Lederer: Détermination de séquences d’acides aminés dans des oligopeptides par la spectrométrie de masse. III. Structure d’un peptidolipide de Mycobacterium johnei. Bull. Soc. Chim. Fr. 2133 (1965).Google Scholar
  77. 77.
    Laneelle, G.: Etude de deux formes lipophiles d’acides aminés produites par des Mycobactéries. Thèse Doctorat-es-Sciences, Université de Toulouse (1967).Google Scholar
  78. 78.
    Laneelle, G.: Mise en évidence d’une conformation stable d’un peptidolipide. FEBS-Letters 4, 210 (1969).Google Scholar
  79. 79.
    Hasenboehler, A., H. Kneifel, W.A. Koenig, H. Zähner, and H.J. Zeiler: Metabolites of microorganisms. 134. Stenothricin, a New Inhibitor of Bacterial Cell Wall Synthesis. Arch. Microbiol. 99, 307 (1974).Google Scholar
  80. 80.
    Koenig, W.A., C. Engelfried, H. Hagenmaier, and H. Kneifel: Struktur des Peptidantibiotikums Stenothricin. Liebigs Ann. Chem. 2011 (1976).Google Scholar
  81. 81.
    Vilkas, E., A.M. Miquel, and E. Lederer: Sur l’isolement et la structure de la fortuitine, peptidolipide de Mycobacterium fortuitum. Biochim. Biophys. Acta 70, 217 (1963).Google Scholar
  82. 82.
    Barber, M., P. Jolles, E. Vilkas, and E. Lederer: Determination of Amino acid Sequences in Oligopeptides by Mass Spectrometry. I. The Structure of Fortuitin, an Acylnonapeptide Methyl Ester. Biochem. Biophys. Res. Comm. 18, 469 (1965).Google Scholar
  83. 83.
    Ptak, M., E. Vilkas, and C. Brevard: A 400 MHz 1HNMR Study of Fortuitin, a Natural Linear Lipopeptide. Biochem. Biophys. Res. Comm. 113, 121 (1983).Google Scholar
  84. 84.
    Shoji, J., and T. Kato: The Amino Acid Sequence of Cerexin A. J. Antibiotics 28, 764 (1975).Google Scholar
  85. 85.
    Shoji, J., T. Kato, and R. Sakazaki: The Total Structure of Cerexin A. J. Antibiotics 29, 1268 (1976).Google Scholar
  86. 86.
    Ressler, C., and D.V. Kashelikar: Identification of Asparaginyl and Glutaminyl Residues in endo Position in Peptides by Dehydration-Reduction. J. Am. Chem. Soc. 88, 2025 (1966).Google Scholar
  87. 87.
    Kimura, Y., and N. Yasuda: Polymyxin Acylase: Purification and Characterization with Special Reference to Broad Substrate Specificity. Agric. Biol. Chem. 53, 497 (1989).Google Scholar
  88. 88.
    Shoji, J., T. Kato, S. Terabe, and R. Konaka: Resolution of Peptide Antibiotics Cerexins and Tridecapeptins by High Performance Liquid Chromatography. J. Antibiotics 32, 313 (1979).Google Scholar
  89. 89.
    Shoji, J., H. Hinoo, R. Sakazaki, T. Kato, Y. Wakisaka, M. Mayama, S. Matsuura, and H. Miwa: Isolation of Tridecapeptins A, B and C. J. Antibiotics 31, 646 (1978).Google Scholar
  90. 90.
    Kato, T., R. Sakazaki, H. Hinoo, and J. Shoji: The Structures of Tridecapeptins B and C. J. Antibiotics 32, 305 (1979).Google Scholar
  91. 91.
    Bodanszky, M., G.F. Sigler, and A. Bodanszky: Structure of the Peptide Antibiotic Amphomycin. J. Am. Chem. Soc. 95, 2352 (1973).Google Scholar
  92. 92.
    Nakajima, M., M. Inukai, T. Haneishi, A. Terahara, M. Arai, T. Kinoshita, and C. Tamura: Globomycin, a New Peptide Antibiotic with Spheroplast Forming Activity. III. Structural Determination of Globomycin. J. Antibiotics 31, 426 (1978).Google Scholar
  93. 93.
    Tsukagoshi, N., G. Tamura, and K. Arima: A Novel Protoplast-Bursting Factor (Surfactin) Obtained from Bacillus subtilis IAM 1213. I. The Effects of Surfactin on Bacillus megaterium KM. Biochim. Biophys. Acta 196, 204 (1970).Google Scholar
  94. 94.
    Arima, K., Kakinuma, A., and G. Tamura: Surfactin, a Crystalline Peptidolipid Surfactant Produced by Bacillus subtilis: Isolation, Characterization and its Inhibition of Fibrin Clot Formation. Biochem. Biophys. Res. Comm. 31, 488 (1968).Google Scholar
  95. 95.
    Kakinuma, A., M. Hori, M. Isono, G. Tamura, and K. Arima: Determination of Amino Acid Sequence in Surfactin, a Crystalline Peptidolipid Surfactant Produced by Bacillus subtilis. Agric. Biol. Chem. 33, 971 (1969).Google Scholar
  96. 96.
    Kakinuma, A., M. Hori, H. Sugino, I. Yoshida, M. Isono, G. Tamura, and K. Arima: Determination of the Location of Lactone ring in Surfactin. Agric. Biol. Chem. 33, 1523 (1969).Google Scholar
  97. 97.
    Kakinuma, A., A. Ouchida, T. Shima, H. Sugino, M. Isono, G. Tamura, and K. Arima: Confirmation of the Structure of Surfactin by Mass Spectrometry. Agric. Biol. Chem. 33, 1669 (1969).Google Scholar
  98. 98.
    Kluge, B., J. Vater, J. Salnikov, and K. Eckart: Studies on the Biosynthesis of Surfactin, a Lipopeptide Antibiotic from Bacillus subtilis ATCC 21332. FEBS-Letters 231, 107 (1988).Google Scholar
  99. 99.
    Sheppard, J.D., and C.N. Mulligan: The Production of Surfactin by Bacillus subtilis Grown on Peat Hydrolysate. Appl. Microbiol. Biotechnol. 27, 110 (1987).Google Scholar
  100. 100.
    Minnikin, D.E., H. Abdolrahimzadeh, and J. Baddiley: Variation of Polar Lipid Composition of Bacillus subtilis (Marburg) with Different Growth Conditions. FEBS-Letters 27, 16 (1972).Google Scholar
  101. 101.
    Hosono, K., and H. Suzuki: Acylpeptides, the Inhibitors of Cyclic Adenosine-3′,5′-monophosphate Phosphodiesterase. I. Purification, Physicochemical Properties and Structures of Fatty Acid Residues. J. Antibiotics 36, 667 (1983).Google Scholar
  102. 102.
    Hosono, K., and H. Suzuki: Acylpeptides, the Inhibitors of Cyclic Adenosine-3′,5′-monophosphate Phosphodiesterase. II. Amino Acid Sequence and Location of Lactone Linkage. J. Antibiotics 36, 674 (1983).Google Scholar
  103. 103.
    Ito, T. and H. Ogawa: Chemical Studies of the Antibiotic Esperin. The Structure of Esperin. Bull. Agric. Chem. Soc. Japan 23, 536 (1959).Google Scholar
  104. 104.
    Ovchinnikov, Y.A., V.T. Ivanov, P.V. Kostetsky, and M.M. Shemyakin: On the Structure of Esperin. L. Esperinic acid. Tetrahedron Letters 5285 (1966).Google Scholar
  105. 105.
    Thomas, D.W., and T. Ito: The Revised Structure of the Peptide Antibiotic Esperin, Established by Mass Spectrometry. Tetrahedron 25, 1985 (1969).Google Scholar
  106. 106.
    Guinand, M., G. Michel, and E. Lederer: Sur les lipides de Nocardia asteroides: isolement de lipopeptides. Compt. Rend. Acad. Sci. (Paris) 246, 848 (1958).Google Scholar
  107. 107.
    Guinand, M., and G. Michel: Structure d’un peptidolipide de Nocardia asteroides. Compt. Rend. Acad. Sci. (Paris) 256, 1621 (1963).Google Scholar
  108. 108.
    Guinand, M., G. Michel, and E. Lederer: Structure de la peptidolipine NA. Compt. Rend. Acad. Sci. (Paris) 259, 1267 (1964).Google Scholar
  109. 109.
    Barber, M., W.A. Wolstenholme, M. Guinand, G. Michel, B.C. Das, and E. Lederer: Determination of Amino acid Sequences in Oligopeptides by Mass Spectrometry. II. The Structure of Peptidolipin NA. Tetrahedron Letters 1331 (1965).Google Scholar
  110. 110.
    Michel, G.: Lipopeptides des Mycobactéries et des Nocardia. In: Protides of the Biological Fluids, ed. by H. Peeters, Elsevier Publ. Co., Amsterdam, 297 (1966).Google Scholar
  111. 111.
    Ptak, M., A. Heitz, M. Guinand, and G. Michel: A 400 MHz 1HNMR Study of Peptidolipine NA, a Natural Cyclic Lipopeptide. Biochem. Biophys. Res. Comm. 94, 1311 (1980).Google Scholar
  112. 112.
    Guinand, M., M.J. Vacheron, G. Michel, B.C. Das, and E. Lederer: Détermination de séquences d’acides aminés dans des oligopeptides par la spectrométrie de masse. V. Structure de la Val6-peptidolipine NA, nouveau peptidolipide de Nocardia asteroides. Tetrahedron, Suppl. 7, 271 (1966).Google Scholar
  113. 113.
    Guinand, M., G. Michel, B.C. Das, and E. Lederer: Détermination de séquences d’acides aminés dans des oligopeptides par la spectrométrie de masse. VII. Structure de 1′ “α-amino-butyryl1-peptidolipine NA”, nouveau peptidolipide de Nocardia asteroides. Vietnamica Chim. Acta 37 (1966).Google Scholar
  114. 114.
    Nishii, M., T. Kihara, and K. Isono: The Structure of Lipopeptin A. Tetrahedron Letters 21, 4627 (1980).Google Scholar
  115. 115.
    Nishii, M., K. Isono, and K. Izaki: Inhibition of Microbial Cell-Wall Synthesis by Lipopeptin A. Agric. Biol. Chem. 45, 895 (1981).Google Scholar
  116. 116.
    Satomi, T., H. Kusakabe, G. Nakamura, T. Nishio, M. Uramoto, and K. Isono: Neopeptins A and B, New Antifungal Antibiotics. Agric. Biol. Chem. 46, 2621 (1982).Google Scholar
  117. 117.
    Ubukata, M., M. Uramoto, and K. Isono: The Structures of Neopeptins, Inhibitors of Fungal Cell Wall Biosynthesis. Tetrahedron Letters 25, 423 (1984).Google Scholar
  118. 118.
    Ohno, T., S. Tajima, and K. Toki: Constitution of Viscosin. J. Agr. Chem. Soc. Japan 27, 665 (1953).Google Scholar
  119. 119.
    Hiramoto, M., K. Okada, S. Nagai, and H. Kawamoto: Synthesis of the Proposed Structure of Viscosin. Biochem. Biophys. Res. Comm. 35, 702 (1969).Google Scholar
  120. 120.
    Hiramoto, M., K. Okada, and S. Nagai: The Revised Structure of Viscosin, a Peptide Antibiotic. Tetrahedron Letters 1087 (1970).Google Scholar
  121. 121.
    Burke, T.R., M. Knight, and B. Chandrasekhar: Solid-Phase Synthesis of Viscosin, a Cyclic Depsipeptide with Antibacterial and Antiviral Properties. Tetrahedron Letters 30, 519 (1989).Google Scholar
  122. 122.
    Shoji, J, and T. Kato: The Structure of Brevistin. J. Antibiotics 29, 380 (1976).Google Scholar
  123. 123.
    Brecht-Fischer, A., H. Zähner, and H. Laatsch: Stoffwechselprodukte von Mikroorganismen. 183. Imacidin, ein neues Acylpeptidantibioticum. Arch. Microbiol. 122, 219 (1979).Google Scholar
  124. 124.
    Laatsch, H.: Metabolic Products of Microorganisms. 204. The Structure of Imacidin C. Liebigs Ann. Chem. 28 (1982).Google Scholar
  125. 125.
    Debono, M., M. Barnhart, C.B. Carrell, J.A. Hoffmann, J.L. Occolowitz, B.J. Abbott, D.S. Fukuda, R.L. Hamil, K. Biemann, and W.C. Herlihy: A21978C, a Complex of New Acidic Peptide Antibiotics: Isolation, Chemistry and Mass Spectral Structure Elucidation. J. Antibiotics 40, 761 (1987).Google Scholar
  126. 126.
    Boeck, L.D., D.S. Fukuda, B.J. Abbott, and M. Debono: Deacylation of A21978C, an Acidic Lipopeptide Antibiotic Complex, by Actinoplanes utahensis. J. Antibiotics 41, 1085 (1988).Google Scholar
  127. 127.
    Debono, M., B.J. Abbott, R.M. Molloy, D.S. Fukuda, A.H. Hunt, V.M. Daupert, F.T. Counter, J.L. Ott, C.B. Carrell, L.C. Howard, L.D. Boeck, and R.H. Hamil: Enzymatic and Chemical Modifications of Lipopeptide Antibiotic A21978C; the Synthesis and Evaluation of Daptomycin. J. Antibiotics 41, 1093 (1988).Google Scholar
  128. 128.
    Maget-Dana, R., J.H. Lakey, and M.Ptak: A Comparative Monomolecular Film Study of Antibiotic A21978C Homologues of Various Lipid Chain Length. Biochim. Biophys. Acta 962, 201 (1988).Google Scholar
  129. 129.
    Thompson, R.Q., and M.S. Hughes: Stendomycin: a New Antifungal Antibiotic. J. Antibiotics, Ser. A, 16, 187 (1963).Google Scholar
  130. 130.
    Bodanszky, M., J. Izdebski, I. Muramatsu, and A. Bodanszky: The Chemistry of the Peptide Antibiotic Stendomycin. Peptide 1968, North Holland Publ. Co., Amsterdam, 306 (1968).Google Scholar
  131. 131.
    Bodanszky, M., I. Muramatsu, and A. Bodanszky: Fatty Acid Constituents of the Antifungal Antibiotic Stendomycin. J. Antibiotics, Ser. A, 20, 384 (1967).Google Scholar
  132. 132.
    Bodanszky, M., I. Muramatsu, A. Bodanszky, M. Lukin, and M.R. Doubler: Amino Acid Constituents of Stendomycin. J. Antibiotics 21, 77 (1968).Google Scholar
  133. 133.
    Muramatsu, I., and M. Bodanszky: The Occurrence of Dehydro-butyrine in Stendomycin. J. Antibiotics 21, 68 (1968).Google Scholar
  134. 134.
    Thomas, T.W., E. Lederer, M. Bodanszky, J. Izdebski, and I. Muramatsu: Partial Structure of the Peptide Antibiotic Stendomycin as Determined by mass Spectrometry. Nature 220, 580 (1968).Google Scholar
  135. 135.
    Urry, D.W., and A. Ruiter: Conformation of Polypeptide Antibiotics.VI. Circular Dichroism of Stendomycin. Biochem. Biophys. Res. Commn., 38, 800 (1970).Google Scholar
  136. 136.
    Peypoux, F., M. Guinand, G. Michel, L. Delcambe, B.C. Das, P. Varenne, and E. Lederer: Isolement de l’acide 3-amino-12-méthyl-tétradécanoïque et de l’acide 3-amino-12-méthyl-tridécanoïque à partir de l’iturine, antibiotique de Bacillus subtilis. Tetrahedron 29, 3455 (1973).Google Scholar
  137. 137.
    Isogai, A., S. Takayama, S. Murakoshi, and A. Suzuki: Structures of β-amino Acids in Antibiotic Iturin A. Tetrahedron Letters 23, 3065 (1982).Google Scholar
  138. 138.
    Peypoux, F., M. Guinand, G. Michel, L. Delcambe, B.C. Das, and E. Lederer: Structure of Iturin A, a Peptidolipid Antibiotic from Bacillus subtilis. Biochemistry 17, 3992 (1978).Google Scholar
  139. 139.
    Nagai, U., F. Besson, and F. Peypoux: Absolute Configuration of an Iturinic Acid as Determined by CD Spectrum of its DNP-p-Methoxyanilide. Tetrahedron Letters 2359 (1979).Google Scholar
  140. 140.
    Garbay-Jaureguiberry, C., B.P. Roques, L. Delcambe, F. Peypoux, and G. Michel: NMR Conformational Study of Iturin A, an Antibiotic from Bacillus subtilis. FEBS-Letters 93, 151 (1978).Google Scholar
  141. 141.
    Marion, D., M. Genest, A. Caille, F. Peypoux, G. Michel, and M. Ptak: Conformational Study of Bacterial Lipopeptides: Refinement of the Structure of iturin A in Solution by Two Dimensional 1H-NMR and Energy Calculations. Biopolymers 25, 153 (1986).Google Scholar
  142. 142.
    Winkelmann, G., H. Allgaier, R. Lupp, and G. Jung: Iturin Al, a New Long Chain Iturin A Possessing an Unusual High Content of C16-β-Amino acid. J. Antibiotics 36, 1451 (1983).Google Scholar
  143. 143.
    Peypoux, F., F. Besson, G. Michel, L. Delcambe, and B.C. Das: Structure de l’iturine C de Bacillus subtilis. Tetrahedron 34, 1147 (1978).Google Scholar
  144. 144.
    Besson, F., and G. Michel: Isolation and Characterization of New Iturins: Iturin D and Iturin E. J. Antibiotics 40, 437 (1987).Google Scholar
  145. 145.
    Lelievre, D., and Y. Trudelle: Synthesis of the Cyclic Peptide of Iturin A. In: Second Forum on Peptides, ed. by A. Aubry, M. Marraud and B. Vitoux, Colloque INSERM vol. 174, 225 (1988).Google Scholar
  146. 146.
    Peypoux, F., M.T. Pommier, B.C. Das, F. Besson, L. Delcambe, and G. Michel: Structures of Bacillomycin D and Bacillomycin L, Peptidolipid Antibiotics from Bacillus subtilis. J. Antibiotics 37, 1600 (1984).Google Scholar
  147. 147.
    Peypoux, F., D. Marion, R. Maget-Dana, M. Ptak, B.C. Das, and G. Michel: Structure of Bacillomycin F, a New Peptidolipid Antibiotic of the Iturin group. Eur. J. Biochem. 153, 335 (1985).Google Scholar
  148. 148.
    Besson, F. and G. Michel: Bacillomycins Fb and Fc. Isolation and Characterization. J. Antibiotics 41, 282 (1988).Google Scholar
  149. 149.
    Peypoux, F., G. Michel, and L. Delcambe: Structure de la mycosubtiline, antibiotique isolé de Bacillus subtilis. Eur. J. Biochem. 63, 391 (1976).Google Scholar
  150. 150.
    Peypoux, F., M.T. Pommier, D. Marion, M. Ptak, B.C. Das, and G. Michel: Revised Structure of Mycosubtilin, a Peptidolipid Antibiotic from Bacillus subtilis. J. Antibiotics 39, 636 (1986).Google Scholar
  151. 151.
    Kato, T., and J. Shoji: The Amino Acid Sequence of Octapeptin C. J. Antibiotics 29, 1339 (1976).Google Scholar
  152. 152.
    Rosenthal, K.S., P.E. Swanson, and D.R. Storm: Disruption of Escherichia coli Outer Membranes by EM 49. A New Membrane Active Peptide Antibiotic. Biochemistry 15, 5783 (1976).Google Scholar
  153. 153.
    Das, B.C., and E. Lederer: Mass spectrometry in Peptide Chemistry In New Techniques in Amino Acid, Peptide and Protein Analysis, ed. by A. Niederwieser and G. Pataki, Ann Arbor Science Publ. Inc., Ann Arbor, 175 (1971).Google Scholar
  154. 154.
    Das, B.C., S.D. Gero, and E. Lederer: N-Methylation of N-Acyl Oligopeptides. Biochem. Biophys. Res. Comm. 29, 211 (1967).Google Scholar
  155. 155.
    Das, B.C., S.D. Gero, and E. Lederer: Detection and Localization of N-Methyl-aminoacid Residues in N-Acyl oligopeptides Methyl Esters by Mass Spectrometry. Nature 217, 547 (1968).Google Scholar
  156. 156.
    Thomas, D.W., B.C. Das, S.D. Gero, and E. Lederer: Advantages and Limitations of the Mass Spectrometric Sequence Determination of Permethylated Oligopeptide Derivatives. Biochem. Biophys. Res. Comm. 32, 199 (1968).Google Scholar
  157. 157.
    Van Heijenoort, J., E. Bricas, B.C. Das, E. Lederer, and W.A. Wolstenholme: Détermination de séquences d’acides aminé dans des oligopeptides par la spectrométrie de masse. IX. Acylation avec de nouveaux radicaux mixtes; peptides contenant des acides aminés trifonctionnels. Tetrahedron 23, 3403 (1967).Google Scholar
  158. 158.
    Thomas, D.W.: Mass Spectrometry of Permethylated Peptide Derivatives: Extension of the Techniques to Peptides Containing Aspartic Acid, Glutamic Acid and Tryptophan. Biochem. Biophys. Res. Comm. 33, 483 (1968).Google Scholar
  159. 159.
    Bricas, E., J. Van Heijenoort, M. Barber, W.A. Wolstenholme, B.C. Das, and E. Lederer: Determination of Amino Acid Sequences in Oligopeptides by Mass Spectrometry. IV. Synthetic N-Acyl Oligopeptide Methyl Esters. Biochemistry 4, 2254 (1965).Google Scholar
  160. 160.
    Schulten, H.R.: Field Desorption Mass Spectrometry and Its Application to Biochemical Analysis, In: Methods of biochemical analysis, ed. by G. Glick, John Wiley & Sons, New York, vol. 24, 313 (1977).Google Scholar
  161. 161.
    Howe, I., and M. Jarman: New Techniques for the Mass Spectrometry of Natural Products, Progr. Chem. organ. natur. Products 47, 107 (1985).Google Scholar
  162. 162.
    Naylor, S., and G. Moneti: Factors Affecting the Fragmentation of Peptides in Fast Atom Bombardment Mass Spectrometry. Biomed. Environm. Mass Spectrom. 18, 405 (1989).Google Scholar
  163. 163.
    Besson, F., F. Peypoux, G. Michel, and L. Delcambe: Mode of Action of Iturin A, an Antibiotic Isolated from Bacillus subtilis, on Micrococcus luteus. Biochem. Biophys. Res. Comm. 81, 297 (1978).Google Scholar
  164. 164.
    Besson, F., F. Peypoux, G. Michel, and L. Delcambe: Antifungal Activity upon Saccharomyces cerevisiae of Iturin A, Mycosubtilin, Bacillomycin L and of Their Derivatives. Inhibition of this antifungal activity by lipid antagonists. J. Antibiotics 32, 828 (1979).Google Scholar
  165. 165.
    Besson, F., F. Peypoux, M.J. Quentin, and G. Michel: Action of Antifungal Peptidolipids from Bacillus subtilis on the Cell Membrane of Saccharomyces cervisiae. J. Antibiotics 37, 172 (1984).Google Scholar
  166. 166.
    Quentin, M.J., F. Besson, F. Peypoux, and G. Michel: Action of Peptidolipidic Antibiotics of the Iturin Group on Erythrocytes. Effect of Some Lipids on Hemolysis. Biochim. Biophys. Acta 684, 207 (1982).Google Scholar
  167. 167.
    Quentin, M. J., F. Peypoux, and G. Michel: Changes in Phospholipid Vesicles Size Induced by Amphipathic Antibiotic of the Iturin group. Biochem. intern. 7, 63 (1983).Google Scholar
  168. 168.
    Besson, F., F. Peypoux, and G. Michel: Action of Mycosubtilin and Bacillomycin L on Micrococcus luteus Cells and Protoplasts. Influence of the Polarity of the Antibiotics upon Their Action on the Bacterial Cytoplasmic Membrane. FEBS-Letters 90, 36 (1978).Google Scholar
  169. 169.
    Latoud, C., F. Peypoux, and G. Michel: Action of Iturin A, an Antifungal Antibiotic from Bacillus subtilis, on the Yeast Saccharomyces cerevisiae: Modifications of Membrane Permeability and Lipid Composition. J. Antibiotics 40, 1588 (1987).Google Scholar
  170. 170.
    Latoud, C., F. Peypoux, and G. Michel: Action of Iturin A on Membrane Vesicles from Saccharomyces cervisiae: Activation of Phospholipases A and B Activities by Picomolar Amounts of Iturin A. J. Antibiotics 41, 1699 (1988).Google Scholar
  171. 171.
    Maget-Dana, R., F. Heitz, M. Ptak, F. Peypoux, and M. Guinand: Bacterial Lipopeptides Induce Ion-Conducting Pores in Planar Bilayers. Biochem. Biophys. Res. Comm. 129, 965 (1985).Google Scholar
  172. 172.
    Maget-Dana, R., M. Ptak, F. Peypoux, and G. Michel: Effect of the O-Methylation of Tyrosine on the Pore-Forming Properties of Iturins. Biochim. Biophys. Acta 898, 1 (1987).Google Scholar
  173. 173.
    Ptak, M., M. Genest, D. Marion, R. Maget-Dana, I. Harnois, D. Genest, and A. Caille: Recent Progress in the Determination of Structure-Activity Relationships for a Family of Antifungal Lipopeptides In: Second Forum on Peptides, ed. by A. Aubry, M. Marraud and B. Vitous, Colloque INSERM n° 174, 11 (1988).Google Scholar
  174. 174.
    Aydin, M., N. Lucht, W. A. König, R. Lupp, G. Jung, and G. Winkelmann: Structure Elucidation of the Peptide Antibiotics Herbicolin A and B. Liebigs Ann. Chem. 2285 (1985).Google Scholar
  175. 175.
    Smith, D.W., and H.M. Randall: Mycosides of Mycobacteria. Amer. Rev. Respir. Diseases 92, 34 (1965).Google Scholar
  176. 176.
    Asselineau, C., and Asselineau, J.: Waxes, Mycosides and Related Compounds. In: The Mycobacteria, a Source Book, ed. by G.P. Kubica and L.G. Wayne, Marcel Dekker Inc., New York, vol. 1, 345 (1984).Google Scholar
  177. 177.
    Brennan, P.J.: New Found Glycolipid Antigens of Mycobacteria. In: Microbiology-1984, ed. by L. Leive and D. Schlessinger, Amer. Soc. Microbiol, Washington, 366 (1984).Google Scholar
  178. 178.
    Jolles, P., F. Bigler, T. Gendre, and E. Lederer: Sur la structure chimique du mycoside C, peptidoglycolipide de Mycobacterium avium. Bull. Soc. chim. biol. 43,177 (1961).Google Scholar
  179. 179.
    Chaput, M., G. Michel, and E. Lederer: Structure du mycoside Cm, peptidoglycolipide de Mycobacterium marianum. Biochim. Biophys. Acta 63, 310 (1962).Google Scholar
  180. 180.
    Vilkas, E., A. Rojas, B.C. Das, W.A. Wolstenholme, and E. Lederer: Détermination de séquences d’acides aminés dans des oligopeptides par la spectrométrie de masse. VI. Structure du mycoside Cb, peptidoglycolipide de Mycobacterium butyricum. Tetrahedron 22, 2809 (1966).Google Scholar
  181. 181.
    Laneelle, G., and J. Asselineau: Structure d’un glycoside de peptidolipide isolé d’une mycobactérie. Eur. J. Biochem. 5, 487 (1968).Google Scholar
  182. 182.
    Daffe, M., M.A. Laneelle, and G. Puzo: Structural Elucidation by Field Desorption and Electron-Impact Mass Spectrometry of the C-Mycosides Isolated from Mycobacterium smegmatis. Biochim. Biophys. Acta 751, 439 (1983).Google Scholar
  183. 183.
    Brennan, P.J., and M.B. Goren: Structural Studies on the Type-Specific Antigens and Lipids of the Mycobacterium avium-M. intracellulare-M. scrofulaceum serocomplex. Mycobacterium intracellulare serotype 9. J. Biol. Chem. 254, 4205 (1979).Google Scholar
  184. 184.
    MacLennan, A.P.: The Monosaccharide Units in Specific Glycolipids of Mycobacterium avium. Biochem. J. 82, 394 (1962).Google Scholar
  185. 185.
    Bruneteau, M., and G. Michel: Biogénèse des O-méthyl-6-désoxyhexoses présents dans le mycoside C2. Biochim. Biophys. Acta 201, 493 (1970).Google Scholar
  186. 186.
    Vilkas, E., A. Rojas, and E. Lederer: Sur un nouvel acide aminé, la N-méthyl Ométhyl L-serine, isolé des mycosides de Mycobacterium butyricum and M. avium. Compt. Rend. Acad. Sci. (Paris) 261, 4258 (1965).Google Scholar
  187. 187.
    Laneelle, G.: Sur la présence d’aminoalcools dans une fraction glyco-peptido-lipidique isolée d’une mycobactérie atypique. Compt. Rend. Acad. Sci. (Paris) Ser. C., 263, 502 (1966).Google Scholar
  188. 188.
    Laneelle, G.: Etude de deux formes lipophiles d’acides aminés produites par des mycobactéries. Thèse Doctorat-es-Sciences, Université de Toulouse, 1967.Google Scholar
  189. 189.
    Vilkas, E., E. Lederer, and J.C. Massot: N-méthylation de peptides par la méthode d’Hakomori. Structure du mycoside Cb1. Tetrahedron Letters 3089 (1968).Google Scholar
  190. 190.
    Vilkas, E., C. Gros, and J.C. Massot: Sur la structure chimique d’un mycoside C isolé de Mycobacterium scrofulaceum. Compt. Rend. Acad. Sci. (Paris), Ser. C, 266,837 (1968).Google Scholar
  191. 191.
    Voiland, A., M. Bruneteau, and G. Michel: Etude du mycoside C2 de Mycobacterium avium. Détermination de la structure. Eur. J. Biochem. 21, 285 (1971).Google Scholar
  192. 192.
    Bruneteau, M., and G. Michel: Synthèse du L-alaninol à partir d’extraits acellulaires de Mycobacterium avium. FEBS-Letters 14, 57 (1971).Google Scholar
  193. 193.
    Laneelle, G., J. Asselineau, and G. Chamoiseau: Présence de mycosides C’ (formes simplifiées de mycoside C) dans des bactéries isolées de bovins atteints de farcin. FEBS-Letters 19, 109 (1971).Google Scholar
  194. 194.
    Camphausen, R.T., R.L. Jones, and P.J. Brennan: A glycolipid Antigen Specific to Mycobacterium paratuberculosis. Structure and Antigenicity. Proc. Natl. Acad. Sci. USA, 82, 3068 (1985).Google Scholar
  195. 195.
    Tsang, A.Y., V.L. Barr, J.K. McClatchy, M. Goldberg, I. Drupa, and P.J. Brennan: Antigenic Relationships of the Mycobacterium fortuitum-Mycobacterium chelonae complex. Intern. J. system. Bacteriol. 34, 35 (1984).Google Scholar
  196. 196.
    Draper, P., and R.J.W. Rees: The Nature of the Electron-Transparent Zone that Surrounds Mycobacterium lepraemurium Inside Host Cells. J. gen. Microbiol. 77, 79 (1973).Google Scholar
  197. 197.
    Barrow, W.W., B.P. Ullom, and P.J. Brennan: Peptidoglycolipid Nature of the Superficial Cell Wall Sheath of Smooth Colony-Forming Mycobacteria. J. Bacteriol. 144, 814 (1980).Google Scholar
  198. 198.
    Portaels, F., M. Daffe, M.A. Laneelle, and C. Asselineau: Etude de la composition lipidique de mycobactéries isolées de foies de tatous infectés par Mycobacterium leprae. Ann. Microbiol. (Inst. Pasteur) 135 A, 457 (1984).Google Scholar
  199. 199.
    Barrow, W.W., and P J. Brennan: Isolation in High Frequency of Rough Variants of Mycobacterium intracellulare Lacking C-Mycoside Glycopeptidolipid Antigens. J. Bacteriol. 150, 381 (1982).Google Scholar
  200. 200.
    Schaefer, W.B.: Serologic Identification and Classification of the Atypical Mycobacteria by their Agglutination. Amer. Rev. respir. Diseases 92 (suppl.), 85 (1965).Google Scholar
  201. 201.
    Schaefer, W.B.: Serologic Identification of the Atypical Mycobacteria and its Value in Epidemiologic Studies. Amer. Rev. respir. Diseases 96, 115 (1967).Google Scholar
  202. 202.
    Jenkins, P.A.: Lipid Analysis in the Identification of Mycobacteria. An Appraisal. Rev. infect. Dis. 3, 862 (1981).Google Scholar
  203. 203.
    Brennan, P.J., M. Heifets, and B.P. Ullom: Thin-layer Chromatography of Lipid Antigens as a Means of Identifying Nontuberculous Mycobacteria. J. Clin. Microbiol. 15, 447 (1982).Google Scholar
  204. 204.
    Brennan, P.J., H. Mayer, G.O. Aspinall, and J.E. Nam Shin: Structures of the Glycopeptidolipid Antigens from Serovars in the Mycobacterium avium/M. intracellulare/M. scrofulaceum Serocomplex. Eur. J. Biochem. 115, 7 (1981).Google Scholar
  205. 205.
    Camphausen, R.T., R.L. Jones, and P.J. Brennan: Structure and Relevance of the Oligosaccharide Hapten of Mycobacterium avium Serotype 2. J. Bacteriol. 168, 660 (1986).Google Scholar
  206. 206.
    McNeil, M., A.Y. Tsang, and P.J. Brennan: Structure and Antigenicity of the Specific Oligosaccharide Hapten from the Glycopeptidolipid Antigen of Mycobacterium avium serotype A, the Dominant Mycobacterium Isolated from Patients with Acquired Immune Deficiency Syndrome. J. Biol. Chem. 262, 2630 (1987).Google Scholar
  207. 207.
    Brennan, P.J., G.O. Aspinall, and J.E. Nam Shin: Structures of the Specific Oligosaccharides from the Glycopeptidolipid Antigens of Serovars in the Mycobacterium avium/M. intracellulare/M. scrofulaceum Complex. J. Biol. Chem. 256, 6817 (1981).Google Scholar
  208. 208.
    Bozic, C.M., M. McNeil, D. Chatterjee, I. Jardine, and J.P. Brennan: Further Novel Amidosugars Within the Glycopeptidolipid Antigens of Mycobacterium avium. J. Biol. Chem. 263, 14984 (1988).Google Scholar
  209. 209.
    McNeil, M., H. Gaylord, and P.J. Brennan: N-Formyl Kansosaminyl-(l→3)-2-o-methyl-d-rhamnopyranose: The Type-Specific Determinant of Serovariant 14 of the Mycobacterium avium Complex. Carbohyd. Res. 177, 185 (1988).Google Scholar
  210. 210.
    Chatterjee, D., C. Bozic, G.O. Aspinall, and P.J. Brennan: Glucuronic Acid- and Branched Sugar-Containing Glycolipid antigens of Mycobacterium avium. J. Biol. Chem. 263, 4092 (1988).Google Scholar
  211. 211.
    Chatterjee, D., G.O. Aspinall, and P.J. Brennan: The presence of Novel Glucuronic Acid-Containing, Type-Specific Glycolipid Antigens Within Mycobacterium spp. Revision of Earlier Structures. J. Biol. Chem. 262, 3528 (1987).Google Scholar
  212. 212.
    Gerwig, G.J., J.P.Kamerling, and J.F.G. Vliegenhart: Determination of the d and l Configurations of Neutral Monosaccharides by High-Resolution Capillary G.L.C. Carbohyd. Res. 62, 349 (1978).Google Scholar
  213. 213.
    Hunter, S.W., T. Fujiwara, R.C. Murphy, and P.J. Brennan: N-Acyl Kansosamine. A Novel Acylamino Sugar from the Trehalose-Containing Lipooligosaccharide Antigens of Mycobacterium Kansasii. J. Biol. Chem. 259, 9729 (1984).Google Scholar
  214. 214.
    Terelitsky, M.J., and W.W. Barrow: Postphagocytic Detection of Glycopeptidolipids Associated with the Superficial L1 Layer of Mycobacterium intracellulare. Infect. & Immun. 41, 1312 (1983).Google Scholar
  215. 215.
    Brennan, P.J.: Antigenic Peptidoglycolipids, Phospholipids and Glycolipids, In The Mycobacteria, a Source Book, ed. by G.P. Kubica and L.G. Wayne, Marcel Dekker Inc., New York, 467 (1984).Google Scholar
  216. 216.
    Woodbury, J.L., and W.W. Barrow: Radiolabelling of Mycobacterium avium Oligosaccharide Determinant and Use in Macrophage Studies. J. Gen. Microbiol. 135,1875 (1989).Google Scholar
  217. 217.
    David, H.L., N. Rastogi, S. Clavel-Seres, and F. Clement: Alterations in the Outer Wall Architecture Caused by the Inhibition of Mycoside C Biosynthesis in Mycobacterium avium. Curr. Microbiol. 17, 61 (1988).Google Scholar
  218. 218.
    Rastogi, N., V. Levy-Frebault, M.C. Blom-Potar, and H.L. David: Ability of Smooth and Rough Variants of Mycobacterium avium and M. intracellulare to Grow and Survive Intracellularly. Role of C-Mycosides. Zbl. Bakt. Hyg. A, 270, 345 (1989).Google Scholar
  219. 219.
    Furuchi, A., and T. Tokunaga: Nature of the Receptor Substance of Mycobacterium smegmatis for D4 Bacteriophage Adsorption. J. Bacteriol. 111, 404 (1972).Google Scholar
  220. 220.
    Goren, M.B., J.K. McClatchy, B. Martens, and O. Brokl: Mycosides C: Behavior as Receptor Site Substance for Mycobacteriophage D4. J. Virol. 9, 999 (1972).Google Scholar
  221. 221.
    Dhariwal, K.R., A. Liav, A.E. Vatter, G. Dhariwal, and M.B. Goren: Haptenic Oligosaccharides in Antigenic Variants of Mycobacterial C-Mycosides Antagonize Lipid Receptor Activity for Mycobacteriophage D4 by Masking a Methylated Rhamnose. J. Bacteriol. 168, 283 (1986).Google Scholar
  222. 222.
    Moore, R.E., V. Bornemann, W.P. Niemczura, J.M. Gregson, J.L. Chen, T.R. Norton, G.M.L. Patterson, and G.L. Helms: Puwainaphycin C, a Cardioactive Cyclic Peptide from the Blue-Green Algae Anabaena BQ 16-1. Use of Two Dimensional 13C-13C and 13C-15N Correlation Spectroscopy in Sequencing the Amino Acid Units. J. Am. Chem. Soc. 111, 6128 (1989).Google Scholar
  223. 223.
    Segre, A., R.C. Bachmann, A. Ballio, F. Bossa, I. Grgurina, N.S. Iacobellis, G. Marino, P. Pucci, M. Simmaco, and J.Y. Takemoto: The Structure of Syringomycins A1 E and G. FEBS-Letters 255, 27 (1989).Google Scholar

Copyright information

© Springer-Verlag/Wien 1991

Authors and Affiliations

  • J. Asselineau
    • 1
  1. 1.Centre de Recherche de Biochimie et Génétique CellulairesToulouseFrance

Personalised recommendations