Skip to main content

Neurohormonal Communication in the Brain

  • Conference paper
Neuroendocrinological Aspects of Neurosurgery

Part of the book series: Acta Neurochirurgica ((NEUROCHIRURGICA,volume 47))

  • 85 Accesses

Abstract

Why are there tens of chemical messengers, when just two—one stimulatory the other inhibitory—would suffice for communication between the many different types of neuron, that act as mediators of the unique signal—the action potential? A naive question with a naive answer: there are several messengers because there are several types of message to be delivered. These latter aren’t limited simply to the opening of ionic channels gathered in a small area of the neuronal membrane to produce a localised depolarisation or hyperpolarization (excitatory or inhibitory post-synaptic potentials), but consist of complex modifications bearing on the whole cell thanks to the intervention of an intracellular second messenger.

And the Lord said, “Behold, they are one people and they have all one language” ... Therefore its name was called Babel because there the Lord confused the language of all the earth and from there the Lord scattered them abroad over the face of all the earth.

Genesis

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaishi T, Negoro H, Kobayashi S (1980) Responses of paraventricular and supraoptic units to angiotensin II, [Sar1Ile8]-angiotensin II and hypertonic NaC1 administered into the cerebral ventricle. Brain Res 188: 499–511

    Article  PubMed  CAS  Google Scholar 

  • Alsatu M, Kempf E, Mack G, Aron C (1981) Involvement of dopaminergic mechanisms in the control of ovulation and sexual receptivity in cyclic female rats. Biol Behav 6: 305–315

    Google Scholar 

  • Andrew RD, MacVicar BA, Dudek FE, Hatton GI (1981) Dye transfer through gap junctions between neuroendocrine cells of rat hypothalamus. Science 211: 1187–1189

    Article  PubMed  CAS  Google Scholar 

  • Antunes-Rodrigues J, McCann SM, Rogers LC, Samson WK (1986)

    Google Scholar 

  • A trial natriuretic factor inhibits dehydration-and angiotensin II-induced water intake in the conscious, unrestrained rat. Proc Natl Acad Sci 82: 8720–8723

    Google Scholar 

  • Arluisson M, Agid Y, Javoy F (1978) Dopaminergic nerve endings in the neostriatum of the rat. I. Identification by intracerebral injection°af 6 hydroxydopamine. Neuroscience 3: 657–673

    Article  Google Scholar 

  • Barclay RK, Philipps MA (1980) Inhibition of enkephalin-degrading aminopeptidase activity by certain peptides. Biochem Biophys Res Commun 96, 4: 1732–1738

    Article  PubMed  CAS  Google Scholar 

  • Barker JL, Gruol DL, Huang LHM, MacDonald JF, Smith Jr TG (1980) Electrophysiological analysis of the role of peptides using cultured spinal neurons in the role of peptides in neuronal function, Barker JL (ed). Marcel Dekker Inc., New York, pp 273–300

    Google Scholar 

  • Barnard RR, Morris M (1982) Cerebro-spinal fluid vasopressin and oxytocin: evidence for an osmotic response. Neurosci Lett 29: 275–279

    Article  PubMed  CAS  Google Scholar 

  • Beaudet A, Descarries L (1978) The monoamine innervation of rat cerebral cortex; synaptic and non-synaptic axon terminals. Neuroscience 3: 851–860

    Article  PubMed  CAS  Google Scholar 

  • Belin V, Moos F, Richard P (1984) Synchronization of oxytocin cells in the hypothalamic paraventricular and supraoptic nuclei in suckled rats: direct proof with paired extracellular recordings. Expl Brain Res 5: 201–203

    Google Scholar 

  • Berson SA, Yalow RS (1973) Peptides hormones. Part H. In: Pituitary hormones and hypothalamic releasing factors. Elsevier North-Holland, Amsterdam, pp 257–711

    Google Scholar 

  • Biales B, Dichter MS, Tischler A (1976) Electrical excitability of cultured adrenal chromaffin cells. J Physiol (London) 262: 743–753

    CAS  Google Scholar 

  • Bibène V, Pestre M, Rodriguez F, Arnauld E, Poncet C, Vincent JD (1985) Vasopressine et cycle veille-sommeil chez le rat. 15e Coll Soc Neuroendocrinol Exptl, Gif-sur-Yvette

    Google Scholar 

  • Björklund A, Lindvall D (1975) Dopamine in dendrites of substantia nigra neurons: suggestions for a role in dendritic terminals. Brain Res 83: 531–537

    Article  PubMed  Google Scholar 

  • Brightman MW, Palay SL (1963) The fine structure of ependyma in the brain of the rat. J Cell Biol 19: 415–439

    Article  PubMed  CAS  Google Scholar 

  • Brimijoin S, Lundberg JM, Brodin E, Hökfelt T (1980) Axonal transport of substance P in the vagus and sciatic nerves of the guinea-pig. Brain Res 191: 443–457

    Article  PubMed  CAS  Google Scholar 

  • Bruwning MD, Huganir R, Greengard P (1985) Protein phosphorylation and neuronal function. J Neurochem 45: 11–23

    Article  Google Scholar 

  • Buijs RM, Swaab DF, Dogterom J, Van Leeuwen FW (1978) Intra-and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res 186: 423–483

    Article  PubMed  CAS  Google Scholar 

  • Burbach JPH, Kovacs GL, De Wied D, Van Nispen JW, Greven HM (1983) A major metabolite of arginine vasopressin in the brain is a highly potent neuropeptide. Science 221: 1310–1312

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G, Costa M (1975) Adrenergic neurons: their organisation, function and development in the peripheral nervous system. Chapman et Hall, London

    Google Scholar 

  • Calas A (1985) Morphological correlates of chemically specified neuronal interaction in the hypothalamo-hypophyseal area. Neurochem Int 7: 921–940

    Article  Google Scholar 

  • Calas A Alonso G, Arnauld E, Vincent JD (1974) Demonstration of indolaminergic fibers in the median eminence of the duck, rat and monkey. Nature (Lond) 250: 241–243

    Article  CAS  Google Scholar 

  • Cesselin F, Hamon M (1985) Significations fonctionelles possibles de la libération simultanée de plusieurs neurotransmetteurs putatifs par un même neurone. Annales d’endocrinologie 45: 207–213

    Google Scholar 

  • Chan-Palay V (1976) Serotonin axons in the supra and subependymal plexuses and in the leptomeninger; their roles in local alteration of cerebrospinal fluid and vaso motor activity. Brain Res 102: 103–130

    Article  PubMed  CAS  Google Scholar 

  • Checler F, Vincent JP, Kitabi P (1983) Degradation of neurotensin by rat brain synaptic membranes; involvement of a thermolysin like metallo-endopeptidase (enkephalinase), angiotensin-converting enzyme, and other unidentified peptidase. J Neurochem 41: 375–384

    Article  PubMed  CAS  Google Scholar 

  • Cheramy A, Leviel V, Glowinski J (1981) Dendritic release of do- pamine in the substancia nigra. Nature (Lond) 289: 537–542

    Article  CAS  Google Scholar 

  • Cocchia D, Miani N (1980) Immunocytochemical localization of the brain specific S-10 protein in the pituitary gland of adult rat. J Neurocytol 9: 771–782

    Article  PubMed  CAS  Google Scholar 

  • Colin R, Barry J (1957) Neurosécrétion et diabète insipide. Histophysiologie de la neurosécrétion. Ann Endocrinol 18: 464–469

    Google Scholar 

  • Cooper NM, Kenny AJ, Turner AJ (1985) The metabolism of neuropeptides—Neurokinin A (substance K) is a substrate for endopeptidase-24.11 but not for peptidyl dipeptidase A (angiotensinconverting enzyme). Biochem J 231: 357–361

    Google Scholar 

  • Cuello AC, Iversen LL (1978) Interactions of dopamine with others neurotransmitters in the rat substantia nigra: a possible functional role of dendritic dopamine. In: Garattini S, Pujol JF, Samanin R (eds) Interactions between putative neurotransmitters in the brain. Raven Press, New York, pp 127–150

    Google Scholar 

  • Dale HH (1935) Pharmacology and nerve endings. Proceedings of the Royal Society of Medicine 28: 319–332

    PubMed  CAS  Google Scholar 

  • Dale HH (1953) Adventures in physiology. Pergamon Press, London Della-Fera MA, Baffle CA (1979) Cholecystokinin octapeptide: continuous picomole injections into the cerebral ventricules of sheep suppress feeding. Science 206: 471–473

    Google Scholar 

  • Dale HH (1953) Adventures in physiology. Pergamon Press, London Della-Fera MA, Baffle CA (1979) Cholecystokinin octapeptide: continuous picomole injections into the cerebral ventricules of sheep suppress feeding. Science 206: 471–473

    Google Scholar 

  • Descarries L, Beaudet A, Watkins KC (1975) Serontonin nerve terminals in adult rat neo-cortex. Brain Res 100: 563–588

    Article  PubMed  CAS  Google Scholar 

  • Descarries L, Beaudet A, Watkins KC Beaudet A (1983) The use of radio-autography for investigating transmitter-specific neurons. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy. Elsevier, Amsterdam, pp 286–364

    Google Scholar 

  • Descarries L, Beaudet A, Watkins KC Beaudet A Watkins KC, Lapierre Y (1977) Noradrenergic axon terminals in the cerebral cortex of rat. III Topometric ultrastructural analysis. Brain Res 133: 197–222

    CAS  Google Scholar 

  • De Wied D (1965) The influence of the posterior and intermediate lobe of the pituitary and pituitary peptides on the maintenance of a conditioned avoidance response in rats. Int J Neuropharmacol 4: 157–167

    Article  Google Scholar 

  • Dismukes RK (1979) New concepts of molecular communication among neurons. The Behavioral and Brain Sciences 2: 409–448

    Article  Google Scholar 

  • Doris PA, Bell FR (1984) Vasopressin in plasma and cerebrospinal fluid of hydrated and dehydrated steers. Neuroendocrinol 38: 290–296

    Article  CAS  Google Scholar 

  • Dun NJ, Nishi S, Karczman AG (1978) An analysis of the effect of angiotensin II on mammalian ganglion cells. J Pharmacol exp Ther 204: 669–675

    PubMed  CAS  Google Scholar 

  • Dunn AJ (1979) Molecular signals released by neurons. The Behavioral and Brain Sciences 2: 422–423

    Article  Google Scholar 

  • Emson PC (1985) Neurotransmitter systems. In: Bousfield D (ed) Neurotransmitter in action. Elsevier Biomedical Press, Amsterdam, pp 6–10

    Google Scholar 

  • Epstein Y, Castel M, Glick SM, Sivan N, Ravid R (1983) Changes in hypothalamic and extra-hypothalamic vasopressin content of water-deprived rats. Cell Tiss Res 233: 99–111

    Article  CAS  Google Scholar 

  • Felix D, Akert K (1974) The effect of angiotensin II on neurons of the cat subfornical organ Brain Res 76: 350–353

    CAS  Google Scholar 

  • Fitzsimons-JT (1972) Thirst. Physiol Rev 52: 468–559

    Google Scholar 

  • Foreman MM, Moss RL (1977) Effects of subcutaneous injection and intrahypothalamic infusion of releasing hormones upon lor-dotic response to repetitive coital stimulation. Horm Behav 8: 219–234

    Article  PubMed  CAS  Google Scholar 

  • Freund-Mercier MJ, Richard P (1984) Electrophysiological evidence for facilitatory control of oxytocin neurones by oxytocin during suckling in the rat. J Physiol (Lond) 352: 447–466

    CAS  Google Scholar 

  • Fujita T (1977) Concept of paraneurones. In: Kobayashi S, Chiba T (eds) Paraneurones: new concepts on neuroendocrine relatives. Japan Soc Histol Documentation, Niigata, pp 1–12

    Google Scholar 

  • Fujita T Kobayashi S, Uchida T (1984) Secretory aspect of neurons and paraneurons. Biochemical Res [suppl] 5: 1–8

    Google Scholar 

  • Fuxe K, Ganten D, Hökfelt T, Bolme P (1976) Immunohistochemical evidence for the existence of angiotensin II containing nerve terminals in the brain and spinal cord of the rat. Neurosci Lett 2: 229–234

    Article  PubMed  CAS  Google Scholar 

  • Ganten D, Fuxe K, Phillips MI, Mann JFE, Ganten U (1978) The brain isorenin-angiotensin system: histochemistry localization and possible role in drinking and blood pressure regulation. In: Ganong WF, Martini B (eds) Frontiers in neuroendocrinology, Vol. 5. Raven Press, New York, pp 61–99

    Google Scholar 

  • Geffen LB, Jessel TM, Cuello AC, Iversen LL (1976) Release of dopamine from dendrites in rat substantia nigra. Nature (Lond) 260: 258–260

    Article  CAS  Google Scholar 

  • Glowinski J, Cheramy A (1981) Dentritic release of dopamine its role in the substantia nigra. In: Stjarne L, Hedquist P, Lagercranz H, Wennmalm A (eds) Chemical transmission: 75 years. Academic Press, New York, pp 285–299

    Google Scholar 

  • Goedert M, Mantyh PW, Emson PC, Hunt SP (1984) Inverse relationship between neurotensin receptors and neurotensin-like immunoreactivity in cat striatum. Nature (Lond) 307: 543–546

    Article  CAS  Google Scholar 

  • Greenfield SA (1985) The significance of dendritic release of transmitter and protein in the substantia nigra. Neurochem Int 7: 887–901

    Article  PubMed  CAS  Google Scholar 

  • Griffiths EC, MacDermott JR (1983e) Biotransformation of neu- ropeptides. Progress in Neuroendocrinology 39: 573–581

    Article  Google Scholar 

  • Gronan RJ, York DH (1978) Effects of angiotensin II and acetylcholine on neurones in the preoptic area. Brain Res 154: 172–177

    Article  PubMed  CAS  Google Scholar 

  • Groves PM, Wilson CJ, Young SJ, Rebec GU (1975) Self-inhibition by dopaminergic neurones. Science 190: 522–529

    Article  PubMed  CAS  Google Scholar 

  • Guillemin R, Brazeau P, Böhlen P, Esch F, Ling N, Wehrenberg WB (1982) Growth hormone-releasing factor from a human pancreatic tumor that caused acromegaly. Science 218: 585–587

    Article  PubMed  CAS  Google Scholar 

  • Harris MC, Jones PM, Robinson ICAF (1981) Differences in the release of oxytocin into blood and cerebrospinal fluid following hypothalamic and pituitary stimultion in rats. J Physiol (Lond) 320: 109–110 P

    Google Scholar 

  • Hill C, Hendry IA (1977) Development of neurones synthetizing noradrenaline and acetylcholine in the superior cervical ganglion of the rat in vivoand in vitro. Neurosci 2: 741–749

    Article  CAS  Google Scholar 

  • Hökfelt T, Johanson O, Goldstein M (1984) Chemical anatomy of the brain. Science 225: 1326–1334

    Article  PubMed  Google Scholar 

  • Hughes J, Smith TW, Kosterlitz HW, Fothergill TH, Morgan BA, Morris HR (1975) Identification of two related pentapeptides

    Google Scholar 

  • from the brain with potent opiate agonist activity. Nature (Lond) 258: 577–580

    Google Scholar 

  • Huwyler T, Felix D (1980) Angiotensin II-sensitive neurons in septal areas of the rat. Brain Res 195: 187–195

    Article  PubMed  CAS  Google Scholar 

  • Iovino M, Poenaru S, Annunziato L (1983) Basal and thirst-evoked vasopressin secretion in rats with electrolytic lesion of the medio-ventral septal area. Brain Res 258: 123–126

    Article  CAS  Google Scholar 

  • Jan YN, Jan LY (1985) A LH-RH-like peptidergic neurotransmitter capable of “acton at a distance” in autonomic ganglion. In: Bousfield D (ed) Neuro-transmitters in action. Elsevier Biomedical Press, Amsterdam/New York/Oxford, pp 94–103

    Google Scholar 

  • Jan YN, Jan LY Kuffler SW (1979) A peptide as a possible transmitter in sympathetic ganglia of the frog. Proc Natl Acad Sci USA 76: 1501–1505

    Article  PubMed  CAS  Google Scholar 

  • Joels M, Urban IJA (1982) The effect of microiontophoretically applied vasopressin and oxytocin on single neurons in the septum and dorsal hippocampus of the rat. Neurosci Lett 33: 79–84

    Article  PubMed  CAS  Google Scholar 

  • Knight DP (1970) Sclerotisation of the perisarc of the calyptoblastic hydroid laomedea fluxuosa. Tissue and Cell 2: 467–477

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S (1977) Adrenal medulla: chromaffin cells as paraneurones. Arch Histol Jap 40: 61–70

    Article  PubMed  Google Scholar 

  • Kravitz EA, Beltz BS, Glusman S, Goy MF, Harris-Warrick RM, Johnston MF, Livingstone MS, Schwarz TL, Siwicki KK (1985) Neurohormones and lobsters: biochemistry to behavior. In: Bousfield D (ed) Neurotransmitters in action. Elsevier Biomedical Press, Amsterdam/New York/Oxford, pp 135–142

    Google Scholar 

  • Kreutzberg GW, Toth L (1974) Dendritic secretion: a way for the neuron to communicate with the vasculature. Naturwissenschaften 61: 37–39

    Article  PubMed  CAS  Google Scholar 

  • Krieger DT (1983) Brain Peptides: what, where and why? Science 222: 975–985

    Article  PubMed  CAS  Google Scholar 

  • Kuhar MJ, Unnerstall JR (1985) Quantitative receptor mapping by autoradiography: some current technical problems. TINS 8: 49–53

    CAS  Google Scholar 

  • Kuhar MJ, Unnerstall JR Yamamura HI (1975) Light autoradiographic localisation of cholinergic muscarinic receptors in rat brain by specific binding of a potent antagonist. Nature (Lond) 253: 560–561

    Article  CAS  Google Scholar 

  • Laribi C, Legendre P, Dupouy B, Vincent JD, Simonnet G (1985) Characterization of two angiotensin II binding sites in cultured mouse spinal cord neurones. Brain Res 347: 94–103

    Article  PubMed  CAS  Google Scholar 

  • Larsson LI (1980) On the possible existence of multiple endocrine, paracrine and neurocrine messengers in secretory cell systems. Invest Cell Pathol 3: 73–85

    PubMed  CAS  Google Scholar 

  • Le Douarin N (1982) The neural crest. In: Barlow PW, Green PB, Wylie CC (eds) Developmental and cell biology series. Cambridge University Press, Cambridge

    Google Scholar 

  • Le Douarin N Teillet MA (1973) The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol 30: 31–48

    Google Scholar 

  • Lee CM, Iversen LL, Hanley MR, Sandberg BEB (1982) The possible existence of multiple receptors for substance P. Naunyn-Schmiedebergs Arch Pharmacol 318: 281–287

    Article  PubMed  CAS  Google Scholar 

  • Legendre P, Simonnet G, Vincent JD (1984) Electrophysiological effects of angiotensin II on cultured mouse spinal cord neurones. Bain Res 297: 287–296

    Article  CAS  Google Scholar 

  • Lembeck F, Gamse R, Holzer P, Molnar A (1980) Substance P and chemosensitive neurones. In: Ajmone-Marsan C, Traczyk WZ (eds) Neuropeptides and neural transmission. Raven Press, New York, pp 51–72

    Google Scholar 

  • Le Moal M, Koob GF, Koda LY, Bloom FE, Manning M, Sawyer WH, Rivier J (1981) Vasopressin receptor antagonist prevents. Nature (Lond) 291: 491–493

    Article  Google Scholar 

  • Leonhardt H, Backhus-Roth A (1969) Synapsenartige Kontakte zwischen intraventrikulären Axonendigungen und freien Oberflächen von ependymzellen des Kaninchengehirns. Zellforschung und mikroskopische Anatomie 97: 369–376

    Article  PubMed  CAS  Google Scholar 

  • Le Roith D, Liotta AS, Roth J, Schiloach J, Lewis ME, Pert CB, Krieger DT (1982) Corticotrophin and 0-endorphin-like materials are native to unicellular organisms (tetrahymena). Proc Natl Acad Sci USA 79: 2086–2090

    Article  Google Scholar 

  • Liotta AS, Loudes C, McKelvy JF, Krieger DT (180) Biosynthesis of the precursor corticotrophin/endorphin-, corticotropin-, melanotropin-0 lipotropin-, and 0-endorphin-like material by cultured neonatal rat hypothalamic neurons. Proc Natl Acad Sci USA 77: 1880–1884

    Google Scholar 

  • Ljungdal A, Hökfelt T, Nilsson G (1978) Distribution of substance P-like immunoreactivity in the central nervous system of the rat. I. Cell Neuroscience, 3: 861–943

    Google Scholar 

  • Llinas R, Greenfield SA, Jahnsen H (1984) Electrophysiology of pars compacta cells in the in vitrosubstancia nigra—a possible mechanism for dendritic release. Brain Res 294: 127–132

    Article  PubMed  CAS  Google Scholar 

  • Loumaye E, Thorner J, Catt KJ (1982) Yeast mating pheromone activates mammalian gonadotrophs: evolutionary conservation of a reproductive hormone? Science 218: 1323–1325

    Article  PubMed  CAS  Google Scholar 

  • Lubar JF, Boyce BA, Schaeffer CF (1968) Etiology of polydipsia and polyuria in rats with septal lesions. Physiol Behav 3: 289–292

    Article  Google Scholar 

  • Luerssen TG, Shelton RL, Robertson GL (1977) Evidence for separate origin of plasma and cerebrospinal fluid vasopressin. Clin Res 25: 14A

    Google Scholar 

  • Lundberg JM (1981) Evidence for co-existence of vasoactive intestinal polypeptide (VIP) and acetylcholine in neurones of cat exocrine glands. Morphological, Biochemical and Functional Studies. Acta Physiol Scand [suppl] 496: 1–57

    CAS  Google Scholar 

  • Matsas R, Fulcher IS, Kenny AJ, Turner AJ (1983) Substance P and [Leu] enkephalin are hydrolyzed by an enzyme in pig caudate synaptic membranes that is identical with the endopeptidase of kidney microvilli. Proc Natl Acad Sci USA 80: 3111–3115

    Article  PubMed  CAS  Google Scholar 

  • Matthews EK, Sakamoto Y (1975a) Electrical characteristics of pancreatic islet cells. J Physiol (Lond) 246: 421–437

    CAS  Google Scholar 

  • Matthews EK, Sakamoto Y (1975b) Pancreatic islet cells: electrogenic and electrodiffusional control of membrane potential. J Physiol (Lond) 246: 439–457

    CAS  Google Scholar 

  • Miller RJ (1985) Second messengers, phosphorylation and neurotransmitter release. TINS 8: 463–465

    CAS  Google Scholar 

  • Moller M, Mollergärd K, Lund-Andersen H, Hertz L (1974) Concordance between morphological and biochemical estimates of fluid spaces in rat brain cortex slices. Expl Brain Res 21: 299–314

    Article  CAS  Google Scholar 

  • Moos F, Freund-Mercier MJ, Guerne Y, Guerne JM, Stueckel ME, Richard P (1984) Release of oxytocin and vasopressin by magnocellular nuclei in vitro: specific facilitatory effect of oxytocin on its own release. J Endocrinol 102: 63–72

    Article  PubMed  CAS  Google Scholar 

  • Morris JF, Nordmann JJ, Dyball REJ (1978) Structure-function correlation in mammalian neurosecretion. Int Rev Exp Path 18: 1–95

    PubMed  CAS  Google Scholar 

  • Morrison JH, Magistretti PJ (1985) Monoamines and peptides in cerebral cortex. Contrasting principles of cortical organization. In: Bousfield D (ed) Neurotransmitter in action. Elsevier Biomedical Press, Amsterdam/New York/Oxford, pp 319–328

    Google Scholar 

  • Morrison JH, Molliver ME, Grzanna R (1979) Noradrenergic innervation of cerebral cortex: widespread effects of local cortical lesions. Science 205: 313–316

    Article  PubMed  CAS  Google Scholar 

  • Moss RL, McCann SM (1973) Induction of making behavior in rats by luteinizing hormone-releasing factor. Science 181: 177–179

    Article  PubMed  CAS  Google Scholar 

  • Nakajima T, Yamaguchi H, Takahashi K (1980) S-100 protein in folliculostellate cells of rat pituitary anterior lobe. Brain Res 191: 523–531

    Article  PubMed  CAS  Google Scholar 

  • Nicholson C (1979) Brain cell microenvironment as a communicative channel. In: Schmitt FO, Worden FG (eds) The neurosciences fourth study programm MIT Press, Cambridge, Massachusetts, pp 457–476

    Google Scholar 

  • Pearse AGE (1966a) 5-Hydroxytryptophan uptake by dog thyroid C cells and its possible significance in polypeptide hormone production. Nature (Lond) 211: 598–600

    Google Scholar 

  • Pearse AGE (1969) The cytochemistry and ultastructure of polypeptide hormone-producing cells of the APUD series and the embryologie, physiologie and pathologie implication of the concept. J Histochem Cytochem 17: 303–313

    Article  PubMed  CAS  Google Scholar 

  • Pearse AGE (1983) The neuroendocrine division of the nervous system: APUD cells as neurones or paraneurones. In: Osborne NN (ed) Dale’s principle and communication between neurones. Perga-mon Press, Oxford, pp 37–48

    Google Scholar 

  • Pedersen CA, Ascher JA, Monroe YL, Prange (Jr) (1982) Oxytocin induces maternal behavior in virgin female rats. Science 216: 648–650

    Article  PubMed  CAS  Google Scholar 

  • Pelletier G, Steinbusch HWM, Verhufstad AAJ (1981) Immunoreactive substance P and serotonin present in the same dense-core vesicles. Nature (Lond) 293: 71–72

    Article  CAS  Google Scholar 

  • Perlow MJ, Reppert SM, Artman HA, Fisher DA, Seif SM, Robinson AG (1982) Oxytocin, vasopressin, and estrogen-stimulated neurophysin: daily patterns of concentrations in cerebrospinal fluid. Science 216: 1416–1418

    Article  PubMed  CAS  Google Scholar 

  • Pernow B (1983) Substance P. Pharmacol Rev 35: 85–141

    CAS  Google Scholar 

  • Pestre M, Arnauld E, Vincent JD (1984) Actions of micro-iontophoretically applied vasopressin selective agonists and antagonists on single neurons in the lateral septum of the rat. Neurosci Lett [suppl] S 341

    Google Scholar 

  • Poulain DA, Ellendorff F, Vincent JD (1980) Septal connections with identified oxytocin and vasopressin neurones in the supraoptic nucleus of the rat. An electrophysiological investigation. Neurosci 5: 379–387

    Article  CAS  Google Scholar 

  • Lebrun CJ, Vincent JD (1981) Electrophysiological evidence for connections between septal neurones and the supraoptic nucleus of the hypothalamus of the rat. Exp Brain Res 42: 260–268 Wakerley JB (1982) Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin. Neuroscience 7: 773–808

    Google Scholar 

  • Quirion R, Shults CW, Moody TW, Pert CB, Chase TN, O’Donohue TL (1983) Autoradiographic distribution of substances P receptors in rat central nervous system. Nature (Lond) 303: 714–716

    Article  CAS  Google Scholar 

  • Rapoport SI (1976) Blood-brain barrier in physiology and medicine. Raven Press, New York

    Google Scholar 

  • Reppert SM, Artman HG, Swaminathan S, Fisher DA (1981) Vasopressin exhibits a rhythmic daily pattern in cerebro spinal fluid but not in blood. Science 213: 1256–1257

    Article  PubMed  CAS  Google Scholar 

  • Reubi JC, Iversen LL, Jessel TM (1977) Dopamine selectively increases [3] GABA release from slices of rat substantia nigra in vitro. Nature (Lond) 268: 652–654

    Article  CAS  Google Scholar 

  • Riskins P, Moss RL (1979) Midbrain central gray: LH-RH infusion enhances lordotic behavior in oestrogen primed ovariectomized rats. Brain Res Bull 4: 203–205

    Article  Google Scholar 

  • Rivier C, Vale W (1983) Interaction of corticotropin-releasing factor and arginine vasopressin on adrenocorticotropin in vivo. Endocrinology 113: 939–942

    Article  PubMed  CAS  Google Scholar 

  • Robinson IFA, Jones PM (1982) Neurohypophyseal peptides in cerebrospinal fluid: recent studies. In: Baertschi AJ, Dreifuss JJ (eds) Neuroendocrinology of vasopressin, corticoliberin and opiomelanocortins. Academic Press, New York, pp 21–31

    Google Scholar 

  • Rodriguez EM (1976) The cerebrospinal fluid as a pathway in neuroendocrine integration. J Endocrinol 71: 407–443

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez F, Demotes-Mainard J, Chauveau J, Poulain DA, Vincent JD (1983) Vasopressin release in the rat septum in response to systemic stimuli. Soc Neurosci Abstr 9: 445

    Google Scholar 

  • Rowland LP (1981) Blood-brain barrier, cerebrospinal fluid, brain edema and hydrocephalus. In: Kandel ER, Schwartz JH (eds) Principles of neural science. Elsevier-North Holland, New York/ Amsterdam/Oxford, pp 651–659

    Google Scholar 

  • Samson WK (1985) Atrial natriuretic factor inhibits dehydration and hemorrhage-induced vasopressin release. Neuroendocrinology 40: 277–279

    Article  PubMed  CAS  Google Scholar 

  • Saper CB, Standaert DG, Currie MG, Schwartz D, Geller DM, Needleman P (1985) Atriopeptin-immunoreactive neurons in the brain: presence in cardiovascular regulatory areas. Science 227: 1047–1049

    Article  PubMed  CAS  Google Scholar 

  • Schmitt FO, Samson FE (1969) Brain cell microenvironment. Neurosci Res Prog Bull 7: 277–417

    Google Scholar 

  • Schwabe C, Le Roith D, Thompson RP, Shiloach J, Roth J (1983) Relaxin extracted from protozoa (Tetrahymena lyriformis). Molecular and immunologic properties. J Biol Chem 258: 2778–2781

    PubMed  CAS  Google Scholar 

  • Schwartz JC (1983) Metabolism of enkephalins and the inactivating a neuropeptidase concept. Trends Neurosci 6: 45–48

    Article  CAS  Google Scholar 

  • Schwartz D, Geller DM, Manning PT, Siegel NR, Fok KF, Smith CE, Needleman P (1985) Ser-Leu-Arg-Atriopeptin III: the major circulating form of atrial peptide. Science 229: 397–400

    Article  PubMed  CAS  Google Scholar 

  • Sherrington CS (1906) The integrative action of the nervous system. Yale University Press, New Haven

    Google Scholar 

  • Shibuki K (1984) Supraoptic cells: synaptic inputs from the nucleus accumbens in the rat. Exp Brain Res 53: 341–348

    Article  PubMed  CAS  Google Scholar 

  • Sibole W, Miller JJ, Mogenson GJ (1971) Effects of septal stimulations on drinking elicited by electrical stimulation of the lateral hypothalamus. Exp Neurol 32: 466–477

    Article  PubMed  CAS  Google Scholar 

  • Siegelbaum SA, Camardo JS, Kandel ER (1982) Serotonin and cyclic AMP close single, K+ channels in Aplysia sensory neurones. Nature (Lond) 299: 413–417

    Article  CAS  Google Scholar 

  • Simantov R, Kuhar MJ, Uhl GR, Snyder SH (1977) Opioid peptide enkephalin: immunohistochemical mapping in rat central nervous system. Proc Natl Acad Sci. USA 74: 2167–2175

    Article  CAS  Google Scholar 

  • Simonnet G, Bioulac B, Rodriguez F, Vincent JD (1980) Evidence for a direct action of angiotensin II on neurones in the septum and in the medial preoptic area. Pharmacol Biochem Behav 13: 359–363

    Article  PubMed  CAS  Google Scholar 

  • Carayon A, Allard M, Cesselin F, Lagoguey A (1984) Evidence for an angiotensin II-like material and for a rapid metabolism of angiotensin II in-the-rat brain. Brain Res 304: 93–103

    Article  PubMed  Google Scholar 

  • Rodriguez F, Fumoux F, Czernichow P, Vincent JD (1979) Vasopressin release and drinking induced by intracranial injection of angiotensin II in monkey. Am J Physiol 237: R20 - R25

    PubMed  Google Scholar 

  • Vincent JD (1982) Characteristics of angiotensin II binding sites in the neostriatum of the rat brain. Neurochem Int 4: 149–155

    Article  PubMed  Google Scholar 

  • Sofroniew MV (1985) Vasopressin and oxytocin in the mammalian brain and spinal cord. In: Bousfield D (ed) Neurotransmitters in action. Elsevier Biomedical Press, Amsterdam/New York/Oxford, pp 329–337

    Google Scholar 

  • Spiess J, Rivier J, Vale W (1983) Characterization of a rat hypothalamic growth hormone-releasing factor. Nature 303: 532–535

    Article  PubMed  CAS  Google Scholar 

  • Suga T, Suzuki M (1979) Effects of angiotensin II on the medullary neurons and their sensitivity to acetylcholine and catecholamines. Jap J Pharmacol 29: 541–552

    Article  PubMed  CAS  Google Scholar 

  • Studier JM, Simon M, Cesselin F, Blanc G, Glowinski J, Tassin JP (1984) Pharmacological study on the mixed CCK 8/DA meso nucleus accubens pathway: evidence for the existence of vesicles, containing the two transmitters. Brain Res 298: 91–97

    Article  Google Scholar 

  • Standaert DG, Saper CB, Needleman P (1985) Atriopeptin: potent hormone and potential neuromediator. TINS 8: 510–511

    Google Scholar 

  • Szczepanska-Sadowska E, Gray D, Simon-Opperman C (1983) Vasopressin in blood and third ventricle CSF during dehydration, thirst and hemorrhage. Am J Physiol 245: R549 – R555

    PubMed  CAS  Google Scholar 

  • Takor-Takor T, Pearse AGE (1975) Neuroectodermal origin of avian hypothalamo-hypophyseal complex: the role of the ventral neural midge. J Embryol Exp Morphol 34: 311–325

    Google Scholar 

  • Tanaka I, Misono KS, Inagami T (1984) Atrial natriuretic factor in rat hypothalamus, atria and plasma: determination by specific radioimmunoassay. Biochem Biophys Res Commun 124: 663–668

    Article  PubMed  CAS  Google Scholar 

  • Teitelman G, Joh TH, Reis DJ (1981) Transformation of catecholaminergic precursors intoglucagon (A) cells in mouse embryonic pancreas. Proc Natl Acad Sci USA 78: 5225–5229

    Article  PubMed  CAS  Google Scholar 

  • Tennyson VM, Heikkila R, Mytilineau C, Cote L, Cohen G (1974) 5-Hydroxydopamine “tagged” neuronal boutons in rabbit neostriatum: interrelationship between vesicles and axonal membrane. Brain Res 82: 341–348

    Google Scholar 

  • Terenius L (1978) Endogenous peptides and analgesia. Ann Rev Pharmacol Toxicol 18: 189–204

    Article  CAS  Google Scholar 

  • Theodosis DT, Poulain DA, Vincent JD (1981) Possible morphological bases for synchronisation of neuronal firing in the rat supraoptic nucleus during lactation. Neuroscience 6: 919–929

    Article  PubMed  CAS  Google Scholar 

  • Theodosis DT, Poulain DA, Vincent JD (1985a) Oxytocin-immunoreactive terminals synapse on oxytocin neurones in the supraoptic nucleus. Nature (Lond) 313: 682–684

    Article  CAS  Google Scholar 

  • Theodosis DT, Poulain DA, Vincent JD (1985a) Oxytocin-immunoreactive terminals synapse on oxytocin neurones in the supraoptic nucleus. Nature (Lond) 313: 682–684

    Article  CAS  Google Scholar 

  • Theodosis DT, Poulain DA, Vincent JD Chapman DB, Montagnese C, Poulain DA, Morris JF Montagnese C, Rodriguez F, Vincent JD, Poulain DA (1986) Oxytocin induces morphological plasticity in the adult hypothalamo-neurohypophysial system. Nature (Lond) 322: 738–740

    Article  CAS  Google Scholar 

  • Tsong SD, Philipps D, Halmi N, Liotta AS, Margioris A, Bardin CW, Krieger DT (1982) ACTH and beta-endorphin related peptides are present in multiple sites in the reproductive tract of the male rat. Endocrinology 110: 2204–2206

    Article  PubMed  CAS  Google Scholar 

  • Vaccarino FJ, Bloom FE, Rivier J, Vale W, Koob GF (1985) Stimulation oLfood intake by centrally administered hypothalamic growth hormone-releasing factor. Nature (Lond) 314: 167–168

    Article  CAS  Google Scholar 

  • Vanderhaeghen JJ, Signeau JC, Gepts W (1975) New peptide in the vertebrate CNS reacting with antigastrin antibodies. Nature (Lond) 257: 604–605

    Article  CAS  Google Scholar 

  • Van Wimersma Greidanus TB (1982) Disturbed behavior and mem- ory of the Brattleboro rat. Ann NY Acad Sci 394: 655–662

    Article  PubMed  Google Scholar 

  • Vincent JD, Israel JM, Brigant JL (1985) Ionic channels in hormone release from adenohypophysial cells—an electrophysiological approach. Neurochem Int 7: 1007–1016

    Article  PubMed  CAS  Google Scholar 

  • Vincent JD (1986) Biologie des passions. Odile Jacob—Le Seuil, Paris

    Google Scholar 

  • Vizi ES (1983) Non synaptic interneuronal communication: Physiological and pharmacological implication. In: Osborne N (ed) Dale’s principle and communication between neurones. Perga-mon Press, Oxford, pp 83–111

    Google Scholar 

  • Wang BC, Share L, Crofton JT, Kimura T (1982) Effects of intravenous and intracerebroventricular infusion of hypertonic solutions on plasma and cerebrospinal fluid vasopressin concentrations. Neuroendocrinology 34: 215–221

    Article  PubMed  CAS  Google Scholar 

  • Wassef M, Berod A, Sotelo C (1981) Dopaminergic dendrites in the pars reticulata of the rat substantia nigra and their striatal input-combined immunocytochemical localization of tyrosine hydroxylase and anterograde degeneration. Neuroscience 6: 2125–2139

    Article  PubMed  CAS  Google Scholar 

  • Wayner MJ, Ono T, Nolley D (1973) Effect of angiotensin II on central neurons. Pharmacol Biochem Behav I: 679–691

    Google Scholar 

  • Westergaard E (1970) The lateral ventricles and the ventricular walls. Thesis. Arhus, Danemark

    Google Scholar 

  • Yuir (1983) Immunohistochemical studies on peptide neurons in the hypothalamus of the bullfrog Rana Catesbliana. Gen Comp Endocrinol 49: 195–209

    Article  Google Scholar 

  • Zarbin MA, Innis RB, Wamsley JK, Snyder SH, Kuhar MJ (1983) Autoradiographic localization of cholecystokinin receptors in rodent brain. J Neuroscience 4: 877–906

    Google Scholar 

  • Zerbe RL, Palkovits M (1984) Changes in the vasopressin content of discrete brain regions in response to stimuli for vasopressin secretion. Neuroendocrinology 38: 285–289

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Vincent, J.D., Simonnet, G. (1990). Neurohormonal Communication in the Brain. In: Pickard, J.D., Cohadon, F., Antunes, J.L. (eds) Neuroendocrinological Aspects of Neurosurgery. Acta Neurochirurgica, vol 47. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9062-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9062-3_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9064-7

  • Online ISBN: 978-3-7091-9062-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics