Central Neuroendocrine Control of the Brain Water, Electrolyte, and Volume Homeostasis

  • T. Dóczi
  • F. Joó
  • M. Bodosi
Conference paper
Part of the Acta Neurochirurgica book series (NEUROCHIRURGICA, volume 47)


In 1981 Marcus Raichle put forward the hypothesis that a central neuroendocrine system regulates the brain ion and water homeostasis38. In this presentation I would like to summarize briefly the available data—including our own results—in support of this hypothesis. The hypothesis supposes that three cell groups (brain capillary endothelial cells, secretory cells of the choroid plexus, and astroglia) regulate the internal ionic environment of the brain38. A unique element of this hypothesis is that the regulation of the ion and volume homeostasis of the brain is orchestrated by a central neuroendocrine system capable of affecting all three cell types38.


Choroid Plexus Atrial Natriuretic Factor Brain Water Content Brain Capillary Endothelial Cell Volume Homeostasis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arieff AI, Llach F, Massry SG (1976) Neurological manifestation of hyponatraemia: correlation with brain water and electrolytes. Medicine (Baltimore) 55: 121–140CrossRefGoogle Scholar
  2. 2.
    Betz AL (1986) Transport of ions across the blood-brain barrier. Fed Proc 45: 2050–2054PubMedGoogle Scholar
  3. 3.
    Bradbury MWB (1979) The concept of a blood-brain barrier. John Wiley and Sons, Chichester New York Brisbane LondonGoogle Scholar
  4. 4.
    Brownfield MS, Kozlowski GP (1977) The hypothalamo-choroidal tract I. Immunohistochemical demonstration of neurophysin pathways to the telencephalic choroid plexus and cerebrospinal fluid. Cell Tissue Res 178: 111–127PubMedCrossRefGoogle Scholar
  5. 5.
    Buijs RM, Swaab DF, Dogterom J, Van Leeuwen FW (1978) Intra-and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res 186: 423–433PubMedCrossRefGoogle Scholar
  6. 6.
    Cserr HF (1974) Relationship between cerebrospinal fluid and interstitial fluid of brain. Fed Proc 33: 2075–2078PubMedGoogle Scholar
  7. 7.
    Cserr HF, Cooper DN, Suri PK, Patlak CS (1981) Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am J Physiol 240: F319–F328PubMedGoogle Scholar
  8. 8.
    Dóczi T, Szerdahelyi P, Gulya K, Kiss J (1982) Brain water accumulation after the central administration of vasopressin. Neurosurgery 11: 402–407PubMedCrossRefGoogle Scholar
  9. 9.
    Dóczi T, Lâszló FA, Szerdahelyi P, Joó F (1984) The role of vasopressin in brain edema formation: further evidence obtained from the Brattleboro diabetes insipidus rats with subarachnoid hemorrhage. Neurosurgery 14: 436–440PubMedCrossRefGoogle Scholar
  10. 10.
    Dóczi T, Szerdahelyi P, Joó F (1984) 5-hydroxytryptamine, injected intraventricularly, failed to increase brain water content. Neurosurgery 15: 165–169PubMedCrossRefGoogle Scholar
  11. 11.
    Dóczi T, Joó F, Szerdahelyi P, Bodosi M (1987) Regulation of brain water and electrolyte contents: the possible involvement of central atrial natriuretic factor ( ANF ). Neurosurgery 21: 454–458PubMedCrossRefGoogle Scholar
  12. 12.
    Edvinsson L, Copeland JR, Emson PC, McCulloch J, Uddman R (1987) Nerve fibers containing neuropeptide Y in the cerebrovascular bed: Immunocytochemistry, radioimmunoassay, and vasomotor effects. J Cerebr Blood Flow Metab 7: 45–57CrossRefGoogle Scholar
  13. 13.
    Fishman RA (1959) Factors influencing the exchange of sodium between plasma and cerebrospinal fluid. J Clin Invest 38: 1698–1708PubMedCrossRefGoogle Scholar
  14. 14.
    Glembotski C, Wildey GM, Gibson TR (1985) Molecular forms of immunoreactive atrial natriuretic peptide in the rat hypothalamus and atrium. Biochem Biophys Res Com 129: 671–678PubMedCrossRefGoogle Scholar
  15. 15.
    Harik SI, Sharma VK, Weatherbe JR, Warren RH, Banergee SP (1980) Adrenergic receptors of cerebral microvessels. Europ J Pharmacol 61: 207–208CrossRefGoogle Scholar
  16. 16.
    Harik SI (1986) Blood-brain barrier sodium/potassium pump: modulation by central noradrenergic innervation. Proc Nat Acad Sci 83: 4067–4070PubMedCrossRefGoogle Scholar
  17. 17.
    Hartman BK, Zide S, Udenfriend (1972) The use of dopamine hydroxylase as a marker for the central noradrenergic nervous system in rat brain. Proc Nat Acad Sci 69: 2722–2726PubMedCrossRefGoogle Scholar
  18. 18.
    Herbst TJ, Raichle ME, Ferrendelli JA (1979) Beta-adrenergic regulation of cAMP concentration in brain microvessels. Science 204: 330–332PubMedCrossRefGoogle Scholar
  19. 19.
    Itakura T, Yamamoto K, Tobyama M, Shimizu N (1977) Central dual innervation of arterioles and venules in the brain. Stroke 8: 360–365PubMedCrossRefGoogle Scholar
  20. 20.
    Jójârt I, Joó F, Siklós L, Lâszló FA (1984) Immunoelectronhistochemical evidence for innervation of brain microvessels by vasopressin-immunoreactive neurons in the rat. Neurosci Lett 51: 259–264PubMedCrossRefGoogle Scholar
  21. 21.
    Kawata M, Ueda S, Nakao K, Morri N, Kiso I, Imura H, Sano Y (1985) Immunohistochemical demonstration of alpha-atrial natriuretic polypeptide-containing neurons in the brain brain. Histochemistry 83: 1–3PubMedCrossRefGoogle Scholar
  22. 22.
    Kimelberg HK, Naunri S, Biddlecome S, Bourke RS (1978) Enzymatic and morphological properties of primary rat brain astrocyte cultures and enzyme development in vivo. Brain Res 153: 55–77PubMedCrossRefGoogle Scholar
  23. 23.
    Krisch B (1980) Non-granular vasopressin synthesis and transport in early stages of rehydration. Cell Tissue Res 207: 89–107PubMedCrossRefGoogle Scholar
  24. 24.
    Lindvall M, Edvinsson L, Owman C (1978) Sympathetic nervous control of cerebrospinal fluid production from the choroid plexus. Science 201: 176–178PubMedCrossRefGoogle Scholar
  25. 25.
    Lindvall M, Owman C (1978) Early development of noradrenaline containing sympathetic nerves in the choroid plexus system of the rabbit. Cell Tissue Res 192: 195–203PubMedCrossRefGoogle Scholar
  26. 26.
    Lindvall M, Edvinsson L, Owman C (1979) Effect of sympathomimetic drugs and corresponding receptor antagonists on the rate of cerebrospinal fluid production. Exp Neurol 64: 132–145PubMedCrossRefGoogle Scholar
  27. 27.
    Liszczak TM, Black PMcL, Foley L (1986) Arginine-vasopressin causes morphological changes suggestive of fluid transport in rat choroid plexus epithelium. Cell Tissue Res 246: 378–385CrossRefGoogle Scholar
  28. 28.
    Luerssen TG, Robertson GL (1980) Cerebrospinal fluid vasopressin and vasotocin in health and disease. In: Wood JH (ed) Neurobiology of cerebrospinal fluid I. Plenum Press, New York, pp 613–623Google Scholar
  29. 29.
    MacKenzie ET, McCulloch J, Harper MA (1976) Influence of endogeneous norepinephrine on cerebral blood flow and metabolism. Am J Physiol 231: 488–498Google Scholar
  30. 30.
    Morii N, Nako K, Sugawara A, Sakamoto M, Suda M, Shimokura M, Kiso Y, Kihara M, Yamori Y, Imura H (1985) Occurrence of atrial natriuretic polypeptide in brain. Biochem Biophys Res Corn 127: 413–419CrossRefGoogle Scholar
  31. 31.
    Morii N, Nakao K, Kihara M, Sakamoto M, Sugawara A, Shimokura M, Kiso Y, Yamori Y, Imura H (1986) Effects of water deprivation and sodium load on atrial natriuretic polypeptide in rat brain. Inter-American Society Proc Suppl I Hypertension 8: 161–165Google Scholar
  32. 32.
    Nakamura S, Milhorat TH (1976) Structure and function of the choroid plexus and other sites of CSF formation. Int Rev Cytol 47: 225–288CrossRefGoogle Scholar
  33. 33.
    Nathanson JA (1976) Beta-adrenergic sensitive adenylate cyclase in secretory cells of the choroid plexus. Science 204: 843–844CrossRefGoogle Scholar
  34. 34.
    Owman C, Edvinsson L (eds) 1977 ) Neurogenic control of brain circulation. Pergamon ress, Oxford, pp 39–152Google Scholar
  35. 35.
    Palluk R, Gaida W, Hoefke W (1985) Minireview: Atrial natriuretic Factor. Life Sci 36: 1415–1425PubMedCrossRefGoogle Scholar
  36. 36.
    Peachey LD, Rassmusen H (1961) Structure and function of toad urinary bladder as related to its physiology. J Biophys Biochem Cytol 10: 529–553PubMedCrossRefGoogle Scholar
  37. 37.
    Raichle ME, Grubb RL (1978) Regulation of brain water permeability by centrally released vasopressin. Brain Res 143: 191–194PubMedCrossRefGoogle Scholar
  38. 38.
    Raichle ME (1981) Hypothesis: A central neuroendocrine system regulates brain ion homeostasis and volume. In: Martin JB, Reichlin S, Bick KL (eds) Neurosecretion and brain peptides. Raven Press, New York, pp 329–336Google Scholar
  39. 39.
    Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA (1985) Evidence for a “paravascular” fluid ciruclation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from subarachnoid space. Brain Res 326: 47–63PubMedCrossRefGoogle Scholar
  40. 40.
    Rodriguez EM (1976) The cerebrospinal fluid as a pathway in neuroendocrine integration. J Endocrinol 71: 407–443PubMedCrossRefGoogle Scholar
  41. 41.
    Rosenberg AG, Kyner WT, Fenstermacher JD, Patlak CS (1986) Effect of vasopressin on ependymal and capillary permeability to tritiated water in cat. Am J Physiol 251: F485–F489PubMedGoogle Scholar
  42. 42.
    Rudman D, Hollins BM, Lewis NC, Scott JW (1977) Effects of hormones on cAMP in choroid plexus. Am J Physiol 323: E353-E 357Google Scholar
  43. 43.
    Schultz WJ, Brownfield MS, Kozlowski GP (1977) The hypothalamo-choroidal tract II. Ultrastructural response of the choroid plexus to vasopressin. Cell Tissue Res 178: 129–141PubMedCrossRefGoogle Scholar
  44. 44.
    Skofitch G, Jacobowitz DM, Eskjay RL, Zamir N (1985) Distribution of atrial natriuretic factor-like immunoreactive neurons in the rat brain. Neuroscience 16: 917–948CrossRefGoogle Scholar
  45. 45.
    Sofroniew MV, Glasman W (1981) Golgi like immunoperoxidase staining of hypothalamic magnocellular neurons that contain vasopressin, oxytocin or neurophysin in the rat. Neuroscience 6: 619–643PubMedCrossRefGoogle Scholar
  46. 46.
    Sorensen PS, Gjerris F, Hammer M (1982) Cerebrospinal fluid vasopressin in benign intracranial hypertension. Neurology 32: 1255–1259PubMedGoogle Scholar
  47. 47.
    Sorensen PS, Gjerris F, Hammer M (1984) Cerebrospinal fluid vasopressin and increased intracranial hypertension. Ann Neurol 15: 435–440PubMedCrossRefGoogle Scholar
  48. 48.
    Sorensen PS, Vilhardt H, Gjerris F, Warberg J (1984) Impermeability of the blood-cerebrospinal fluid barriers to 1-deamino8-D-arginine-vasopressin ( DDAVP) in patients with acquired communication hydrocephalus. Eur J Clin Invest 14: 435–439PubMedCrossRefGoogle Scholar
  49. 49.
    Steardo L, Nathanson JA (1987) Brain barrier tissues: end organs for atriopeptins. Science 235: 470–473PubMedCrossRefGoogle Scholar
  50. 50.
    Swanson LW, Connelly MA, Hartman BK (1977) Ultrastructural evidence for central monoaminergic innervation of blood vessels in the paraventricular nucleus of the hypothalamus. Brain Res 136: 166–173PubMedCrossRefGoogle Scholar
  51. 51.
    Wang BC, Share L, Goetz KI (1985) Factors influencing the secretion of vasopressin into the cerebrospinal fluid. Fed Proc 44: 72–77PubMedGoogle Scholar
  52. 52.
    Wood JH (1982) Neuroendocrinology of cerebrospinal fluid: Peptides, steroids, and other hormones. Neurosurgery 11: 293–305PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • T. Dóczi
    • 1
    • 2
  • F. Joó
    • 1
    • 2
  • M. Bodosi
    • 1
    • 2
  1. 1.Department of NeurosurgeryUniversity Medical School SzegedHungary
  2. 2.Laboratory for Molecular NeurobiologyBiological Research CenterSzegedHungary

Personalised recommendations