Advertisement

Neurohormonal Communication in the Brain

  • J. D. Vincent
  • G. Simonnet
Conference paper
Part of the Acta Neurochirurgica book series (NEUROCHIRURGICA, volume 47)

Abstract

Why are there tens of chemical messengers, when just two—one stimulatory the other inhibitory—would suffice for communication between the many different types of neuron, that act as mediators of the unique signal—the action potential? A naive question with a naive answer: there are several messengers because there are several types of message to be delivered. These latter aren’t limited simply to the opening of ionic channels gathered in a small area of the neuronal membrane to produce a localised depolarisation or hyperpolarization (excitatory or inhibitory post-synaptic potentials), but consist of complex modifications bearing on the whole cell thanks to the intervention of an intracellular second messenger.

Keywords

Atrial Natriuretic Peptide Vasoactive Intestinal Polypeptide Atrial Natriuretic Factor Luteinising Hormone Release Hormone Supraoptic Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaishi T, Negoro H, Kobayashi S (1980) Responses of paraventricular and supraoptic units to angiotensin II, [Sar1Ile8]-angiotensin II and hypertonic NaC1 administered into the cerebral ventricle. Brain Res 188: 499–511PubMedCrossRefGoogle Scholar
  2. Alsatu M, Kempf E, Mack G, Aron C (1981) Involvement of dopaminergic mechanisms in the control of ovulation and sexual receptivity in cyclic female rats. Biol Behav 6: 305–315Google Scholar
  3. Andrew RD, MacVicar BA, Dudek FE, Hatton GI (1981) Dye transfer through gap junctions between neuroendocrine cells of rat hypothalamus. Science 211: 1187–1189PubMedCrossRefGoogle Scholar
  4. Antunes-Rodrigues J, McCann SM, Rogers LC, Samson WK (1986)Google Scholar
  5. A trial natriuretic factor inhibits dehydration-and angiotensin II-induced water intake in the conscious, unrestrained rat. Proc Natl Acad Sci 82: 8720–8723Google Scholar
  6. Arluisson M, Agid Y, Javoy F (1978) Dopaminergic nerve endings in the neostriatum of the rat. I. Identification by intracerebral injection°af 6 hydroxydopamine. Neuroscience 3: 657–673CrossRefGoogle Scholar
  7. Barclay RK, Philipps MA (1980) Inhibition of enkephalin-degrading aminopeptidase activity by certain peptides. Biochem Biophys Res Commun 96, 4: 1732–1738PubMedCrossRefGoogle Scholar
  8. Barker JL, Gruol DL, Huang LHM, MacDonald JF, Smith Jr TG (1980) Electrophysiological analysis of the role of peptides using cultured spinal neurons in the role of peptides in neuronal function, Barker JL (ed). Marcel Dekker Inc., New York, pp 273–300Google Scholar
  9. Barnard RR, Morris M (1982) Cerebro-spinal fluid vasopressin and oxytocin: evidence for an osmotic response. Neurosci Lett 29: 275–279PubMedCrossRefGoogle Scholar
  10. Beaudet A, Descarries L (1978) The monoamine innervation of rat cerebral cortex; synaptic and non-synaptic axon terminals. Neuroscience 3: 851–860PubMedCrossRefGoogle Scholar
  11. Belin V, Moos F, Richard P (1984) Synchronization of oxytocin cells in the hypothalamic paraventricular and supraoptic nuclei in suckled rats: direct proof with paired extracellular recordings. Expl Brain Res 5: 201–203Google Scholar
  12. Berson SA, Yalow RS (1973) Peptides hormones. Part H. In: Pituitary hormones and hypothalamic releasing factors. Elsevier North-Holland, Amsterdam, pp 257–711Google Scholar
  13. Biales B, Dichter MS, Tischler A (1976) Electrical excitability of cultured adrenal chromaffin cells. J Physiol (London) 262: 743–753Google Scholar
  14. Bibène V, Pestre M, Rodriguez F, Arnauld E, Poncet C, Vincent JD (1985) Vasopressine et cycle veille-sommeil chez le rat. 15e Coll Soc Neuroendocrinol Exptl, Gif-sur-YvetteGoogle Scholar
  15. Björklund A, Lindvall D (1975) Dopamine in dendrites of substantia nigra neurons: suggestions for a role in dendritic terminals. Brain Res 83: 531–537PubMedCrossRefGoogle Scholar
  16. Brightman MW, Palay SL (1963) The fine structure of ependyma in the brain of the rat. J Cell Biol 19: 415–439PubMedCrossRefGoogle Scholar
  17. Brimijoin S, Lundberg JM, Brodin E, Hökfelt T (1980) Axonal transport of substance P in the vagus and sciatic nerves of the guinea-pig. Brain Res 191: 443–457PubMedCrossRefGoogle Scholar
  18. Bruwning MD, Huganir R, Greengard P (1985) Protein phosphorylation and neuronal function. J Neurochem 45: 11–23CrossRefGoogle Scholar
  19. Buijs RM, Swaab DF, Dogterom J, Van Leeuwen FW (1978) Intra-and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res 186: 423–483PubMedCrossRefGoogle Scholar
  20. Burbach JPH, Kovacs GL, De Wied D, Van Nispen JW, Greven HM (1983) A major metabolite of arginine vasopressin in the brain is a highly potent neuropeptide. Science 221: 1310–1312PubMedCrossRefGoogle Scholar
  21. Burnstock G, Costa M (1975) Adrenergic neurons: their organisation, function and development in the peripheral nervous system. Chapman et Hall, LondonGoogle Scholar
  22. Calas A (1985) Morphological correlates of chemically specified neuronal interaction in the hypothalamo-hypophyseal area. Neurochem Int 7: 921–940CrossRefGoogle Scholar
  23. Calas A Alonso G, Arnauld E, Vincent JD (1974) Demonstration of indolaminergic fibers in the median eminence of the duck, rat and monkey. Nature (Lond) 250: 241–243CrossRefGoogle Scholar
  24. Cesselin F, Hamon M (1985) Significations fonctionelles possibles de la libération simultanée de plusieurs neurotransmetteurs putatifs par un même neurone. Annales d’endocrinologie 45: 207–213Google Scholar
  25. Chan-Palay V (1976) Serotonin axons in the supra and subependymal plexuses and in the leptomeninger; their roles in local alteration of cerebrospinal fluid and vaso motor activity. Brain Res 102: 103–130PubMedCrossRefGoogle Scholar
  26. Checler F, Vincent JP, Kitabi P (1983) Degradation of neurotensin by rat brain synaptic membranes; involvement of a thermolysin like metallo-endopeptidase (enkephalinase), angiotensin-converting enzyme, and other unidentified peptidase. J Neurochem 41: 375–384PubMedCrossRefGoogle Scholar
  27. Cheramy A, Leviel V, Glowinski J (1981) Dendritic release of do- pamine in the substancia nigra. Nature (Lond) 289: 537–542CrossRefGoogle Scholar
  28. Cocchia D, Miani N (1980) Immunocytochemical localization of the brain specific S-10 protein in the pituitary gland of adult rat. J Neurocytol 9: 771–782PubMedCrossRefGoogle Scholar
  29. Colin R, Barry J (1957) Neurosécrétion et diabète insipide. Histophysiologie de la neurosécrétion. Ann Endocrinol 18: 464–469Google Scholar
  30. Cooper NM, Kenny AJ, Turner AJ (1985) The metabolism of neuropeptides—Neurokinin A (substance K) is a substrate for endopeptidase-24.11 but not for peptidyl dipeptidase A (angiotensinconverting enzyme). Biochem J 231: 357–361Google Scholar
  31. Cuello AC, Iversen LL (1978) Interactions of dopamine with others neurotransmitters in the rat substantia nigra: a possible functional role of dendritic dopamine. In: Garattini S, Pujol JF, Samanin R (eds) Interactions between putative neurotransmitters in the brain. Raven Press, New York, pp 127–150Google Scholar
  32. Dale HH (1935) Pharmacology and nerve endings. Proceedings of the Royal Society of Medicine 28: 319–332PubMedGoogle Scholar
  33. Dale HH (1953) Adventures in physiology. Pergamon Press, London Della-Fera MA, Baffle CA (1979) Cholecystokinin octapeptide: continuous picomole injections into the cerebral ventricules of sheep suppress feeding. Science 206: 471–473Google Scholar
  34. Dale HH (1953) Adventures in physiology. Pergamon Press, London Della-Fera MA, Baffle CA (1979) Cholecystokinin octapeptide: continuous picomole injections into the cerebral ventricules of sheep suppress feeding. Science 206: 471–473Google Scholar
  35. Descarries L, Beaudet A, Watkins KC (1975) Serontonin nerve terminals in adult rat neo-cortex. Brain Res 100: 563–588PubMedCrossRefGoogle Scholar
  36. Descarries L, Beaudet A, Watkins KC Beaudet A (1983) The use of radio-autography for investigating transmitter-specific neurons. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy. Elsevier, Amsterdam, pp 286–364Google Scholar
  37. Descarries L, Beaudet A, Watkins KC Beaudet A Watkins KC, Lapierre Y (1977) Noradrenergic axon terminals in the cerebral cortex of rat. III Topometric ultrastructural analysis. Brain Res 133: 197–222Google Scholar
  38. De Wied D (1965) The influence of the posterior and intermediate lobe of the pituitary and pituitary peptides on the maintenance of a conditioned avoidance response in rats. Int J Neuropharmacol 4: 157–167CrossRefGoogle Scholar
  39. Dismukes RK (1979) New concepts of molecular communication among neurons. The Behavioral and Brain Sciences 2: 409–448CrossRefGoogle Scholar
  40. Doris PA, Bell FR (1984) Vasopressin in plasma and cerebrospinal fluid of hydrated and dehydrated steers. Neuroendocrinol 38: 290–296CrossRefGoogle Scholar
  41. Dun NJ, Nishi S, Karczman AG (1978) An analysis of the effect of angiotensin II on mammalian ganglion cells. J Pharmacol exp Ther 204: 669–675PubMedGoogle Scholar
  42. Dunn AJ (1979) Molecular signals released by neurons. The Behavioral and Brain Sciences 2: 422–423CrossRefGoogle Scholar
  43. Emson PC (1985) Neurotransmitter systems. In: Bousfield D (ed) Neurotransmitter in action. Elsevier Biomedical Press, Amsterdam, pp 6–10Google Scholar
  44. Epstein Y, Castel M, Glick SM, Sivan N, Ravid R (1983) Changes in hypothalamic and extra-hypothalamic vasopressin content of water-deprived rats. Cell Tiss Res 233: 99–111CrossRefGoogle Scholar
  45. Felix D, Akert K (1974) The effect of angiotensin II on neurons of the cat subfornical organ Brain Res 76: 350–353Google Scholar
  46. Fitzsimons-JT (1972) Thirst. Physiol Rev 52: 468–559Google Scholar
  47. Foreman MM, Moss RL (1977) Effects of subcutaneous injection and intrahypothalamic infusion of releasing hormones upon lor-dotic response to repetitive coital stimulation. Horm Behav 8: 219–234PubMedCrossRefGoogle Scholar
  48. Freund-Mercier MJ, Richard P (1984) Electrophysiological evidence for facilitatory control of oxytocin neurones by oxytocin during suckling in the rat. J Physiol (Lond) 352: 447–466Google Scholar
  49. Fujita T (1977) Concept of paraneurones. In: Kobayashi S, Chiba T (eds) Paraneurones: new concepts on neuroendocrine relatives. Japan Soc Histol Documentation, Niigata, pp 1–12Google Scholar
  50. Fujita T Kobayashi S, Uchida T (1984) Secretory aspect of neurons and paraneurons. Biochemical Res [suppl] 5: 1–8Google Scholar
  51. Fuxe K, Ganten D, Hökfelt T, Bolme P (1976) Immunohistochemical evidence for the existence of angiotensin II containing nerve terminals in the brain and spinal cord of the rat. Neurosci Lett 2: 229–234PubMedCrossRefGoogle Scholar
  52. Ganten D, Fuxe K, Phillips MI, Mann JFE, Ganten U (1978) The brain isorenin-angiotensin system: histochemistry localization and possible role in drinking and blood pressure regulation. In: Ganong WF, Martini B (eds) Frontiers in neuroendocrinology, Vol. 5. Raven Press, New York, pp 61–99Google Scholar
  53. Geffen LB, Jessel TM, Cuello AC, Iversen LL (1976) Release of dopamine from dendrites in rat substantia nigra. Nature (Lond) 260: 258–260CrossRefGoogle Scholar
  54. Glowinski J, Cheramy A (1981) Dentritic release of dopamine its role in the substantia nigra. In: Stjarne L, Hedquist P, Lagercranz H, Wennmalm A (eds) Chemical transmission: 75 years. Academic Press, New York, pp 285–299Google Scholar
  55. Goedert M, Mantyh PW, Emson PC, Hunt SP (1984) Inverse relationship between neurotensin receptors and neurotensin-like immunoreactivity in cat striatum. Nature (Lond) 307: 543–546CrossRefGoogle Scholar
  56. Greenfield SA (1985) The significance of dendritic release of transmitter and protein in the substantia nigra. Neurochem Int 7: 887–901PubMedCrossRefGoogle Scholar
  57. Griffiths EC, MacDermott JR (1983e) Biotransformation of neu- ropeptides. Progress in Neuroendocrinology 39: 573–581CrossRefGoogle Scholar
  58. Gronan RJ, York DH (1978) Effects of angiotensin II and acetylcholine on neurones in the preoptic area. Brain Res 154: 172–177PubMedCrossRefGoogle Scholar
  59. Groves PM, Wilson CJ, Young SJ, Rebec GU (1975) Self-inhibition by dopaminergic neurones. Science 190: 522–529PubMedCrossRefGoogle Scholar
  60. Guillemin R, Brazeau P, Böhlen P, Esch F, Ling N, Wehrenberg WB (1982) Growth hormone-releasing factor from a human pancreatic tumor that caused acromegaly. Science 218: 585–587PubMedCrossRefGoogle Scholar
  61. Harris MC, Jones PM, Robinson ICAF (1981) Differences in the release of oxytocin into blood and cerebrospinal fluid following hypothalamic and pituitary stimultion in rats. J Physiol (Lond) 320: 109–110 PGoogle Scholar
  62. Hill C, Hendry IA (1977) Development of neurones synthetizing noradrenaline and acetylcholine in the superior cervical ganglion of the rat in vivoand in vitro. Neurosci 2: 741–749CrossRefGoogle Scholar
  63. Hökfelt T, Johanson O, Goldstein M (1984) Chemical anatomy of the brain. Science 225: 1326–1334PubMedCrossRefGoogle Scholar
  64. Hughes J, Smith TW, Kosterlitz HW, Fothergill TH, Morgan BA, Morris HR (1975) Identification of two related pentapeptidesGoogle Scholar
  65. from the brain with potent opiate agonist activity. Nature (Lond) 258: 577–580Google Scholar
  66. Huwyler T, Felix D (1980) Angiotensin II-sensitive neurons in septal areas of the rat. Brain Res 195: 187–195PubMedCrossRefGoogle Scholar
  67. Iovino M, Poenaru S, Annunziato L (1983) Basal and thirst-evoked vasopressin secretion in rats with electrolytic lesion of the medio-ventral septal area. Brain Res 258: 123–126CrossRefGoogle Scholar
  68. Jan YN, Jan LY (1985) A LH-RH-like peptidergic neurotransmitter capable of “acton at a distance” in autonomic ganglion. In: Bousfield D (ed) Neuro-transmitters in action. Elsevier Biomedical Press, Amsterdam/New York/Oxford, pp 94–103Google Scholar
  69. Jan YN, Jan LY Kuffler SW (1979) A peptide as a possible transmitter in sympathetic ganglia of the frog. Proc Natl Acad Sci USA 76: 1501–1505PubMedCrossRefGoogle Scholar
  70. Joels M, Urban IJA (1982) The effect of microiontophoretically applied vasopressin and oxytocin on single neurons in the septum and dorsal hippocampus of the rat. Neurosci Lett 33: 79–84PubMedCrossRefGoogle Scholar
  71. Knight DP (1970) Sclerotisation of the perisarc of the calyptoblastic hydroid laomedea fluxuosa. Tissue and Cell 2: 467–477PubMedCrossRefGoogle Scholar
  72. Kobayashi S (1977) Adrenal medulla: chromaffin cells as paraneurones. Arch Histol Jap 40: 61–70PubMedCrossRefGoogle Scholar
  73. Kravitz EA, Beltz BS, Glusman S, Goy MF, Harris-Warrick RM, Johnston MF, Livingstone MS, Schwarz TL, Siwicki KK (1985) Neurohormones and lobsters: biochemistry to behavior. In: Bousfield D (ed) Neurotransmitters in action. Elsevier Biomedical Press, Amsterdam/New York/Oxford, pp 135–142Google Scholar
  74. Kreutzberg GW, Toth L (1974) Dendritic secretion: a way for the neuron to communicate with the vasculature. Naturwissenschaften 61: 37–39PubMedCrossRefGoogle Scholar
  75. Krieger DT (1983) Brain Peptides: what, where and why? Science 222: 975–985PubMedCrossRefGoogle Scholar
  76. Kuhar MJ, Unnerstall JR (1985) Quantitative receptor mapping by autoradiography: some current technical problems. TINS 8: 49–53Google Scholar
  77. Kuhar MJ, Unnerstall JR Yamamura HI (1975) Light autoradiographic localisation of cholinergic muscarinic receptors in rat brain by specific binding of a potent antagonist. Nature (Lond) 253: 560–561CrossRefGoogle Scholar
  78. Laribi C, Legendre P, Dupouy B, Vincent JD, Simonnet G (1985) Characterization of two angiotensin II binding sites in cultured mouse spinal cord neurones. Brain Res 347: 94–103PubMedCrossRefGoogle Scholar
  79. Larsson LI (1980) On the possible existence of multiple endocrine, paracrine and neurocrine messengers in secretory cell systems. Invest Cell Pathol 3: 73–85PubMedGoogle Scholar
  80. Le Douarin N (1982) The neural crest. In: Barlow PW, Green PB, Wylie CC (eds) Developmental and cell biology series. Cambridge University Press, CambridgeGoogle Scholar
  81. Le Douarin N Teillet MA (1973) The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol 30: 31–48Google Scholar
  82. Lee CM, Iversen LL, Hanley MR, Sandberg BEB (1982) The possible existence of multiple receptors for substance P. Naunyn-Schmiedebergs Arch Pharmacol 318: 281–287PubMedCrossRefGoogle Scholar
  83. Legendre P, Simonnet G, Vincent JD (1984) Electrophysiological effects of angiotensin II on cultured mouse spinal cord neurones. Bain Res 297: 287–296CrossRefGoogle Scholar
  84. Lembeck F, Gamse R, Holzer P, Molnar A (1980) Substance P and chemosensitive neurones. In: Ajmone-Marsan C, Traczyk WZ (eds) Neuropeptides and neural transmission. Raven Press, New York, pp 51–72Google Scholar
  85. Le Moal M, Koob GF, Koda LY, Bloom FE, Manning M, Sawyer WH, Rivier J (1981) Vasopressin receptor antagonist prevents. Nature (Lond) 291: 491–493CrossRefGoogle Scholar
  86. Leonhardt H, Backhus-Roth A (1969) Synapsenartige Kontakte zwischen intraventrikulären Axonendigungen und freien Oberflächen von ependymzellen des Kaninchengehirns. Zellforschung und mikroskopische Anatomie 97: 369–376PubMedCrossRefGoogle Scholar
  87. Le Roith D, Liotta AS, Roth J, Schiloach J, Lewis ME, Pert CB, Krieger DT (1982) Corticotrophin and 0-endorphin-like materials are native to unicellular organisms (tetrahymena). Proc Natl Acad Sci USA 79: 2086–2090CrossRefGoogle Scholar
  88. Liotta AS, Loudes C, McKelvy JF, Krieger DT (180) Biosynthesis of the precursor corticotrophin/endorphin-, corticotropin-, melanotropin-0 lipotropin-, and 0-endorphin-like material by cultured neonatal rat hypothalamic neurons. Proc Natl Acad Sci USA 77: 1880–1884Google Scholar
  89. Ljungdal A, Hökfelt T, Nilsson G (1978) Distribution of substance P-like immunoreactivity in the central nervous system of the rat. I. Cell Neuroscience, 3: 861–943Google Scholar
  90. Llinas R, Greenfield SA, Jahnsen H (1984) Electrophysiology of pars compacta cells in the in vitrosubstancia nigra—a possible mechanism for dendritic release. Brain Res 294: 127–132PubMedCrossRefGoogle Scholar
  91. Loumaye E, Thorner J, Catt KJ (1982) Yeast mating pheromone activates mammalian gonadotrophs: evolutionary conservation of a reproductive hormone? Science 218: 1323–1325PubMedCrossRefGoogle Scholar
  92. Lubar JF, Boyce BA, Schaeffer CF (1968) Etiology of polydipsia and polyuria in rats with septal lesions. Physiol Behav 3: 289–292CrossRefGoogle Scholar
  93. Luerssen TG, Shelton RL, Robertson GL (1977) Evidence for separate origin of plasma and cerebrospinal fluid vasopressin. Clin Res 25: 14AGoogle Scholar
  94. Lundberg JM (1981) Evidence for co-existence of vasoactive intestinal polypeptide (VIP) and acetylcholine in neurones of cat exocrine glands. Morphological, Biochemical and Functional Studies. Acta Physiol Scand [suppl] 496: 1–57Google Scholar
  95. Matsas R, Fulcher IS, Kenny AJ, Turner AJ (1983) Substance P and [Leu] enkephalin are hydrolyzed by an enzyme in pig caudate synaptic membranes that is identical with the endopeptidase of kidney microvilli. Proc Natl Acad Sci USA 80: 3111–3115PubMedCrossRefGoogle Scholar
  96. Matthews EK, Sakamoto Y (1975a) Electrical characteristics of pancreatic islet cells. J Physiol (Lond) 246: 421–437Google Scholar
  97. Matthews EK, Sakamoto Y (1975b) Pancreatic islet cells: electrogenic and electrodiffusional control of membrane potential. J Physiol (Lond) 246: 439–457Google Scholar
  98. Miller RJ (1985) Second messengers, phosphorylation and neurotransmitter release. TINS 8: 463–465Google Scholar
  99. Moller M, Mollergärd K, Lund-Andersen H, Hertz L (1974) Concordance between morphological and biochemical estimates of fluid spaces in rat brain cortex slices. Expl Brain Res 21: 299–314CrossRefGoogle Scholar
  100. Moos F, Freund-Mercier MJ, Guerne Y, Guerne JM, Stueckel ME, Richard P (1984) Release of oxytocin and vasopressin by magnocellular nuclei in vitro: specific facilitatory effect of oxytocin on its own release. J Endocrinol 102: 63–72PubMedCrossRefGoogle Scholar
  101. Morris JF, Nordmann JJ, Dyball REJ (1978) Structure-function correlation in mammalian neurosecretion. Int Rev Exp Path 18: 1–95PubMedGoogle Scholar
  102. Morrison JH, Magistretti PJ (1985) Monoamines and peptides in cerebral cortex. Contrasting principles of cortical organization. In: Bousfield D (ed) Neurotransmitter in action. Elsevier Biomedical Press, Amsterdam/New York/Oxford, pp 319–328Google Scholar
  103. Morrison JH, Molliver ME, Grzanna R (1979) Noradrenergic innervation of cerebral cortex: widespread effects of local cortical lesions. Science 205: 313–316PubMedCrossRefGoogle Scholar
  104. Moss RL, McCann SM (1973) Induction of making behavior in rats by luteinizing hormone-releasing factor. Science 181: 177–179PubMedCrossRefGoogle Scholar
  105. Nakajima T, Yamaguchi H, Takahashi K (1980) S-100 protein in folliculostellate cells of rat pituitary anterior lobe. Brain Res 191: 523–531PubMedCrossRefGoogle Scholar
  106. Nicholson C (1979) Brain cell microenvironment as a communicative channel. In: Schmitt FO, Worden FG (eds) The neurosciences fourth study programm MIT Press, Cambridge, Massachusetts, pp 457–476Google Scholar
  107. Pearse AGE (1966a) 5-Hydroxytryptophan uptake by dog thyroid C cells and its possible significance in polypeptide hormone production. Nature (Lond) 211: 598–600Google Scholar
  108. Pearse AGE (1969) The cytochemistry and ultastructure of polypeptide hormone-producing cells of the APUD series and the embryologie, physiologie and pathologie implication of the concept. J Histochem Cytochem 17: 303–313PubMedCrossRefGoogle Scholar
  109. Pearse AGE (1983) The neuroendocrine division of the nervous system: APUD cells as neurones or paraneurones. In: Osborne NN (ed) Dale’s principle and communication between neurones. Perga-mon Press, Oxford, pp 37–48Google Scholar
  110. Pedersen CA, Ascher JA, Monroe YL, Prange (Jr) (1982) Oxytocin induces maternal behavior in virgin female rats. Science 216: 648–650PubMedCrossRefGoogle Scholar
  111. Pelletier G, Steinbusch HWM, Verhufstad AAJ (1981) Immunoreactive substance P and serotonin present in the same dense-core vesicles. Nature (Lond) 293: 71–72CrossRefGoogle Scholar
  112. Perlow MJ, Reppert SM, Artman HA, Fisher DA, Seif SM, Robinson AG (1982) Oxytocin, vasopressin, and estrogen-stimulated neurophysin: daily patterns of concentrations in cerebrospinal fluid. Science 216: 1416–1418PubMedCrossRefGoogle Scholar
  113. Pernow B (1983) Substance P. Pharmacol Rev 35: 85–141Google Scholar
  114. Pestre M, Arnauld E, Vincent JD (1984) Actions of micro-iontophoretically applied vasopressin selective agonists and antagonists on single neurons in the lateral septum of the rat. Neurosci Lett [suppl] S 341Google Scholar
  115. Poulain DA, Ellendorff F, Vincent JD (1980) Septal connections with identified oxytocin and vasopressin neurones in the supraoptic nucleus of the rat. An electrophysiological investigation. Neurosci 5: 379–387CrossRefGoogle Scholar
  116. Lebrun CJ, Vincent JD (1981) Electrophysiological evidence for connections between septal neurones and the supraoptic nucleus of the hypothalamus of the rat. Exp Brain Res 42: 260–268 Wakerley JB (1982) Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin. Neuroscience 7: 773–808Google Scholar
  117. Quirion R, Shults CW, Moody TW, Pert CB, Chase TN, O’Donohue TL (1983) Autoradiographic distribution of substances P receptors in rat central nervous system. Nature (Lond) 303: 714–716CrossRefGoogle Scholar
  118. Rapoport SI (1976) Blood-brain barrier in physiology and medicine. Raven Press, New YorkGoogle Scholar
  119. Reppert SM, Artman HG, Swaminathan S, Fisher DA (1981) Vasopressin exhibits a rhythmic daily pattern in cerebro spinal fluid but not in blood. Science 213: 1256–1257PubMedCrossRefGoogle Scholar
  120. Reubi JC, Iversen LL, Jessel TM (1977) Dopamine selectively increases [3] GABA release from slices of rat substantia nigra in vitro. Nature (Lond) 268: 652–654CrossRefGoogle Scholar
  121. Riskins P, Moss RL (1979) Midbrain central gray: LH-RH infusion enhances lordotic behavior in oestrogen primed ovariectomized rats. Brain Res Bull 4: 203–205CrossRefGoogle Scholar
  122. Rivier C, Vale W (1983) Interaction of corticotropin-releasing factor and arginine vasopressin on adrenocorticotropin in vivo. Endocrinology 113: 939–942PubMedCrossRefGoogle Scholar
  123. Robinson IFA, Jones PM (1982) Neurohypophyseal peptides in cerebrospinal fluid: recent studies. In: Baertschi AJ, Dreifuss JJ (eds) Neuroendocrinology of vasopressin, corticoliberin and opiomelanocortins. Academic Press, New York, pp 21–31Google Scholar
  124. Rodriguez EM (1976) The cerebrospinal fluid as a pathway in neuroendocrine integration. J Endocrinol 71: 407–443PubMedCrossRefGoogle Scholar
  125. Rodriguez F, Demotes-Mainard J, Chauveau J, Poulain DA, Vincent JD (1983) Vasopressin release in the rat septum in response to systemic stimuli. Soc Neurosci Abstr 9: 445Google Scholar
  126. Rowland LP (1981) Blood-brain barrier, cerebrospinal fluid, brain edema and hydrocephalus. In: Kandel ER, Schwartz JH (eds) Principles of neural science. Elsevier-North Holland, New York/ Amsterdam/Oxford, pp 651–659Google Scholar
  127. Samson WK (1985) Atrial natriuretic factor inhibits dehydration and hemorrhage-induced vasopressin release. Neuroendocrinology 40: 277–279PubMedCrossRefGoogle Scholar
  128. Saper CB, Standaert DG, Currie MG, Schwartz D, Geller DM, Needleman P (1985) Atriopeptin-immunoreactive neurons in the brain: presence in cardiovascular regulatory areas. Science 227: 1047–1049PubMedCrossRefGoogle Scholar
  129. Schmitt FO, Samson FE (1969) Brain cell microenvironment. Neurosci Res Prog Bull 7: 277–417Google Scholar
  130. Schwabe C, Le Roith D, Thompson RP, Shiloach J, Roth J (1983) Relaxin extracted from protozoa (Tetrahymena lyriformis). Molecular and immunologic properties. J Biol Chem 258: 2778–2781PubMedGoogle Scholar
  131. Schwartz JC (1983) Metabolism of enkephalins and the inactivating a neuropeptidase concept. Trends Neurosci 6: 45–48CrossRefGoogle Scholar
  132. Schwartz D, Geller DM, Manning PT, Siegel NR, Fok KF, Smith CE, Needleman P (1985) Ser-Leu-Arg-Atriopeptin III: the major circulating form of atrial peptide. Science 229: 397–400PubMedCrossRefGoogle Scholar
  133. Sherrington CS (1906) The integrative action of the nervous system. Yale University Press, New HavenGoogle Scholar
  134. Shibuki K (1984) Supraoptic cells: synaptic inputs from the nucleus accumbens in the rat. Exp Brain Res 53: 341–348PubMedCrossRefGoogle Scholar
  135. Sibole W, Miller JJ, Mogenson GJ (1971) Effects of septal stimulations on drinking elicited by electrical stimulation of the lateral hypothalamus. Exp Neurol 32: 466–477PubMedCrossRefGoogle Scholar
  136. Siegelbaum SA, Camardo JS, Kandel ER (1982) Serotonin and cyclic AMP close single, K+ channels in Aplysia sensory neurones. Nature (Lond) 299: 413–417CrossRefGoogle Scholar
  137. Simantov R, Kuhar MJ, Uhl GR, Snyder SH (1977) Opioid peptide enkephalin: immunohistochemical mapping in rat central nervous system. Proc Natl Acad Sci. USA 74: 2167–2175CrossRefGoogle Scholar
  138. Simonnet G, Bioulac B, Rodriguez F, Vincent JD (1980) Evidence for a direct action of angiotensin II on neurones in the septum and in the medial preoptic area. Pharmacol Biochem Behav 13: 359–363PubMedCrossRefGoogle Scholar
  139. Carayon A, Allard M, Cesselin F, Lagoguey A (1984) Evidence for an angiotensin II-like material and for a rapid metabolism of angiotensin II in-the-rat brain. Brain Res 304: 93–103PubMedCrossRefGoogle Scholar
  140. Rodriguez F, Fumoux F, Czernichow P, Vincent JD (1979) Vasopressin release and drinking induced by intracranial injection of angiotensin II in monkey. Am J Physiol 237: R20 - R25PubMedGoogle Scholar
  141. Vincent JD (1982) Characteristics of angiotensin II binding sites in the neostriatum of the rat brain. Neurochem Int 4: 149–155PubMedCrossRefGoogle Scholar
  142. Sofroniew MV (1985) Vasopressin and oxytocin in the mammalian brain and spinal cord. In: Bousfield D (ed) Neurotransmitters in action. Elsevier Biomedical Press, Amsterdam/New York/Oxford, pp 329–337Google Scholar
  143. Spiess J, Rivier J, Vale W (1983) Characterization of a rat hypothalamic growth hormone-releasing factor. Nature 303: 532–535PubMedCrossRefGoogle Scholar
  144. Suga T, Suzuki M (1979) Effects of angiotensin II on the medullary neurons and their sensitivity to acetylcholine and catecholamines. Jap J Pharmacol 29: 541–552PubMedCrossRefGoogle Scholar
  145. Studier JM, Simon M, Cesselin F, Blanc G, Glowinski J, Tassin JP (1984) Pharmacological study on the mixed CCK 8/DA meso nucleus accubens pathway: evidence for the existence of vesicles, containing the two transmitters. Brain Res 298: 91–97CrossRefGoogle Scholar
  146. Standaert DG, Saper CB, Needleman P (1985) Atriopeptin: potent hormone and potential neuromediator. TINS 8: 510–511Google Scholar
  147. Szczepanska-Sadowska E, Gray D, Simon-Opperman C (1983) Vasopressin in blood and third ventricle CSF during dehydration, thirst and hemorrhage. Am J Physiol 245: R549 – R555PubMedGoogle Scholar
  148. Takor-Takor T, Pearse AGE (1975) Neuroectodermal origin of avian hypothalamo-hypophyseal complex: the role of the ventral neural midge. J Embryol Exp Morphol 34: 311–325Google Scholar
  149. Tanaka I, Misono KS, Inagami T (1984) Atrial natriuretic factor in rat hypothalamus, atria and plasma: determination by specific radioimmunoassay. Biochem Biophys Res Commun 124: 663–668PubMedCrossRefGoogle Scholar
  150. Teitelman G, Joh TH, Reis DJ (1981) Transformation of catecholaminergic precursors intoglucagon (A) cells in mouse embryonic pancreas. Proc Natl Acad Sci USA 78: 5225–5229PubMedCrossRefGoogle Scholar
  151. Tennyson VM, Heikkila R, Mytilineau C, Cote L, Cohen G (1974) 5-Hydroxydopamine “tagged” neuronal boutons in rabbit neostriatum: interrelationship between vesicles and axonal membrane. Brain Res 82: 341–348Google Scholar
  152. Terenius L (1978) Endogenous peptides and analgesia. Ann Rev Pharmacol Toxicol 18: 189–204CrossRefGoogle Scholar
  153. Theodosis DT, Poulain DA, Vincent JD (1981) Possible morphological bases for synchronisation of neuronal firing in the rat supraoptic nucleus during lactation. Neuroscience 6: 919–929PubMedCrossRefGoogle Scholar
  154. Theodosis DT, Poulain DA, Vincent JD (1985a) Oxytocin-immunoreactive terminals synapse on oxytocin neurones in the supraoptic nucleus. Nature (Lond) 313: 682–684CrossRefGoogle Scholar
  155. Theodosis DT, Poulain DA, Vincent JD (1985a) Oxytocin-immunoreactive terminals synapse on oxytocin neurones in the supraoptic nucleus. Nature (Lond) 313: 682–684CrossRefGoogle Scholar
  156. Theodosis DT, Poulain DA, Vincent JD Chapman DB, Montagnese C, Poulain DA, Morris JF Montagnese C, Rodriguez F, Vincent JD, Poulain DA (1986) Oxytocin induces morphological plasticity in the adult hypothalamo-neurohypophysial system. Nature (Lond) 322: 738–740CrossRefGoogle Scholar
  157. Tsong SD, Philipps D, Halmi N, Liotta AS, Margioris A, Bardin CW, Krieger DT (1982) ACTH and beta-endorphin related peptides are present in multiple sites in the reproductive tract of the male rat. Endocrinology 110: 2204–2206PubMedCrossRefGoogle Scholar
  158. Vaccarino FJ, Bloom FE, Rivier J, Vale W, Koob GF (1985) Stimulation oLfood intake by centrally administered hypothalamic growth hormone-releasing factor. Nature (Lond) 314: 167–168CrossRefGoogle Scholar
  159. Vanderhaeghen JJ, Signeau JC, Gepts W (1975) New peptide in the vertebrate CNS reacting with antigastrin antibodies. Nature (Lond) 257: 604–605CrossRefGoogle Scholar
  160. Van Wimersma Greidanus TB (1982) Disturbed behavior and mem- ory of the Brattleboro rat. Ann NY Acad Sci 394: 655–662PubMedCrossRefGoogle Scholar
  161. Vincent JD, Israel JM, Brigant JL (1985) Ionic channels in hormone release from adenohypophysial cells—an electrophysiological approach. Neurochem Int 7: 1007–1016PubMedCrossRefGoogle Scholar
  162. Vincent JD (1986) Biologie des passions. Odile Jacob—Le Seuil, ParisGoogle Scholar
  163. Vizi ES (1983) Non synaptic interneuronal communication: Physiological and pharmacological implication. In: Osborne N (ed) Dale’s principle and communication between neurones. Perga-mon Press, Oxford, pp 83–111Google Scholar
  164. Wang BC, Share L, Crofton JT, Kimura T (1982) Effects of intravenous and intracerebroventricular infusion of hypertonic solutions on plasma and cerebrospinal fluid vasopressin concentrations. Neuroendocrinology 34: 215–221PubMedCrossRefGoogle Scholar
  165. Wassef M, Berod A, Sotelo C (1981) Dopaminergic dendrites in the pars reticulata of the rat substantia nigra and their striatal input-combined immunocytochemical localization of tyrosine hydroxylase and anterograde degeneration. Neuroscience 6: 2125–2139PubMedCrossRefGoogle Scholar
  166. Wayner MJ, Ono T, Nolley D (1973) Effect of angiotensin II on central neurons. Pharmacol Biochem Behav I: 679–691Google Scholar
  167. Westergaard E (1970) The lateral ventricles and the ventricular walls. Thesis. Arhus, DanemarkGoogle Scholar
  168. Yuir (1983) Immunohistochemical studies on peptide neurons in the hypothalamus of the bullfrog Rana Catesbliana. Gen Comp Endocrinol 49: 195–209CrossRefGoogle Scholar
  169. Zarbin MA, Innis RB, Wamsley JK, Snyder SH, Kuhar MJ (1983) Autoradiographic localization of cholecystokinin receptors in rodent brain. J Neuroscience 4: 877–906Google Scholar
  170. Zerbe RL, Palkovits M (1984) Changes in the vasopressin content of discrete brain regions in response to stimuli for vasopressin secretion. Neuroendocrinology 38: 285–289PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • J. D. Vincent
    • 1
  • G. Simonnet
    • 1
  1. 1.Domaine de CarreireINSERM U. 176Bordeaux CédexFrance

Personalised recommendations