Skip to main content

Partial damage to nigrostriatal bundle: compensatory changes and the action of L-DOPA

  • Chapter
Neurotransmitter Actions and Interactions

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 29))

Summary

Parkinson’s disease is associated with degeneration of the nigrostriatal bundle. However, the neurological symptoms that accompany this disease do not emerge until the degenerative process is almost complete. Early studies with animals models suggested that the extensive preclinical phase of Parkinsonism was due in part to the development of a compensatory hyper-activity within remaining dopamine-containing neurons. Other studies suggested that systemic administration of L-DOPA could reduce the neurological symptoms once they emerged by further increasing the availability of dopamine in striatum. Subsequent work has supported both hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abercrombie ED, Zigmond MJ (1989) Partial injury to central noradrenergic neurons: reduction of tissue norepinephrine content is greater than reduction of extracellular norepinephrine measured by microdialysis. J Neurosci 9: 4062–4067.

    PubMed  CAS  Google Scholar 

  • Acheson AL, Zigmond MJ (1981) Short and long term changes in tyrosine hydroxylase activity in rat brain after subtotal destruction of central noradrenergic neurons. J. Neurosci 1: 493–504.

    PubMed  CAS  Google Scholar 

  • Agid Y, Javoy F, Glowinski J (1973) Hyperactivity of remaining dopaminergic neurons after partial destruction of the nigro-striatal dopaminergic system in the rat. Nature NewBiol 245: 150–151.

    Article  CAS  Google Scholar 

  • Barbeau A, Murphy GF, Sourkes TL (1962) Les catecholamines dans la maladie de Parkinson. In: de Ajuriaguerra J (ed) Monoamines et système nerveux central Georg & Cie, Geneve, pp 247-262.

    Google Scholar 

  • Bartholini G, Blum JE, Pletscher A (1969) DOPA-induced locomotor stimulation after inhibition of extracerebral decarboxylase. J Pharm Pharmacol 21: 297–301.

    Article  PubMed  CAS  Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington: clinical, morphological and neurochemical correlations. J Neurol Sci 20: 415–55.

    Article  PubMed  CAS  Google Scholar 

  • Bertler A, Falck B, Owman C, Rosengren E (1966) The localization of nonaminergic blood-brain barrier mechanisms. Pharmacol Rev 18: 369–385.

    PubMed  CAS  Google Scholar 

  • Birkmayer W, Horny kiewicz O (1962) Der 1-dioxyphenylalanin (= L-dopa)-Effekt beim Parkinson-Syndrom des Menschen: Zur Pathogenese und Behandlung der Parkinsonakinese. Arch Psychiatry 203: 560–574.

    Article  CAS  Google Scholar 

  • Bonatz AE, Morris HJ, Zigmond MJ, Abercrombie ED (1989) L-DOPA produces higher levels of extracellular dopamine in dopamine depleted striata. Soc Neurosci Abstr 15: 124.

    Google Scholar 

  • Burns R, Chiueh C, Markey S, Ebert M, Jacobowitz D, Kopin IJ (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-l,2,3,6-tetrahydropyridine. Proc Natl.Acad Sci USA 80: 4546–4550.

    Article  PubMed  CAS  Google Scholar 

  • Burns RS, Chiueh CC, Parisi J, Markey S, Kopin IJ (1986) Biochemical and pathological effects of MPTP: the rhesus monkey. In: Fahn S, Marsden CD, Jenner P, Teychenne P (eds) Recent developments in Parkinson’s disease. Raven Press, New York, pp 127–136.

    Google Scholar 

  • Carlsson A, Lindqvist M, Magnusson T (1957) 3,4-Dihydroxyphenylalanin and 5-hydroxytryptophan as reserpine antagonists. Nature 180: 1200.

    Article  PubMed  CAS  Google Scholar 

  • Chiodo LA, Acheson AL, Zigmond MJ, Strieker EM (1983) Subtotal destruction of central noradrenergic projections increases the firing rate of locus coeruleus cells. Brain Res. 264: 123–126.

    Article  PubMed  CAS  Google Scholar 

  • Chiueh CC, Burns RS, Markey SP, Jacobowitz DM, Kopin IJ (1985) Primate model of parkinsonism: selective lesion of nigrostriatal neurons by l-methyl-4-phenyl-l,2,3,6tetrahydropyridine produces an extrapyramidal syndrome in rhesus monkeys. Life Sei. 36: 213–218.

    Article  CAS  Google Scholar 

  • Cotzias GC, Van Woert MH, Schiffer LM (1967) Aromatic amino acids and modification of parkinsonism. N Engl J Med 276: 374–379.

    Article  PubMed  CAS  Google Scholar 

  • Creese I, Snyder SH (1979) Nigrostriatal lesions enhance striatal 3H-spiroperiodol binding. Eur J Pharmacol 56: 277–281.

    Article  PubMed  CAS  Google Scholar 

  • Cubeddu LX, Hoffmann IS, James MK (1983) Frequency-dependent effects of neuronal uptake inhibitors on the autoreceptor-mediated modulation of dopamine and acetylcholine release from the rabbit striatum. J Pharmacol Exp Ther 226: 88.

    PubMed  CAS  Google Scholar 

  • Doucet G, Descarries L, Garcia S (1986) Quantification of the dopamine innervation in adult rat neostriatum. Neuroscience 19: 427–445.

    Article  PubMed  CAS  Google Scholar 

  • Duvoisin RC, Heikkila RE, Nicklas WJ, Hess A (1986) Dopamine neurotoxicity of MPTP in the mouse: a murine model of parkinsonism. In: Fahn S, Marsden CD, Jenner P, Teychenne P (eds) Recent developments in Parkinson’s disease. Raven Press, New York, pp 147–154.

    Google Scholar 

  • Duvoisin RC, Mytilineou C (1972) Where is L-DOPA decarboxylated in the striatum after 6-hydroxydopamine nigrotomy? Brain Res 152: 369–373.

    Article  Google Scholar 

  • Edwards AV (1982) Adrenal catecholamine output in response to stimulation of the splanchnic nerve in bursts in the conscious calf. J Physiol 327: 409–419.

    PubMed  CAS  Google Scholar 

  • Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin (3-hy-droxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Wien Klin Wschr 38: 1236–1239.

    Article  CAS  Google Scholar 

  • Gonon FG (1988) Nonlinear relationship between impulse flow and dopamine released by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry. Neuroscience 24: 19–28.

    Article  PubMed  CAS  Google Scholar 

  • Heffner TG, Zigmond MJ, Strieker EM (1977) Effects of dopaminergic agonists and antagonists on feeding in intact and 6-hydroxydopamine-treated rats. J Pharmacol Exp Ther 201: 386–399.

    PubMed  CAS  Google Scholar 

  • Hefti F, Melamed E (1981) Dopamine release in rat striatum after administration of L-DOPA as studied with in vivo electrochemistry. Brain Res 225: 333–346.

    Article  PubMed  CAS  Google Scholar 

  • Hefti F, Melamed E, Sahakian BJ, Wurtman RJ (1980a) Circling behavior in rats with partial, unilateral nigro-striatal lesions: effect of amphetamine, apomorphine, and DOPA. Pharm Biochem Behav 12: 185–188.

    Article  CAS  Google Scholar 

  • Hefti F, Melamed E, Wurtman RJ (1980 b) Partial lesions of the dopaminergic nigrostriatal system in rat brain: biochemical characterization. Brain Res 195: 123–137.

    Article  PubMed  CAS  Google Scholar 

  • Hefti F, Melamed E, Wurtman RJ (1981) The site of dopamine formation in rat striatum after L-DOPA administration. J Pharmacol Exp Ther 217: 189–197.

    PubMed  CAS  Google Scholar 

  • Hollerman JR, Berger TW, Grace AA (1986) Compensatory changes in the activity of nigral dopamine cells in respone to partial dopamine-depleting lesions. Soc Neurosci Abstr 12: 872.

    Google Scholar 

  • Hornykiewicz O, Kish SJ (1987) Biochemical pathophysiology of Parkinson’s disease. In: Yahr M, Bergman K (eds) Advances in neurology, vol 45. Raven Press, New York, pp 19–34.

    Google Scholar 

  • Javoy-Agid F, Ruberg M, Hirsch E, Cash R, Raisman R, Taquet H, Epelbaum J, Scatton B, Duyckaerts C, Agid Y (1986) Recent progress in the neurochemistry of Parkinson’s disease. In: Fahn S, Marsden CD, Jenner P, Teychenne P (eds) Recent developments in Parkinson’s disease. Raven Press, New York, pp 67–83.

    Google Scholar 

  • Keller RW Jr, Kuhr WG, Wightman RM, Zigmond MJ (1988) The effect of L-DOPA on in vivo dopamine release from nigrostriatal bundle neurons. Brain Res 447: 191–194.

    Article  PubMed  CAS  Google Scholar 

  • Kelly RS, Wightman RM (1987) Detection of dopamine overflow and diffusion with voltammetry in slices of rat brain. Brain Res 423: 79–87.

    Article  PubMed  CAS  Google Scholar 

  • Langlier P, Parent A, Poirier LJ (1972) Decarboxylase activity of the brain capillary wall and parenchyma in the rat, cat, and monkey. Brain Res 45: 622–629.

    Article  Google Scholar 

  • Langston JW (1985) MPTP neurotoxicity: an overview and characterization of phases of toxicity. Life Sci 36: 201–206.

    Article  PubMed  CAS  Google Scholar 

  • Langston JW, Forno LS, Rebert CS, Irwin I (1984) l-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine causes selective damage to the zona compacta of the substantia nigra in the squirrel monkey. Brain Res 292: 390–394.

    Article  PubMed  CAS  Google Scholar 

  • Ljungberg T, Ungerstedt U (1976) Reinstatement of eating by dopamine agonists in aphagic dopamine denervated rats. Physiol Behav 16: 277–283.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd KG, Davidson L, Hornykiewicz O (1975) The neurochemistry of Parkinson’s disease:effect of L-DOPA therapy. J Pharmacol Exp Ther 195: 453–464.

    PubMed  CAS  Google Scholar 

  • Lundberg JM, Rudehill A, Sollevi A, Fried G, Wallin G (1990) Co-release of neuropeptide Y and noradrenaline from pig spleen in vivo: importance of subcellular storage, nerve impulse frequency and pattern, feedback regulation and resupply by axonal transport. Neuroscience 28: 475–486.

    Article  Google Scholar 

  • Lytle LD, Hurko O, Romero JA, Cottman K, Leehey D, Wurtman RJ (1972) The effects of 6-hydroxydopamine pretreatment on the accumulation of DOPA and dopamine in brain and peripheral organs following L-DOPA administration. J Neural Transm 33: 63–72.

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie RG, Stachowiak M, Zigmond MJ (1989) Dopaminergic inhibition of striatal acetylcholine release after 6-hydroxydopamine. Eur J Pharmacol 168: 43–52.

    Article  PubMed  CAS  Google Scholar 

  • Melamed E, Hefti F, Wurtman RJ (1980) Nonaminergic striatal neurons convert exogenous L-DOPA to dopamine in parkinsonism. Ann Neurol 8: 558–563.

    Article  PubMed  CAS  Google Scholar 

  • Ng KY, Chase TN, Colburn RW, Kopin IJ (1970) L-DOPA-induced release of cerebral monoamines. Science 170: 76–77.

    Article  PubMed  CAS  Google Scholar 

  • Ng KY, Chase TN, Colburn RW, Kopin IJ (1972) L-DOPA in Parkinsonism: a possible mechanism of action. Neurology 22: 688–696.

    PubMed  CAS  Google Scholar 

  • Orr WB, Gardiner TW, Strieker EM, Zigmond MJ, Berger TW (1986) Short-term effects of dopamine-depleting brain lesions on spontaneous activity of striatal neurons: relation to local striatal dopamine levels and behavior. Brain Res 376: 20–28.

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Whishaw IQ (1988) Normalization of extracellular dopamine in striatum following recovery from a partial 6-OHDA lesion of the substantia nigra: a micro-dialysis study in freely moving rats. Brain Res 450: 209–244.

    Article  PubMed  CAS  Google Scholar 

  • Schoenfeld RI, Uretsky NJ (1973) Enhancement by 6-hydroxydopamine of the effects of dopa upon the motor activity of rats. J Pharmacol Exp Ther 186: 616–624.

    PubMed  CAS  Google Scholar 

  • Schoenfeld RI, Zigmond MJ (1973) Behavioural pharmacology of 6-hydroxydopamine. In: Usdin E, Snyder SH (eds) Frontiers in catecholamine research. Pergamon Press, New York, pp 695–700.

    Google Scholar 

  • Schultz W, Ungerstedt U (1978) Short-term increase and long-term reversion of striatal cell activity after degeneration of the nigrostriatal dopamine system. Exp Brain Res 33: 159–171.

    Article  PubMed  CAS  Google Scholar 

  • Sharman DF, Poirier LJ, Murphy GF, Sourkes TL (1967) Homovanillic acid and dihydroxyphenylacetic acid in the striatum of monkeys with brain lesions. Can J Physiol Pharmacol 45: 57–62.

    Article  PubMed  CAS  Google Scholar 

  • Snyder AM, Strieker EM, Zigmond MJ (1985) Stress-induced neurological impairments in an animal model of parkinsonism. Ann Neurol 18: 544–551.

    Article  PubMed  CAS  Google Scholar 

  • Snyder GL, Zigmond MJ (1990) The effects of L-DOPA on in vitro dopamine release from striatum. Brain Res 508: 181–187.

    Article  PubMed  CAS  Google Scholar 

  • Snyder GL, Stachowiak MK, Keller RW Jr, Strieker EM, Zigmond MJ (1986) Release of endogenous DA and DOPAC from striatal slices after DA-depleting lesions: effects of stimulation frequency and DA synthesis inhibition. Soc Neurosci Abstr 12: 136.

    Google Scholar 

  • Sourkes TL (1961) Formation of dopamine in vivo: relation to the function of the basal ganglia. Rev Can Biol 20: 187–196.

    CAS  Google Scholar 

  • Sourkes TL, Poirier LJ (1966) Neurochemical bases of tremor and other disorders of movement. Can Med Assoc J 94: 53–60.

    PubMed  CAS  Google Scholar 

  • Stachowiak MK, Keller RW Jr, Strieker EM, Zigmond MJ (1987) Increased dopamine efflux from striatal slices during development and after nigrostriatal bundle damage. J Neurosci 7: 1648–1654.

    PubMed  CAS  Google Scholar 

  • Stadler H, Lloyd K, Gadea-Ciria M, Bartholini G (1973) Enhanced striatal acetylcholine release by chlorpromazine and its reversal by apomorphine. Brain Res 55: 476–480.

    Article  PubMed  CAS  Google Scholar 

  • Strieker EM, Zigmond MJ (1974) Effects on homeostasis of intraventricular injection of 6-hydroxydopamine in rats. J Comp Physiol Psychol 86: 973–994.

    Article  Google Scholar 

  • Strieker EM, Zigmond MJ (1976) Recovery of function after damage to central catechol-amine-containing neurons: a neurochemical model for the lateral hypothalamic syndrome. In: Sprague J, Epstein AN (eds) Progress in psychobiology and physiological psychology, vol 6. Academic Press, New York, pp 121–188.

    Google Scholar 

  • Tyce GM, Rorie DK (1985) Effects of L-DOPA and L-tyrosine on release of free and conjugated dopamine, homovanillic acid and dihydroxyphenylacetic acid from slices of rat striatum. Life Sci 37: 2439–2448.

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U (1971) Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand [Suppl 367]: 95-122.

    Google Scholar 

  • Vizi ES, Harsing LG, Knoll J (1977) Presynaptic inhibition leading to disinhibition of acetylcholine release from interneurons of the caudate nucleus: effects of dopamine, beta-endorphin and D-Ala2-Pro-5-enkephalinamide. Neuroscience 2: 953–961.

    Article  CAS  Google Scholar 

  • Zhang WQ, Tilson HA, Nanry KP, Hudson PM, Hong JS, Stachowiak MK (1988) Increased dopamine release from striata of rats after unilateral nigrostriatal bundle damage. Brain Res 461: 335–342.

    Article  PubMed  CAS  Google Scholar 

  • Zigmond MJ, Acheson AL, Stachowiak MK, Strieker EM (1984) Neurochemical compensation after nigrostriatal bundle injury in an animal model of preclinical Parkinsonism. Arch Neurol 41: 856–861.

    Article  PubMed  CAS  Google Scholar 

  • Zigmond MJ, Strieker EM (1973) Recovery of feeding and drinking by rats after intraventricular 6-hydroxydopamine or lateral hypothalamic lesions. Science 182: 717–720.

    Article  PubMed  CAS  Google Scholar 

  • Zigmond MJ, Strieker EM (1980) Supersensitivity after intraventricular 6-hydroxydopamine: relation to lesion dopamine depletion. Experientia 36: 436–438.

    Article  PubMed  CAS  Google Scholar 

  • Zigmond MJ, Strieker EM (1989) Animal models of Parkinsonism using selective neuro-toxins: clinical and basic implications. In: Smythies JR, Bradley RJ (eds) International review of neurobiology, vol 31. Academic Press, New York, pp 1–79.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this chapter

Cite this chapter

Zigmond, M.J., Abercrombie, E.D., Stricker, E.M. (1990). Partial damage to nigrostriatal bundle: compensatory changes and the action of L-DOPA. In: Youdim, M.B.H., Tipton, K.F. (eds) Neurotransmitter Actions and Interactions. Journal of Neural Transmission, vol 29. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9050-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9050-0_21

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82142-8

  • Online ISBN: 978-3-7091-9050-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics