Skip to main content

Biological model for the in vivo measurement of rate of serotonin synthesis in the brain

  • Chapter
  • 85 Accesses

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 29))

Summary

A biological model for the measurement of the rate of serotonin synthesis in rat brain with α-[14C]methyl-L-tryptophan is described. The rate of serotonin synthesis in several grossly dissected brain structures is reported. The half-life of the precursor pool, estimated from kinetic data, is between 20 and 25 min. The method allows, for the first time, measurement of the brain serotonin synthesis rate without any pharmacological manipulation and does not require separation of metabolites. Autoradiographic data are also presented to demonstrate anatomical resolution of this method. The synthesis rate can be estimated in a large number of discrete structures when autoradiography is applied. Long retention of the tracer in brain is also demonstrated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chaly T, Diksic M (1988) Synthesis of “no-carrier-added” alpha-[11C]methyl-L-trypto-phan. J Nucl Med 29: 370–374.

    PubMed  CAS  Google Scholar 

  • Chaouloff F, Laude E, Mignot E, Kanoun P, Elghozi JL (1985) Tryptophan and serotonin turnover rate in the brain of genetically hyperammonemic mice. Neurochem Int 7: 143–153.

    Article  PubMed  CAS  Google Scholar 

  • Curzon G, Joseph MH, Knott PJ (1972) Effects of immobilization and food deprivation on rat brain tryptophan metabolism. J Neurochem 19: 1967–1974.

    Article  PubMed  CAS  Google Scholar 

  • Diksic M, Nagahiro S, Sourkes TL, Yamamoto YL (1989) A new method to measure brain serotonin synthesis in vivo: I-theory and basic data for a biological model. J Cereb Blood Flow Metab (in press).

    Google Scholar 

  • Diksic M, Sourkes TL, Nagahiro H, Chaly T, Missala K (1988) Influence of plasma tryptophan and PaCO2 on brain serotonin synthesis in dog as measured with PET. J Nucl Med 29: 784.

    Google Scholar 

  • Diksic M, Sourkes TL, Nagahiro H, Chaly T, Missala K, Yamamoto YL (1987) In vivo rate of serotonin synthesis in the dog brain measured by positron emission tomography. Proc 17th Ann Meeting of Soc Neurosc, Abstr. No. 224.5.

    Google Scholar 

  • Evans AC, Diksic M, Yamamoto YL, Kato A, Dagher A, Redies C, Hakim A (1986) Effect of vascular activity in the determination of rate constants for the uptake of 18F-labelled 2-fluoro-2-deoxy-D-glucose: error analysis and normal values in older subjects. J Cereb Blood Flow Metab 6: 724–738.

    Article  PubMed  CAS  Google Scholar 

  • Forsythe GE, Malcolm MA, Moler CB (1977) Computer methods for mathematical computations. Prentice-Hall, Englewood Cliffs N J, pp 169–191.

    Google Scholar 

  • Gal EM, Christiansen PA (1975) Alpha-methyltryptophan: effect on cerebral monooxy-genases in vitro and in vivo. J Neurochem 24: 89–95.

    Article  PubMed  CAS  Google Scholar 

  • Gjedde A (1982) Calculation of cerebral glucose phosphorylation from brain uptake of glucose analogs in vivo: a re-examination. Brain Res Rev 4: 237–274.

    Article  CAS  Google Scholar 

  • Joseph MH, Kennett GA (1983) Stress-induced release of 5-HT in the hippocampus and its dependence on increased tryptophan availability: an in vivo electrochemical study. Brain Res 270: 251–257.

    Article  PubMed  CAS  Google Scholar 

  • Kirikae M, Diksic M, Yamamoto YL (1989) Quantitative measurements of regional glucose utilization and rate of valine incorporation into proteins by double-tracer autoradiog-raphy in rat brain tumor model. J Cereb Blood Flow Metab 9: 87–95.

    Article  PubMed  CAS  Google Scholar 

  • Korf J (1985) Turnover rate assessments of cerebral neurotransmitter amines and acetyl-choline. In: Boulton AA, Baker GB, Baker JM (eds) Neuromethods, vol 2. Amines and their metabolites. Humana Press, Clifton N J, pp 407–456, and references therein.

    Google Scholar 

  • Korf J, van Praag HM, Sebens JB (1972) Serum tryptophan decreased, brain tryptophan increased and brain serotonin synthesis unchanged after probenecid loading. Brain Res 42: 239–242.

    Article  PubMed  CAS  Google Scholar 

  • Krstulovic AM, Matsura C (1979) Rapid analysis of tryptophan metabolites using reverse-phase high-performance chromatography with fluorometric detector. J Chromatogr 163: 72–76.

    Article  PubMed  CAS  Google Scholar 

  • Long JB, Youngblood WY, Kizer JS (1983) Regional differences in the response of ser-otonergic neurons in rat CNS to drugs. Eur J Pharmacol 88: 89–97.

    Article  PubMed  CAS  Google Scholar 

  • Lovenberg W, Jequier E, Sjoerdsma A (1967) Tryptophan hydroxylation: measurement in pineal gland, brain stem and carcinoid tumor. Science 155: 217–219.

    Article  PubMed  CAS  Google Scholar 

  • Macon JB, Sokoloff L, Glowinski J (1971) Feed-back control of rat brain 5-hydroxytrypt-amine synthesis. J Neurochem 18: 323–331.

    Article  PubMed  CAS  Google Scholar 

  • Madrass BK, Sourkes TL (1965) Metabolism of α-methyltryptophan. Biochem Pharmacol 14: 1499–1506.

    Article  Google Scholar 

  • Missala K, Sourkes TL (1988) Functional cerebral activity of an analogue of serotonin formed in situ. Neurochem Int 12: 209–214.

    Article  PubMed  CAS  Google Scholar 

  • Miwa S, Fujiwara M, Lee K, Fujiwara M (1987) Determination of serotonin turnover in rat brain using 6-fluorotryptophan. J Neurochem 48: 1577–1580.

    Article  PubMed  CAS  Google Scholar 

  • Moir ATB, Eccleston D (1968) The effects of precursor loading in the cerebral metabolism of 5-hydroxyindoles. J Neurochem 15: 1093–1108.

    Article  PubMed  CAS  Google Scholar 

  • Nagahiro S, Takada A, Diksic M, Sourkes TL, Missala K, Yamamoto YL (1989) A new method to measure brain serotonin synthesis in vivo. II. A practical autoradiographic method tested in normal and lithium-treated rats. J Cereb Blood Flow Metab (in press).

    Google Scholar 

  • Neckers LM, Meek JL (1976) Measurement of 5HT turnover rate in discrete nuclei of rat brain. Life Sci 19: 1579–1584.

    Article  PubMed  CAS  Google Scholar 

  • Patlak SC, Blasberg RG, Fenstermacher JD (1983) Graphic evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3: 19.

    Article  Google Scholar 

  • Roberge AG, Missala K, Sourkes TL (1972) Alpha-methyltryptophan: effects on synthesis and degradation of serotonin in the brain. Neuropharmacology 11: 197–209.

    Article  PubMed  CAS  Google Scholar 

  • Sako K, Diksic M, Kato A, Yamamoto YL, Feindel W (1984) Evaluation of 4-[18F]fluoroantipyrine as a new blood flow tracer for multiradionuclide autoradiog-raphy. J Cereb Blood Flow Metab 4: 259–263.

    Article  PubMed  CAS  Google Scholar 

  • Sarna GS, Kantamaneni BD, Curzon G (1985) Variables influencing the effect of a meal on brain tryptophan. J Neurochem 44: 1575–1580.

    Article  PubMed  CAS  Google Scholar 

  • Schirlin D, Gerhart F, Hornsperger JM, Hamon M, Wagner J, Jung MJ (1988) Synthesis and biological properties of alpha-mono-and alpha-difluoromethyl derivatives of tryptophan and 5-hydroxytryptophan. J Med Chem 31: 30–36.

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohard M (1977) The 14C-deoxyglucose method for the measurement of local glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897–916.

    Article  PubMed  CAS  Google Scholar 

  • Sourkes TL (1971) Alpha-methyltryptophan and its action on tryptophan metabolism. Fed Proc 30: 897–903.

    PubMed  CAS  Google Scholar 

  • Tagliamonte A, Tagliamonte P, Perez-Cruet J, Stern S, Gessa GL (1971) Effect of psy-chotropic drugs on tryptophan concentration in the rat brain. J Pharmacol Exp Ther 177: 465–480.

    Google Scholar 

  • Tappaz M, Pujol J-F (1980) Estimation of the rate of tryptophan hydroxylation in vivo: a sensitive microassay in discrete rat brain nuclei. J Neurochem 34: 933–940.

    Article  PubMed  CAS  Google Scholar 

  • Yuwiler A, Oldendorf WH, Geller E, Braun L (1977) Effect of albumin binding and amino acid competition of tryptophan uptake into brain. J Neurochem 28: 1015–1023.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this chapter

Cite this chapter

Diksic, M., Nagahiro, S., Sourkes, T.L. (1990). Biological model for the in vivo measurement of rate of serotonin synthesis in the brain. In: Youdim, M.B.H., Tipton, K.F. (eds) Neurotransmitter Actions and Interactions. Journal of Neural Transmission, vol 29. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9050-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9050-0_13

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82142-8

  • Online ISBN: 978-3-7091-9050-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics