Advertisement

Vasopressin and Oxytocin Localization and Putative Functions in the Brain

  • R. M. Buijs
Part of the Acta Neurochirurgica book series (NEUROCHIRURGICA, volume 47)

Abstract

In this chapter a description will be given of the widespread occurrence of vasopressin (VP) and oxytocin (OT) neurons in the rodent brain. In addition, an attempt will be made to describe, on the basis of its origin, possible functions of VP and OT in the various parts of the central nervous system (CNS).

Keywords

Suprachiasmatic Nucleus Lateral Septum Stria Terminalis Lordosis Behavior Vasopressin Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baskin DG, Petracca FM, Dorsa DM (1983) Autoradiographic localization of specific binding sites for [3H]-arginine8-vasopressin in the septum of the rat brain with tritium-sensitive film. Eur J Pharmacol 90: 155–157PubMedCrossRefGoogle Scholar
  2. Beatty W (1984) Hormonal organization of sex differences in play fighting and spatial behavior. Progr Brain Res 61: 386–397Google Scholar
  3. Biegon A, Terlou M, Voorhuis ThD, De Kloet ER (1984) Argininevasopressin binding sites in the rat brain: A quantitative autoradiographic study. Neurosci Lett 44: 229–234PubMedCrossRefGoogle Scholar
  4. Buijs RM (1978) Intra-and extrahypothalamic vasopressin and oxytocin pathways in the rat. Pathways to the limbic system, medulla oblongata and spinal cord. Cell Tiss Res 192: 423–435CrossRefGoogle Scholar
  5. Buijs RM (1983) Vasopressin and oxytocin—their role in neurotransmission. Pharmacol Ther 22: 127–141PubMedCrossRefGoogle Scholar
  6. Swaab DF (1979) Immunoelectronmicroscopical demonstration of vasopressin and oxytocin in the limbic system of the rat. Cell Tiss Res 204: 355–365Google Scholar
  7. Van Heerikhuize JJ (1982) Vasopressin and oxytocin release in the brain: A synaptic event. Brain Res 252: 71–76PubMedCrossRefGoogle Scholar
  8. Burbach JPH, Wang X-C, Ten Haaf JA, De Wied D (1984) Substances resembling C-terminal vasopressin fragments are present in the brain but not in the pituitary. Brain Res 306: 384–387PubMedCrossRefGoogle Scholar
  9. Gaffé AR, VAn Leeuwen_FW (1983) Vasopressin-immunoreactivecells in the dorsomedial hypothalamic region, medial amygdaloid nucleus and locus coeruleus of the rat. Cell Tiss Res 233: 23–33Google Scholar
  10. Cooper KE, Kasting NW, Lederis K, Veale WL (1979) Evidence supporting a role for endogenous vasopressin in natural suppression of fever in the sleep. J Physiol (Lond) 295: 33–45Google Scholar
  11. Day TA, Renaud LP (1984) Electrophysiological evidence that noradrenergic afferents selectively facilitate the activity of supraoptic vasopressin neurons. Brain Res 303: 233–240PubMedCrossRefGoogle Scholar
  12. De Vries GJ, Buijs RM, Swaab DF (1981) Ontogeny of the vasopressinergic neurons of the suprachiasmatic nucleus and their extrahypothalamic projections in the rat brain—presence of a sex difference in the lateral septum. Brain Res 218: 67–78PubMedCrossRefGoogle Scholar
  13. Sluiter AA (1984) Gonadal hormone actions on the morphology of the vasopressinergic innervation of the adult rat brain. Brain Res 298: 141–145PubMedCrossRefGoogle Scholar
  14. Van Leeuwen FW, Caffé AR, Swaab DF (1985) The vasopressinergic innervation of the brain in normal and castrated rats. J Comp Neurol 233: 236–254PubMedCrossRefGoogle Scholar
  15. Goy RW, McEwen BS (1980) Sexual differentiation of the brain. MIT Press, Boston Hermes MLHJ, Unpublished observationGoogle Scholar
  16. Holstege G, Meiners L, Tan K (1985) Projections of the bed nucleus of the stria terminalis to the mesencephalon, pons, and medulla oblongata in the cat. Exp Brain Res 58: 379–391PubMedCrossRefGoogle Scholar
  17. Joëls M, Urban JJA (1982) The effect of microiontophoretically applied vasopressin and oxytocin on single neurones in the septum. Neurosci Lett 33: 79–84PubMedCrossRefGoogle Scholar
  18. Moore RY (1979) The anatomy of central neural mechanisms regulating endocrine rhythms. In: Krieger DT (ed) Endocrine rhythms. Raven Press, New York, pp 63–78Google Scholar
  19. Mühlethaler M, Dreifuss JJ, Gahwiler BH (1982) Vasopressin causes excitation of hippocampal neurons. Nature 296: 749–751PubMedCrossRefGoogle Scholar
  20. Peterson GM, Watkins WB, Moore RY (1980) The suprachiasmatic hypothalamic nuclei of the rat. VI. Vasopressin neurons and circadian rhythmicity. Behav Neur Biol 29: 236–245CrossRefGoogle Scholar
  21. Pittman QJ, Riphagen CL, Lederis K (1984) Release of immunoassayable neurohypophyseal peptides from rat spinal cord, in vivo. Brain Res 300: 321–326PubMedCrossRefGoogle Scholar
  22. Reppert SM, Coleman RJ, Heath HW, Keutmann HT (1982) Circadian properties of vasopressin and melatonin rhythms in cat cerebrospinal fluid. Am J Physiol 243: 489–498Google Scholar
  23. Sawchenko PE, Swanson LW (1981) Central noradrenergic pathways for the integration of hypothalamic neuroendocrine and autonomic responses. Science 214: 685–687PubMedCrossRefGoogle Scholar
  24. Schwartz WJ, Coleman RJ, Reppert SM (1983) A daily vasopressin rhythm in rat cerebrospinal fluid. Brain Res 263: 105–112PubMedCrossRefGoogle Scholar
  25. Sladek JR Jr, Zimmerman EA (1982) Simultaneous monoamine histofluorescence and neuropeptide immunocytochemistry VI. Catecholamine innervation of vasopressin and oxytocin neurons in the rhesus monkey hypothalamus. Brain Res Bull 9: 431–440PubMedCrossRefGoogle Scholar
  26. Södersten P, Henning M, Melin P, Lundin S (1983) Vasopressin alters female sexual behaviour by acting on the brain independently of alterations in blood pressure. Nature 301: 608–610PubMedCrossRefGoogle Scholar
  27. De Vries GJ, Buijs RM, Melin P (1985) A daily rhythm in behavioral vasopressin sensitivity and brain vasopressin concentrations. Neurosci Lett 58: 37–41PubMedCrossRefGoogle Scholar
  28. Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 69: 1583–1587PubMedCrossRefGoogle Scholar
  29. Swaab DF, Pool CW, Nijveldt F (1975) Immunofluorescence of vasopressin and oxytocin in the rat hypothalamo-neurohypophyseal system. J Neural Transm 36: 195–215PubMedCrossRefGoogle Scholar
  30. Swanson LW, McKellar S (1979) The distribution of oxytocin-and neurophysin-stained fibers in the spinal cord of the rat and monkey. J Comp Neurol 188: 87–106PubMedCrossRefGoogle Scholar
  31. Vandesande F, De Mey J, Dierickx K (1974) Identification of neurophysin producing cells. I. The origin of the neurophysin-like substance-containing nerve fibres of the external region of the median eminence of the rat. Cell Tiss Res 151: 187–200CrossRefGoogle Scholar
  32. Van Leeuwen FW, Caffé AR (1983) Immunoreactive vasopressin cell bodies in the rat bed nucleus of the stria terminalis. Cell Tiss Res 228: 525–534CrossRefGoogle Scholar
  33. Wolters P (1983) Light microscopic autoradiographic localization of [3H]arginine vasopressin binding sites in the rat brain and kidney. Neurosci Lett 41: 61–66PubMedCrossRefGoogle Scholar
  34. Voorn P, Buijs RM (1983) An immuno-electronmicroscopical study comparing vasopressin, oxytocin, substance P and enkephalin containing nerve terminals in the nucleus of the solitary tract of the rat. Brain Res 270: 169–173PubMedCrossRefGoogle Scholar
  35. Zerihun L, Harris M (1981) Electrophysiological identification of neurones of paraventricular nucleus sending axons to both the neurohypophysis and the medulla in the rat. Neurosci Lett 23: 157–160PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • R. M. Buijs
    • 1
  1. 1.Netherlands Institute for Brain ResearchAmsterdam ZOThe Netherlands

Personalised recommendations