Skip to main content

Fluid Balance Disturbances in Neurosurgical Patients: Physiological Basis and Definitions

  • Conference paper
Book cover Neuroendocrinological Aspects of Neurosurgery

Part of the book series: Acta Neurochirurgica ((NEUROCHIRURGICA,volume 47))

  • 82 Accesses

Abstract

Normally, neural, hormonal, haemodynamic, and renal mechanisms all function in a highly integrated way to preserve sodium and water homeostasis. There are two major objectives. The first is to keep the concentration of sodium in the extracellular fluid (ECF) within very tight limits Together with its associated anions, sodium constitutes more than ninety per cent of the total solute in the ECF, and it controls the distribution of water between the cells and the extracellular space. Large deviations in ECF sodium concentration from normal cause the cells to shrink or swell. This can have disastrous effects, particularly on brain function. The body protects the sodium concentration constantly by finely adjusting the water content of the ECF. This is achieved through the secretion and action of antidiuretic hormone (ADH) to control water loss from the kidney. The thirst mechanism helps by controlling the fluid intake to some extent. The second objective is to keep the total sodium content of the ECF within narrow confines, and thereby to maintain a normal ECF volume. Given that sodium is the major cation of the ECF and that the body adjusts the water around it to maintain a normal sodium concentration, then the total number of sodium ions in the ECF will determine the ECF volume. Large deviations in the ECF sodium content from normal cause fluctuations in the circulating blood volume. Both volume contraction and expansion can have disastrous consequences on brain function, particularly in the presence of brain damage. Normally ECF sodium is regulated by many closely coordinated mechanisms which adjust the amount of sodium lost through the kidneys (Schrier and Anderson 1980). Minor alterations in renal tubular reabsorption can have a profound effect on sodium balance, since the filtered load of sodium is enormous in relation to the amount excreted (Leader, Lancet 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson J, Struthers A, Christofides N, Bloom S (1986) Atrial natriuretic peptide: an endogenous factor enhancing sodium excretion in man. Clinical Science 70: 327–331

    PubMed  CAS  Google Scholar 

  • Andreoli TE (1982) Posterior pituitary: antidiuretic hormone. In: Wyngaarden JB, Smith LH (eds) Cecil textbook of medicine, 16th Ed. WB Saunders, Philadelphia, pp 1192–1198

    Google Scholar 

  • Aziz LA, Forsling ML (1979) Anaesthesia and vasopressin release in the rat. J Endocrinol 81: 123

    Google Scholar 

  • Boggan JE, Tyrrell JB, Wilson CB (1983) Transsphenoidal micro-surgical management of Cushing’s Disease. Report of 100 cases. J Neurosurg 59: 195–200

    Article  PubMed  CAS  Google Scholar 

  • Bouzarth WF, Shenkin HA (1982) Is cerebral hyponatraemia iatrogenic? Lancet 1: 1061–1062

    Article  PubMed  CAS  Google Scholar 

  • Boykin J, de Torrenté A, Erickson A, Robertson G, Schrier RW (1978) Role of plasma vasopressin in impaired water excretion of glucocorticoid deficiency. J Clin Invest 62: 738–744

    CAS  Google Scholar 

  • Cobb WE (1980) Endocrine management after pituitary surgery. In: Post KD, Jackson IMD, Reichlin S (eds) The pituitary adenoma. Plenum Press, New York, pp 417–435

    Google Scholar 

  • Cochrane JPS, Forsling ML, Gow NM (1981) Arginine vasopressin release following surgical operations. Br J Surg 68: 209–213

    Article  PubMed  CAS  Google Scholar 

  • Cort JH, Yale MD (1954) Cerebral salt wasting. Lancet is 752–754

    Google Scholar 

  • Cusick JF, Hagen TC, Findling JW (1984) Inappropriate secretion of antidiuretic hormone after transsphenoidal surgery for pituitary tumors. N Eng J Med 311: 36–38

    Article  CAS  Google Scholar 

  • De Wardener HW (1982) The natriuretic hormone. Ann Clin Biochem 19: 137–140

    PubMed  Google Scholar 

  • Clarkson EM (1982) The natriuretic hormone: recent developments. Clin Sci 63: 415–420

    PubMed  Google Scholar 

  • Edwards CRW (1977) Vasopressin. In: Martin L, Besser GM (eds) Clinical neuroendocrinology. Academic Press, New York, pp 527–567

    Google Scholar 

  • Edwards CRW (1979) Vasopressin: In: Gray CH, James VHT (eds) Hormones in blood, 3rd Ed, Vol 2. Academic Press, London, pp 423–450

    Google Scholar 

  • Findlay ALR (1986) Sodium excretion. In: Lightman SL, Everitt BJ (eds) Neuroendocrinology. Blackwell Scientific Publications, Oxford, pp 229–251

    Google Scholar 

  • Fitzgerald PA, Aron DC, Findling JW, Brooks RM, Wilson CB, Forsham PH, Tyrrell JB (1982) Cushing’s Disease: transient secondary adrenal insufficiency after selective removal of pituitary microadenomas; evidence for a pituitary origin. J Clin Endocrinol Metab 54: 413–422

    Article  PubMed  CAS  Google Scholar 

  • Goldberg M, Handler JS (1960) Hyponatraemia and renal wasting of sodium in patients with malfunction of the central nervous system. N Eng J Med 263: 1037–1043

    Article  CAS  Google Scholar 

  • Haas M, Glick SM (1978) Radioimmunoassayable plasma vaso- pressin associated with surgery. Arch Surg 113: 597–600

    Article  PubMed  CAS  Google Scholar 

  • Jenkins JS, Mather HM, Ang V (1980) Vasopressin in human cerebrospinal fluid. J Clin Endocrinol Metab 50: 364–367

    Article  PubMed  CAS  Google Scholar 

  • Kleeman CR Koplowitz J, Maxwell MH, Cutler R, Dowling JT (1960) Mechanisms of impaired water excretion in adrenal and pituitary insufficiency. II Interrelationships of adrenal cortical steroids and antidiuretic hormone in normal subjects and in diabetes insipidus. J Clin Invest 39: 1472–1480

    Article  PubMed  CAS  Google Scholar 

  • Le Quesne LP, Lewis AAG (1953) Postoperative water and sodium retention. Lancet is 153–158

    Google Scholar 

  • Leader (1984) Atrial natriuretic peptides. Lancet 11: 328–329

    Google Scholar 

  • Leader (1986) Atrial natriuretic peptide. Lancet 11: 371–372

    Google Scholar 

  • Lester MC, Nelson PB (1981) Neurological aspects of vasopressin release and the syndrome of inappropriate secretion of antidiuretic hormone. Neurosurgery 8: 735–740

    Article  PubMed  CAS  Google Scholar 

  • Lightman SL, Everitt BJ (1986) Water excretion. In: Lightman SL, Everitt BJ (eds) Neuroendocrinology. Blackwell Scientific Publications, Oxford, pp 197–206

    Google Scholar 

  • Morton JJ, Padfield PL, Forsling ML (1975) A radioimmunoassay for plasma arginine vasopressin in man and dog: application to physiological and pathological states. J Endocrinol 65: 411–424

    Article  PubMed  CAS  Google Scholar 

  • Mulrow PJ (1976) Renal hormones. In: Brenner BM, Rector FC Jr (eds) The Kidney, Vol 1. WB Saunders, Philadelphia, pp 477–492

    Google Scholar 

  • Neil-Dwyer G, Cruikshank J, Stott A, Brice J (1974) The urinary catecholamine and plasma cortisol levels in patients with subarachnoid haemorrhage. J Neurol Sci 22: 375–382

    Article  PubMed  CAS  Google Scholar 

  • Nelson PB, Seif SM, Maroon JC, Robinson AG (1981) Hyponatraemia in intracranial disease: perhaps not the syndrome of inappropriate secretion of antidiuretic hormone ( SIADH ). J Neurosurg 55: 938–941

    Article  PubMed  CAS  Google Scholar 

  • Randall RV, Clark EC, Dodge HW, Grafton Love J (1960) Polyuria after operation for tumors in the region of the hypophysis and hypothalamus. J Clin Endocrinol 120: 1614–1621

    Article  Google Scholar 

  • Rap ZM, Chwalbinska-Moneta J (1978) Vasopressin concentration in blood during acute short-term intracranial hypertension in cats. Adv Neurol 20: 381–388

    PubMed  CAS  Google Scholar 

  • Schrier RW (1980) Disorders of water metabolism. In: Schrier RW (ed) Renal and electrolyte disorders, 2nd Ed. Little, Brown, and Company, USA, pp 1–64

    Google Scholar 

  • Anderson RJ (1980) Renal sodium excretion, edematous disorders, and diuretic use. In: Schrier RW (ed) Renal and electrolyte disorders, 2nd Ed. Little, Brown, and Company, USA pp 65–114

    Google Scholar 

  • Leaf A (1981) Effect of hormones on water, sodium, chloride, and potassium metabolism In: Williams RH (ed) Textbook of endocrinology, 6th Ed. WB Saunders, Philadelphia, pp 1032–1046

    Google Scholar 

  • Schwartz WB, Bennett W, Curelop S, Bartter FC (1957) A syndrome of renal sodium loss and hyponatremia probably resulting from inappropriate secretion of antidiuretic hormone. Am J Med 23: 529–542

    Article  PubMed  CAS  Google Scholar 

  • Singer DRJ (1987) Atrial natriuretic peptides: clues to their physiological and clinical importance. Postgrad Med J 63: 1–4

    Article  PubMed  CAS  Google Scholar 

  • Whitaker SJ, Meanock CI, Turner GF, Smythe PJ, Pickard JP, Noble AR, Walker V (1985) Fluid balance and secretion of antidiuretic hormone following transsphenoidal pituitary surgery. J Neurosurg 63: 404–412

    Article  PubMed  CAS  Google Scholar 

  • Zerbe RL, Baylis PH, Robertson GL (1981) Vasopressin function in clinical disorders of water balance. In: Beardwell C, Robertson GL (eds) Butterworth international medical reviews, clinical endocrinology 1. The pituitary. Butterworth and Co ( Publishers) Ltd, London, pp 297–329

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Walker, V. (1990). Fluid Balance Disturbances in Neurosurgical Patients: Physiological Basis and Definitions. In: Pickard, J.D., Cohadon, F., Antunes, J.L. (eds) Neuroendocrinological Aspects of Neurosurgery. Acta Neurochirurgica, vol 47. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9062-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9062-3_12

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9064-7

  • Online ISBN: 978-3-7091-9062-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics