Skip to main content

Part of the book series: Plant Systematics and Evolution ((SYSTEMATICS,volume 5))

Abstract

The focus of this paper is the microtubular cytoskeleton of microspore mother cells and tapetal cells. In both tissues, the microtubular cytoskeleton takes several forms during microsporogenesis and may perform a number of differing roles during meiosis and pollen development. The major part played by microtubules during microsporogenesis is in cell division. In the microspore, the microtubular cytoskeleton, via the microtubular organizing centres (MTOCs), appears to have an indirect role in the siting of the colpus but it plays no direct part in wall patterning. It may also be active in sexine formation in the directional movement of vesicles containing wall precursors, and in the ordered depo­sition of wall material. Although an association has been observed between microtubules and cisternae forming the nexine 2, it is not known whether these are causally related. It is envisaged that the microtubules play a similar role in intine formation to that played in the development of somatic cellulosic walls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Burgess, J., 1970: Microtubules and cell division in the microspore of Dactylorchis fuschii.Protoplasma 69: 253–264.

    CAS  Google Scholar 

  • Crest, M., Ciampolini, F., Kapil, R. N., 1984: Generative cells of some angiosperms with particular emphasis on their microtubules. J. Submicrosc. Cytol. 16: 317–326.

    Google Scholar 

  • Dawson, P., Hulme, J., Lloyd, C. W., 1985: Monoclonal antibody to intermediate filaments antigen cross reacts with higher plant cells. J. Cell Biol. 100: 1793–1798.

    Article  PubMed  CAS  Google Scholar 

  • Dickinson, H. G., 1970: Ultrastructural aspects of primexine formation in the microspore tetrad of Lilium longiflorum. Cytobiologie 1: 437–449.

    Google Scholar 

  • Dickinson, H. G., 1976: Common factors in exine deposition. In Ferguson, I. K., Muller, J., (Eds.): The evolutionary significance of the exine. Linn. Symp. Soc. Ser. 1: 67–89.

    Google Scholar 

  • Heslop-Harrison, J., 1971: The mode of growth of the inner layer of the pollen grain exine in Lilium.Cytobios 4: 233–243.

    Google Scholar 

  • Heslop-Harrison, J., Sheldon, J. M., 1984: A radial system of microtubules extending between the nuclear envelope and the plasma membrane during early male haplophase in flowering plants. Planta 161: 86–90.

    Article  Google Scholar 

  • Heslop-Harrison, J., Sheldon, J. M., 1986: The generation of patterning at the plasma membrane of the young microspore of Lilium. In Blackmore, S., Ferguson, I. K., (Eds.): Pollen and spores: form and function. J. Linn. Symp. Soc. Ser. 12: 1–17.

    Google Scholar 

  • Dover, G. A., 1972: The organisation and polarity of pollen mother cells of Triticum aestivum. — J. Cell Sci. 11: 699–711.

    PubMed  CAS  Google Scholar 

  • Dustin, P., 1978: Microtubules. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Echlin, P., Godwin, H., 1968: The ultrastructure and ontogeny of pollen in Helleborus foetidus L. 1. The development of the tapetum and Ubisch bodies. J. Cell Sc. 3: 161–174.

    CAS  Google Scholar 

  • Fey, E. G., Ornelles, D. A., Penman, S., 1986: Association of RNA with the cytoskeleton and the nuclear matrix. In Lloyd, C. W., Hyams, J. S., Warn, R. M., (Eds.): The cytoskeleton: cell function and organization. J. Cell Sci. Suppl. 5: 99–119.

    Google Scholar 

  • Godwin, H., Echlin, P., Chapman, B., 1967: The development of the pollen grain wall in Ipomoea purpurea (L.) Roth.–Rev. Palaeobot. Palynol. 3: 181–195.

    Article  Google Scholar 

  • Gunning, B. S. E., Wick, S. M., 1985: Preprophase bands, phragmoplasts and spatial control of cytokinesis. J. Cell Sci. Suppl. 2: 157–179.

    PubMed  CAS  Google Scholar 

  • Heath, I. B., Seagull, R. W., 1982: Oriented cellulose fibrils and the cytoskeleton: a critical comparison of models.In Lloyd, C. W., (Ed.): The cytoskeleton in plant growth and development, London: Academic Press. pp. 165–187.

    Google Scholar 

  • Hepler, P. K., Lancelle, S. A., 1986: Cytoskeletal details in freeze-substituted meiotic cells of Tradescantia blossfeldiana. J. Cell Biol. 103: 555 a.

    Google Scholar 

  • Heslop-Harrison, J., 1963: An ultrastructural study of pollen wall ontogeny in Silene pendula. — Grana Palynol. 4: 7–24.

    Google Scholar 

  • Heslop-Harrison, J., 1968 a: Pollen wall development. — Science 161: 230–237.

    Google Scholar 

  • Heslop-Harrison, J., 1968 b: Wall development within the microspore tetrad of Lilium longorum. — Canad. J. Bot. 46: 1185–1192.

    Google Scholar 

  • Heslop-Harrison, J., 1971: Wall pattern formation in angiosperm microsporogenesis. — In: Control mechanisms of growth and differentiation. — Symp. Soc. Exper. Biol. 25: 277–300.

    Google Scholar 

  • Heslop-Harrison, Y., Cresti, M., Tiezzi, A., Ciampolini, F., 1986: Actin during pollen germination. — J. Cell Sci. 86: 1–8.

    CAS  Google Scholar 

  • Hogan, C. J., 1987: Microtubule patterns during meiosis in two higher plant species. — Protoplasma 138: 126–136.

    Google Scholar 

  • Lancelle, S. A., Cresti, M., Hepler, P. K., 1987: Ultrastructure of the cytoskeleton in freeze-substituted pollen tubes of Nicotiana alata. — Protoplasma 140: 141–150.

    Google Scholar 

  • Lloyd, C. W., 1984: Toward a dynamic helical model for the influence of microtubules in wall patterns in plants. — Internat. Rev. Cytol. 86: 1–51.

    Article  Google Scholar 

  • Mepham, R. H., Lane, G., 1969: Formation and development of tapetal periplasmodium in Tradescantia bracteata. — Protoplasma 68: 175–192.

    Google Scholar 

  • Northcote, D. H., 1971: Organization of structure, synthesis and transport within the plant during cell division and growth. — Symp. Soc. Exper. Biol. 25: 51–69.

    CAS  Google Scholar 

  • Owens, S. J., Dickinson, H. G., 1983: Pollen wall development in Gibasis (Commelinaceae).— Ann. Bot. 51: 1–15.

    CAS  Google Scholar 

  • Westmuckett, A. D., 1983: The structure and development of the generative cell wall in Gibasis karwinskyana, G. venustula and Tradescantia blossfeldiana (Commelinaceae).— In Mulcahy, D. L., Ottaviano, E., (Eds.): Pollen: Biology and implications for plant breeding, New York: Elsevier Biomedical. pp. 149–157.

    Google Scholar 

  • Pacini, E., Juniper, B. E., 1979: The structure of pollen grain development in the Olive (Olea europaea). 2. Secretion by the tapetal cells. — New Phytol. 83: 165–174.

    Article  Google Scholar 

  • Pacini, E., Juniper, B. E., 1983: The ultrastructure of the formation and development of the amoeboid tapetum in Arum italicum Miller.–Protoplasma 117: 116–129.

    Google Scholar 

  • Palevitz, B. A., 1982: The stomatal complex as a model of cytoskeletal participation in cell differentiation. — In Lloyd, C. W., (Ed.): The cytoskeleton in plant growth and development, London: Academic Press. pp. 345–376.

    Google Scholar 

  • Quader, H., 1986: Cellulose microfibril orientation in Oocystis solitai: proof that micro-tubules control the alignment of the terminal complexes. — J. Cell Sci. 83: 223–234.

    PubMed  CAS  Google Scholar 

  • Quader, H., Schnepf, E., 1986: Endoplasmic reticulum and cytoplasmic streaming: fluorescence microscopical observations in adaxial epidermis cells of onion bulb scales. — Protoplasma 131: 250–252.

    Google Scholar 

  • Rowley, J., Dunbar, A., 1967: Sources of membranes for exine formation. — Svensk Bot. Tidskr. 61: 49–64.

    Google Scholar 

  • Sanger, R., Jackson, W. T., 1971: Fine structure of pollen development in Haemanthus katharinae Baker. 2. Microtubules and elongation of generative cells. — J. Cell Sci. 8: 303–305.

    PubMed  CAS  Google Scholar 

  • Schmit, A. C., Lambert, A. M., 1985: F-actin distribution during the cell cycle of higher plant endosperm cells. — J. Cell Biol. 101: 38 a.

    Google Scholar 

  • Schraudolf, H., 1984: Ultrastructural events during sporogenesis of Anemia phyllitidis (L.) Sw. 2 Spore wall formation. — Beiträge Biol. Pflanzen 59: 237–260.

    Google Scholar 

  • Sheetz, M. P., Vale, R., Schnapp, B., Schroer, T., Reese, T., 1986: Vesicle movements and microtubule-based motors. — In Lloyd, C. W., Hyams, J. S., Warn, R. M., (Eds.): The cytoskeleton: cell function and organization. — J. Cell Sci. Suppl. 5: 181–188.

    Google Scholar 

  • Sheldon, J. M. 1986: The generation of pattern in the pollen wall of Lilium. — Ph.D.Thesis, University of Reading.

    Google Scholar 

  • Dickinson, H. G., 1983: Determination of patterning in the pollen wall of Lilium henryi. — J. Cell Sci. 63: 191–208.

    PubMed  Google Scholar 

  • Dickinson, H. G., 1986: Pollen wall formation in Lilium: the effect of chaotropic agents, and the organization of the microtubular cytoskeleton during pattern development. — Planta 168: 11–23.

    Google Scholar 

  • Dickinson, H. G., Hawes, C. R., 1988: The actin cytoskeleton during male meiosis in Lilium. — Cell Biol. Internat. Reports 12: 471–476.

    Google Scholar 

  • Dickinson, H. G., Willson, C., Dickinson, H. G., 1988: Interaction between the nucleus and cytoskeleton during the pairing stage of male meiosis in flowering plants. — In Brandham, P. E., (Ed.): Kew Chromosome Conference 3: 27–35. — London, Kew: Her Majesty’s Stationary Office.

    Google Scholar 

  • Staiger, C. J., Schliwa, M., 1987: Actin localization and function in higher plants. — Protoplasma 141: 1–12.

    CAS  Google Scholar 

  • Steer, M. W., 1977: Differentiation of the tapetum in Avena. 1. The cell surface. — J. Cell Sci. 25: 125–138.

    PubMed  CAS  Google Scholar 

  • Tiwari, S. C., Gunning, B. E. S., 1986 a: An ultrastructural, cytochemical and immunofluorescence study of post-meiotic development of plasmodial tapetum in Tradescantia virginiana L. and its relevance to the pathway of sporopollenin secretion. — Protoplasma 133: 100–114.

    Google Scholar 

  • Tiwari, S. C., Gunning, B. E. S., 1986 b: Colchicine inhibits plasmodium formation and disrupts pathways of sporopollenin secretion in the anther tapetum of Tradescantia virginiana L. — Protoplasma 133: 115–128.

    Google Scholar 

  • Traas, J. A., Doonan, J. H., Rawlins, D. J., Shaw, P. J., Watts, J., Lloyd, C. W., 1987: An actin network is present in the cytoplasm throughout the cell cycle of carrot cells and associated with the dividing nucleus. — J. Cell Biol. 105: 387–395.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag/Wien

About this paper

Cite this paper

Owens, S.J., Sheldon, J.M., Dickinson, H.G. (1990). The microtubular cytoskeleton during pollen development. In: Hesse, M., Ehrendorfer, F. (eds) Morphology, Development, and Systematic Relevance of Pollen and Spores. Plant Systematics and Evolution, vol 5. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9079-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9079-1_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9081-4

  • Online ISBN: 978-3-7091-9079-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics