Skip to main content

Central Neuroendocrine Control of the Brain Water, Electrolyte, and Volume Homeostasis

  • Conference paper
Neuroendocrinological Aspects of Neurosurgery

Part of the book series: Acta Neurochirurgica ((NEUROCHIRURGICA,volume 47))

  • 82 Accesses

Abstract

In 1981 Marcus Raichle put forward the hypothesis that a central neuroendocrine system regulates the brain ion and water homeostasis38. In this presentation I would like to summarize briefly the available data—including our own results—in support of this hypothesis. The hypothesis supposes that three cell groups (brain capillary endothelial cells, secretory cells of the choroid plexus, and astroglia) regulate the internal ionic environment of the brain38. A unique element of this hypothesis is that the regulation of the ion and volume homeostasis of the brain is orchestrated by a central neuroendocrine system capable of affecting all three cell types38.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arieff AI, Llach F, Massry SG (1976) Neurological manifestation of hyponatraemia: correlation with brain water and electrolytes. Medicine (Baltimore) 55: 121–140

    Article  CAS  Google Scholar 

  2. Betz AL (1986) Transport of ions across the blood-brain barrier. Fed Proc 45: 2050–2054

    PubMed  CAS  Google Scholar 

  3. Bradbury MWB (1979) The concept of a blood-brain barrier. John Wiley and Sons, Chichester New York Brisbane London

    Google Scholar 

  4. Brownfield MS, Kozlowski GP (1977) The hypothalamo-choroidal tract I. Immunohistochemical demonstration of neurophysin pathways to the telencephalic choroid plexus and cerebrospinal fluid. Cell Tissue Res 178: 111–127

    Article  PubMed  CAS  Google Scholar 

  5. Buijs RM, Swaab DF, Dogterom J, Van Leeuwen FW (1978) Intra-and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res 186: 423–433

    Article  PubMed  CAS  Google Scholar 

  6. Cserr HF (1974) Relationship between cerebrospinal fluid and interstitial fluid of brain. Fed Proc 33: 2075–2078

    PubMed  CAS  Google Scholar 

  7. Cserr HF, Cooper DN, Suri PK, Patlak CS (1981) Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am J Physiol 240: F319–F328

    PubMed  CAS  Google Scholar 

  8. Dóczi T, Szerdahelyi P, Gulya K, Kiss J (1982) Brain water accumulation after the central administration of vasopressin. Neurosurgery 11: 402–407

    Article  PubMed  Google Scholar 

  9. Dóczi T, Lâszló FA, Szerdahelyi P, Joó F (1984) The role of vasopressin in brain edema formation: further evidence obtained from the Brattleboro diabetes insipidus rats with subarachnoid hemorrhage. Neurosurgery 14: 436–440

    Article  PubMed  Google Scholar 

  10. Dóczi T, Szerdahelyi P, Joó F (1984) 5-hydroxytryptamine, injected intraventricularly, failed to increase brain water content. Neurosurgery 15: 165–169

    Article  PubMed  Google Scholar 

  11. Dóczi T, Joó F, Szerdahelyi P, Bodosi M (1987) Regulation of brain water and electrolyte contents: the possible involvement of central atrial natriuretic factor ( ANF ). Neurosurgery 21: 454–458

    Article  PubMed  Google Scholar 

  12. Edvinsson L, Copeland JR, Emson PC, McCulloch J, Uddman R (1987) Nerve fibers containing neuropeptide Y in the cerebrovascular bed: Immunocytochemistry, radioimmunoassay, and vasomotor effects. J Cerebr Blood Flow Metab 7: 45–57

    Article  CAS  Google Scholar 

  13. Fishman RA (1959) Factors influencing the exchange of sodium between plasma and cerebrospinal fluid. J Clin Invest 38: 1698–1708

    Article  PubMed  CAS  Google Scholar 

  14. Glembotski C, Wildey GM, Gibson TR (1985) Molecular forms of immunoreactive atrial natriuretic peptide in the rat hypothalamus and atrium. Biochem Biophys Res Com 129: 671–678

    Article  PubMed  CAS  Google Scholar 

  15. Harik SI, Sharma VK, Weatherbe JR, Warren RH, Banergee SP (1980) Adrenergic receptors of cerebral microvessels. Europ J Pharmacol 61: 207–208

    Article  CAS  Google Scholar 

  16. Harik SI (1986) Blood-brain barrier sodium/potassium pump: modulation by central noradrenergic innervation. Proc Nat Acad Sci 83: 4067–4070

    Article  PubMed  CAS  Google Scholar 

  17. Hartman BK, Zide S, Udenfriend (1972) The use of dopamine hydroxylase as a marker for the central noradrenergic nervous system in rat brain. Proc Nat Acad Sci 69: 2722–2726

    Article  PubMed  CAS  Google Scholar 

  18. Herbst TJ, Raichle ME, Ferrendelli JA (1979) Beta-adrenergic regulation of cAMP concentration in brain microvessels. Science 204: 330–332

    Article  PubMed  CAS  Google Scholar 

  19. Itakura T, Yamamoto K, Tobyama M, Shimizu N (1977) Central dual innervation of arterioles and venules in the brain. Stroke 8: 360–365

    Article  PubMed  CAS  Google Scholar 

  20. Jójârt I, Joó F, Siklós L, Lâszló FA (1984) Immunoelectronhistochemical evidence for innervation of brain microvessels by vasopressin-immunoreactive neurons in the rat. Neurosci Lett 51: 259–264

    Article  PubMed  Google Scholar 

  21. Kawata M, Ueda S, Nakao K, Morri N, Kiso I, Imura H, Sano Y (1985) Immunohistochemical demonstration of alpha-atrial natriuretic polypeptide-containing neurons in the brain brain. Histochemistry 83: 1–3

    Article  PubMed  CAS  Google Scholar 

  22. Kimelberg HK, Naunri S, Biddlecome S, Bourke RS (1978) Enzymatic and morphological properties of primary rat brain astrocyte cultures and enzyme development in vivo. Brain Res 153: 55–77

    Article  PubMed  CAS  Google Scholar 

  23. Krisch B (1980) Non-granular vasopressin synthesis and transport in early stages of rehydration. Cell Tissue Res 207: 89–107

    Article  PubMed  CAS  Google Scholar 

  24. Lindvall M, Edvinsson L, Owman C (1978) Sympathetic nervous control of cerebrospinal fluid production from the choroid plexus. Science 201: 176–178

    Article  PubMed  CAS  Google Scholar 

  25. Lindvall M, Owman C (1978) Early development of noradrenaline containing sympathetic nerves in the choroid plexus system of the rabbit. Cell Tissue Res 192: 195–203

    Article  PubMed  CAS  Google Scholar 

  26. Lindvall M, Edvinsson L, Owman C (1979) Effect of sympathomimetic drugs and corresponding receptor antagonists on the rate of cerebrospinal fluid production. Exp Neurol 64: 132–145

    Article  PubMed  CAS  Google Scholar 

  27. Liszczak TM, Black PMcL, Foley L (1986) Arginine-vasopressin causes morphological changes suggestive of fluid transport in rat choroid plexus epithelium. Cell Tissue Res 246: 378–385

    Article  Google Scholar 

  28. Luerssen TG, Robertson GL (1980) Cerebrospinal fluid vasopressin and vasotocin in health and disease. In: Wood JH (ed) Neurobiology of cerebrospinal fluid I. Plenum Press, New York, pp 613–623

    Google Scholar 

  29. MacKenzie ET, McCulloch J, Harper MA (1976) Influence of endogeneous norepinephrine on cerebral blood flow and metabolism. Am J Physiol 231: 488–498

    Google Scholar 

  30. Morii N, Nako K, Sugawara A, Sakamoto M, Suda M, Shimokura M, Kiso Y, Kihara M, Yamori Y, Imura H (1985) Occurrence of atrial natriuretic polypeptide in brain. Biochem Biophys Res Corn 127: 413–419

    Article  CAS  Google Scholar 

  31. Morii N, Nakao K, Kihara M, Sakamoto M, Sugawara A, Shimokura M, Kiso Y, Yamori Y, Imura H (1986) Effects of water deprivation and sodium load on atrial natriuretic polypeptide in rat brain. Inter-American Society Proc Suppl I Hypertension 8: 161–165

    Google Scholar 

  32. Nakamura S, Milhorat TH (1976) Structure and function of the choroid plexus and other sites of CSF formation. Int Rev Cytol 47: 225–288

    Article  Google Scholar 

  33. Nathanson JA (1976) Beta-adrenergic sensitive adenylate cyclase in secretory cells of the choroid plexus. Science 204: 843–844

    Article  Google Scholar 

  34. Owman C, Edvinsson L (eds) 1977 ) Neurogenic control of brain circulation. Pergamon ress, Oxford, pp 39–152

    Google Scholar 

  35. Palluk R, Gaida W, Hoefke W (1985) Minireview: Atrial natriuretic Factor. Life Sci 36: 1415–1425

    Article  PubMed  CAS  Google Scholar 

  36. Peachey LD, Rassmusen H (1961) Structure and function of toad urinary bladder as related to its physiology. J Biophys Biochem Cytol 10: 529–553

    Article  PubMed  CAS  Google Scholar 

  37. Raichle ME, Grubb RL (1978) Regulation of brain water permeability by centrally released vasopressin. Brain Res 143: 191–194

    Article  PubMed  CAS  Google Scholar 

  38. Raichle ME (1981) Hypothesis: A central neuroendocrine system regulates brain ion homeostasis and volume. In: Martin JB, Reichlin S, Bick KL (eds) Neurosecretion and brain peptides. Raven Press, New York, pp 329–336

    Google Scholar 

  39. Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA (1985) Evidence for a “paravascular” fluid ciruclation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from subarachnoid space. Brain Res 326: 47–63

    Article  PubMed  CAS  Google Scholar 

  40. Rodriguez EM (1976) The cerebrospinal fluid as a pathway in neuroendocrine integration. J Endocrinol 71: 407–443

    Article  PubMed  CAS  Google Scholar 

  41. Rosenberg AG, Kyner WT, Fenstermacher JD, Patlak CS (1986) Effect of vasopressin on ependymal and capillary permeability to tritiated water in cat. Am J Physiol 251: F485–F489

    PubMed  CAS  Google Scholar 

  42. Rudman D, Hollins BM, Lewis NC, Scott JW (1977) Effects of hormones on cAMP in choroid plexus. Am J Physiol 323: E353-E 357

    Google Scholar 

  43. Schultz WJ, Brownfield MS, Kozlowski GP (1977) The hypothalamo-choroidal tract II. Ultrastructural response of the choroid plexus to vasopressin. Cell Tissue Res 178: 129–141

    Article  PubMed  CAS  Google Scholar 

  44. Skofitch G, Jacobowitz DM, Eskjay RL, Zamir N (1985) Distribution of atrial natriuretic factor-like immunoreactive neurons in the rat brain. Neuroscience 16: 917–948

    Article  Google Scholar 

  45. Sofroniew MV, Glasman W (1981) Golgi like immunoperoxidase staining of hypothalamic magnocellular neurons that contain vasopressin, oxytocin or neurophysin in the rat. Neuroscience 6: 619–643

    Article  PubMed  CAS  Google Scholar 

  46. Sorensen PS, Gjerris F, Hammer M (1982) Cerebrospinal fluid vasopressin in benign intracranial hypertension. Neurology 32: 1255–1259

    PubMed  CAS  Google Scholar 

  47. Sorensen PS, Gjerris F, Hammer M (1984) Cerebrospinal fluid vasopressin and increased intracranial hypertension. Ann Neurol 15: 435–440

    Article  PubMed  CAS  Google Scholar 

  48. Sorensen PS, Vilhardt H, Gjerris F, Warberg J (1984) Impermeability of the blood-cerebrospinal fluid barriers to 1-deamino8-D-arginine-vasopressin ( DDAVP) in patients with acquired communication hydrocephalus. Eur J Clin Invest 14: 435–439

    Article  PubMed  CAS  Google Scholar 

  49. Steardo L, Nathanson JA (1987) Brain barrier tissues: end organs for atriopeptins. Science 235: 470–473

    Article  PubMed  CAS  Google Scholar 

  50. Swanson LW, Connelly MA, Hartman BK (1977) Ultrastructural evidence for central monoaminergic innervation of blood vessels in the paraventricular nucleus of the hypothalamus. Brain Res 136: 166–173

    Article  PubMed  CAS  Google Scholar 

  51. Wang BC, Share L, Goetz KI (1985) Factors influencing the secretion of vasopressin into the cerebrospinal fluid. Fed Proc 44: 72–77

    PubMed  CAS  Google Scholar 

  52. Wood JH (1982) Neuroendocrinology of cerebrospinal fluid: Peptides, steroids, and other hormones. Neurosurgery 11: 293–305

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Dóczi, T., Joó, F., Bodosi, M. (1990). Central Neuroendocrine Control of the Brain Water, Electrolyte, and Volume Homeostasis. In: Pickard, J.D., Cohadon, F., Antunes, J.L. (eds) Neuroendocrinological Aspects of Neurosurgery. Acta Neurochirurgica, vol 47. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9062-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9062-3_16

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9064-7

  • Online ISBN: 978-3-7091-9062-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics