Retinal neurotransmitter interaction as reflected in horizontal cell spatial behaviour

  • B. D. Drujan
  • R. Salas
  • M. Laufer
  • M. Urbina
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 29)


The effects of 5-hydroxytryptamine (5-HT) and its precursors 5-hydroxytryptophan (5-HTP) and L-tryptophan (L-Tryp) on the spatial properties of horizontal cells were studied in the isolated and perfused retina of the teleost Eugerres plumieri. All three compounds produce a contraction of the receptive field, evaluated by the ratio of responses evoked by local and distant light stimuli. This is the result of cell uncoupling, revealed by the hindrance to diffusion of intracellularly injected Lucifer yellow. Similar effects are produced by dopamine (DA) and the effectiveness is DA > > 5-HT > 5-HTP > L-Tryp. All these effects are blocked by Haloperidol. HPLC studies of endogenous DA release reveal that it occurs when isolated retinas are incubated with 50 mM potassium, 10μM 5-HT or 5-HTP, but is not found with up to 1 mM L-Tryp. The results indicate that indolaminergic cells induce the release of DA from interplexiform cells, which in turn uncouples horizontal cells in the fish retina.


Receptive Field Amacrine Cell Horizontal Cell Lucifer Yellow High Performance Liquid Chromato 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Di Bussolo JM, Gant JR, Kerber YD (1983) Instrumental considerations in catecholamine analysis using liquid chromatography with electro chemical detection. Chrom Newslett 11: 27–29.Google Scholar
  2. Dowling JE, Ehinger B (1978) The interplexiform cell system I. Synapses of the dopaminergic neurons of the goldfish retina. Proc R Soc Lond B 201: 7–26.PubMedCrossRefGoogle Scholar
  3. Drujan BD (1982) Biochemical correlates of the S-potential. In: Drujan BD, Laufer M (eds) The S-potential. Alan R Liss, New York, pp 281–305.Google Scholar
  4. Drujan BD, Jaffé EH, Urbina M, Ayala C, Drujan Y (1989) Interaction of DA and other biogenic amines in the retina. In: Redbrun D, Pasantes H (eds) Extracellular and intracellular messengers in the vertebrate retina. Alan R Liss, New York, pp 257–267.Google Scholar
  5. Dubocovick ML (1983) Melatonin is a potent modulator of dopamine release in the retina. Nature 306: 782–784.CrossRefGoogle Scholar
  6. Ehinger B (1976) Biogenic monoamines as transmitters in retina. In: Bonting SL (ed) Transmitters in the visual process. Pergamon Press, Oxford, pp 145–153.Google Scholar
  7. Jaffé EH, Urbina M, Ayala C, Drujan Y, Drujan BD (1987) Dopamine and noradrenaline content in fish retina: modulation by serotonin. J Neurosci Res 18: 345–351.PubMedCrossRefGoogle Scholar
  8. Kaneko A (1971) Electrical connections between horizontal cells in the dogfish retina. J Physiol (Lond) 213: 95–105.Google Scholar
  9. Kato S, Negishi K, Teranishi T, Sugawara K (1983) 5-Hydroxytryptamine: its facilitative action on [3H] dopamine release from the retina. Vision Res 23: 445–449.PubMedCrossRefGoogle Scholar
  10. Kato S, Teranishi T, Kuo CH, Negishi K (1982) 5-Hydroxytryptamine stimulates 3H dopamine release from the fish retina. J Neurochem 39: 493–498.PubMedCrossRefGoogle Scholar
  11. Laufer M (1982) Electrophysiological studies of drug actions on horizontal cells. In: Drujan BD, Laufer M (eds) The S-potential. Alan R Liss, New York, pp 257–279.Google Scholar
  12. Laufer M, Negishi K, Drujan BD (1981) Pharmacological manipulation of spatial properties of S-potentials. Visión Res 21: 1657–1660.PubMedCrossRefGoogle Scholar
  13. Laufer M, Salas R, Medina R, Drujan BD (1988) Cyclic AMP as a second messenger in horizontal cell uncoupling in teleost retina. J Neurosci Res (in press).Google Scholar
  14. Negishi K, Drujan BD (1978) Effects of catecholamines on the horizontal cell membrane potential in the fish retina. Sen Processes 2: 388–395.Google Scholar
  15. Negishi K, Drujan BD (1979) Similarities in effects of acetylcholine and dopamine on horizontal cells in the fish retina. J Neurosci 4: 335–339.CrossRefGoogle Scholar
  16. Negishi K, Hayashi T, Nakamura H, Drujan BD (1979) Histochemical studies on catech-olaminergic cell in the carp rétine. Neurochem Res 4: 473–482.PubMedCrossRefGoogle Scholar
  17. Negishi K, Kato S, Teranishi T (1981 a) Indoleamine-accumulating cells and dopaminergic cells are distributed similarly in carp retina. Neurosci Lett 25: 1–5.PubMedCrossRefGoogle Scholar
  18. Negishi K, Teranishi T, Kato S (1981 b) Similarity in spatial distribution between dopaminergic cells and indoleamine-accumulating cells of carp retina. Acta Histochem Cytochem 14: 449–460.CrossRefGoogle Scholar
  19. Negishi K, Salas R, Parthe V, Drujan BD (1988) Identification of horizontal cells generating different spectral responses in the retina of a teleost fish (Eugenes plumieri). J Neurosci Res 20: 246–256.PubMedCrossRefGoogle Scholar
  20. Nowak JZ, Zurawska E, Zawilska J (1988) Light-mediated regulation of serotonin synthesis and serotonin N-acetyltransferase (NAT) activity in the rabbit retina. Neurosci Res Comm 3 (1): 47–54.Google Scholar
  21. O’Connor P, Dovison SJ, Watling KJ, Dowling JE (1986) Factors affecting release of 3H dopamine from perfused carp retina. J Neurosci 6: 1857–1865.PubMedGoogle Scholar
  22. Parkinson D, Rando RR (1981) Evidence for a neurotransmitter role for 5-hydroxytrypt-amine in chick retina. J Neurosci 1 (11): 1211–1217.PubMedGoogle Scholar
  23. Piccolino M, Neyton J, Gerschenfeld HM (1984) Decrease of gap junction permeability induced by dopamine and cyclic adenosine 3′: 5′-monophosphate in horizontal cells of turtle retina. J Neurosci 4: 2477–2488.PubMedGoogle Scholar
  24. Stewart WW (1976) Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell 14: 741–759.CrossRefGoogle Scholar
  25. Teranishi T, Negishi K, Kato S (1983) Dopamine modulates S-potencial amplitude and dye-coupling between external horizontal cells in carp retina. Nature 301: 243–246.PubMedCrossRefGoogle Scholar
  26. Teranishi T, Negishi K, Kato S (1984) Regulatory effect of dopamine on spatial properties of horizontal cells in carp retina. J Neurosci 4 (5) 1271–1280.PubMedGoogle Scholar
  27. Witkovsky P, Owen WG, Woodworth M (1983) Gap-junction among the perikarya, den-drites and axon terminals of the luminosity-type horizontal cell of the turtle retina. J Comp Neurol 216: 359–368.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • B. D. Drujan
    • 1
    • 2
  • R. Salas
    • 1
  • M. Laufer
    • 1
  • M. Urbina
    • 1
  1. 1.Laboratories of Neurophysiology and Neurochemistry, Biophysics and Biochemistry CenterInstituto Venezolano de Investigaciones Científicas (IVIC)CaracasVenezuela
  2. 2.Laboratories of Neurophysiology and Neurochemistry, Biophysics and Biochemistry CenterInstituto Venezolano de Investigaciones Cientificas (IVIC)CaracasVenezuela

Personalised recommendations