Models for the JFET and the MESFET

  • Henk C. de Graaff
  • François M. Klaassen
Part of the Computational Microelectronics book series (COMPUTATIONAL)


Although from a viewpoint of manufacturing and application the differences between the junction-gate field-effect transistor (JFET) and the metal-gate field-effect transistor (MESFET) are considerable, their physical operation is almost identical. The modelling of these devices is therefore discussed in one chapter. In both cases transistor operation is achieved by depleting an already existing channel region via a gate-controlled p-n junction or a Schottky diode. The channel region can be realized as an n-type epitaxial layer in a p-type substrate (as for instance for the discrete JFET), as an implanted p-type layer in an n-well (bipolar IC-compatible JFET) or as an epitaxial layer on a semi-insulating substrate (GaAs MESFET). In the latter case a channel implant is often added for achieving better process control. Figs. 9.1 a and 9.1 b give a cross-section of the JFET and the MESFET, respectively.


Drain Current Saturation Region Gate Bias Velocity Saturation Velocity Overshoot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [9.1]
    W. Shockley: A Unipolar Field-Effect Transistor. Proc. Inst. Radio Engrs. 40, 1365–1376 (1952).Google Scholar
  2. [9.2]
    J. R. Hauser: Unipolar Transistors. In: Fundamentals of Silicon Device Technology. Prentice-Hall, New York (1968), pp. 269–349, chapt. 2.Google Scholar
  3. [9.3]
    F. N. Trofimenkoff: Field-Dependent Mobility Analysis of the Field-Effect Transistor. Proc. IEEE 53, 1765–1766 (1965).CrossRefGoogle Scholar
  4. [9.4]
    W. R. Curtice: A MESFET Model for Use in the Design of GaAs Integrated Circuits. IEEE Transactions on Microwave Theory and Techniques MTT-28, 448–456 (1980).CrossRefGoogle Scholar
  5. [9.5]
    J. G. Ruch, G. S. Kino: Measurement of the Velocity-Field Characteristics of Gallium Arsenide. Applied Physics Letters 10, 40–42 (1967).CrossRefGoogle Scholar
  6. [9.6]
    P. Jeppesen, B. Jeppson: Computer Simulation of LSA Oscillators with High Doping to Frequency Ratio. Proc. IEEE 57, 795–796 (1969).CrossRefGoogle Scholar
  7. [9.7]
    C. S. Chang, H. R. Fetterman: Electron Drift Velocity vs. Electric Field in GaAs. Solid-State Electronics 29, 1295–1296 (1986).CrossRefGoogle Scholar
  8. [9.8]
    D. Boccon-Gibod: Modèle Analytique et Schéma Équivalent du Transistor à Effect de Champ en Arsénure de Gallium. Acta Electrónica 23, 99–109 (1980).Google Scholar
  9. [9.9]
    S. E. Sussmann-Fort, J. C. Hantgan, F. L. Huang: A Spice Model for Enhancement- and Depletion Mode GaAs FETs. IEEE Transactions on Microwave Theory and Techniques MTT-34, 1115–1119 (1986).CrossRefGoogle Scholar
  10. [9.10]
    H. Statz, P. Newman, I. W. Smith, R. A. Pucel, H. A. Haus: GaAs FET Device and Circuit Simulation in SPICE. IEEE Transactions on Electron Devices ED-34, 160–169 (1987).CrossRefGoogle Scholar
  11. [9.11]
    T. Kacprzak, A. Materka: Compact DC Model of GaAs FETs for Large-Signal Computer Calculation. IEEE Journal of Solid-State Circuits SC-18, 211–213 (1983).CrossRefGoogle Scholar
  12. [9.12]
    L. E. Larson: An Improved GaAs MESFET Equivalent Circuit Model for Analog Integrated Circuit Applications. IEEE Journal of Solid-State Circuits SC-22, 567–574 (1987).CrossRefGoogle Scholar
  13. [9.13]
    R. Dekker: A Pragmatic Circuit Model for GaAs MESFETs. M. Sc. Thesis, Fac. of Electr. Engin., Eindhoven University of Technology (1988).Google Scholar
  14. [9.14]
    K. Lehovec, R. Zuleeg: Voltage-Current Characteristics of GaAs JFETs in Hot Electron Range. Solid-State Electronics 13, 1415–1426 (1970).CrossRefGoogle Scholar
  15. [9.15]
    A. S. Grove: Physics and Technology of Semiconductor Devices. John Wiley & Sons, New York (1967), p. 253.Google Scholar
  16. [9.16]
    T. Ducourant, M. Rocchi: Modelling of the Drain Lag Effect in GaAs MESFETS. ESSDERC 88. Journal de Physique C2, 313–316 (1987).Google Scholar
  17. [9.17]
    J. A. van Steenwijk: Internal Philips Technical Note (1988).Google Scholar

Copyright information

© Springer-Verlag/Wien 1990

Authors and Affiliations

  • Henk C. de Graaff
    • 1
  • François M. Klaassen
    • 1
  1. 1.Philips Research LaboratoriesEindhovenThe Netherlands

Personalised recommendations