Models for the Enhancement-Type MOSFET

  • Henk C. de Graaff
  • François M. Klaassen
Part of the Computational Microelectronics book series (COMPUTATIONAL)


From the viewpoint of application, the enhancement-type transistor, which operates in the off-state mode at zero gate bias, is the most important MOSFET. Usually devices of this class are made on a uniform doped substrate or on a substrate with an implanted channel region. Examples are n-channel transistors with or without a p-type implanted layer in a p-type substrate and p-channel transistors with or without a shallow p-type implanted layer in an n-type substrate. Generally the models concerned have followed the path of progress in processing technology, from devices with structural dimensions longer than 10 µm to present-day devices with possibly submicron dimensions. Therefore we shall first discuss models for long-channel devices. This will be followed by a discussion of models for short-channel devices, in which a number of corresponding effects, like threshold voltage lowering etc., are taken into account. Since MOSFETs are also employed nowadays in analog circuitry, we finally discuss modelling for this more demanding application.


Threshold Voltage Drain Current Saturation Voltage Depletion Charge Channel Length Modulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [7.1]
    F. M. Klaasen: A MOS Model for Computer-Aided Design. Philips Research Reports 31, 71–83 (1976).Google Scholar
  2. [7.2]
    L. W. Nagel: SPICE-2: A Computer Program to Simulate Semiconductor Circuits. Univ. of California, Berkeley, Memo ERL-M520 (1975).Google Scholar
  3. [7.3]
    D. E. Ward, K. Doganis: Optimized Extraction of MOS Model Parameters. IEEE Transactions on CAD of Integrated Circuits and Systems CAD-1, 163–168 (1982).CrossRefGoogle Scholar
  4. [7.4]
    S. R. Hofstein, G. Warfield: Carrier Mobility and Current Saturation in the MOS Transistor. IEEE Transactions Electron Devices ED-12, 129–138 (1965).Google Scholar
  5. [7.5]
    H. Schichman, D. A. Hodges: Modelling and Simulation of Insulated-Gate Field- Effect Transistor Switching Circuits. IEEE Journal of Solid-State Circuits SC-3, 285–289 (1968).CrossRefGoogle Scholar
  6. [7.6]
    D. Frohman-Bentchkowsky, A. S. Grove: Conductance of MOS Transistors in Saturation. IEEE Transactions on Electron Devices ED-16, 108–113 (1969).CrossRefGoogle Scholar
  7. [7.7]
    G. Baum, H. Beneking: Drift-Geschwindigkeitssattigung bei MOS-Feldeffekt-Transistoren. Solid State Electronics 13, 789–798 (1970).CrossRefGoogle Scholar
  8. [7.8]
    F. M. Klaassen: Review of Physical Models for MOS Transistors. In: Process and Device Modelling for Integrated Circuit Design. Noordhoff, Leyden (1977).Google Scholar
  9. [7.9]
    G. Merckel, J. Borel, N. Z. Cupcea: An Accurate Large-Signal MOS Model for Use in CAD. IEEE Transactions on Electron Devices ED-19, 681–690 (1972).CrossRefGoogle Scholar
  10. [7.10]
    P. Rossel, H. Martinot, G. Vassilieff: Accurate Two-Section Model for MOS Transistors in Saturation. Solid-State Electronics 19, 51–56 (1976).CrossRefGoogle Scholar
  11. [7.11]
    F. v. d. Wiele: A Long-Channel MOSFET Model. Solid-State Electronics 22, 991–997 (1979).CrossRefGoogle Scholar
  12. [7.12]
    A. Vladimirescu, S. Liu: The Simulation of MOS Integrated Circuits. Memo, University of California, Berkeley, ERL M80 /7 (1980).Google Scholar
  13. [7.13]
    R. F. Vogel: Analytical MOSFET Model with Easily Extracted Parameters. IEEE Transactions on CAD CAD-4, 127–134 (1985).Google Scholar
  14. [7.14]
    G. G. de Jong, M. M. Abu-Zeid: MOSFET Model Continuous from Weak to Strong Inversion. Electronics Letters 23, 1299–1300 (1987).CrossRefGoogle Scholar
  15. [7.15]
    G. T. Wright: Physical and CAD Models for the VLSI MOSFET. IEEE Transactions on Electron Devices ED-34, 823–833 (1987).CrossRefGoogle Scholar
  16. [7.16]
    F. M. Klaassen, W. Hes: Compensated MOSFET Devices. Solid-State Electronics 28, 359–373 (1985).CrossRefGoogle Scholar
  17. [7.17]
    V. L. Rideout, F. H. Gaensslen, A. LeBlanc: Device Design Considerations for Ion-Implanted n-Channel MOSFETs. IBM Journal of Research and Development 19, 50–59(1975).CrossRefGoogle Scholar
  18. [7.18]
    E. Demoulin, F. van de Wiele: Ion Implanted MOS Transistors. In: Process and Device Modelling for Integrated Circuit Design. Noordhoff, Leyden (1977).Google Scholar
  19. [7.19]
    N. Herr, B. Garbs, J. Barnes: A Statistical Modelling Approach for Simulation of MOS Circuit Designs. IEDM Technical Digest (1982) pp. 290–293.Google Scholar
  20. [7.20
    D. M. Rogers, J. D. Hayden, D. D. Rinerson: Model for the Channel-Implanted Enhancement-Mode IGFET. IEEE Transactions on Electron Devices ED-33, 955–964(1986).CrossRefGoogle Scholar
  21. [7.21]
    R. S. C. Cobbold: Theory and Applications of Field-Effect Transistors. Wiley-Interscience, New York (1970).Google Scholar
  22. [7.22]
    J. E. Meyer: MOS Models and Circuit Simulation. RCA Review 32, 42–63 (1971).Google Scholar
  23. [7.23]
    H. C. Poon: Vj and Beyond. Presented at Workshop on Device Modelling for VLSI, Burlingame, CA (1979).Google Scholar
  24. [7.24]
    S. Liu, L. W. Nagel: Small Signal MOSFET Modelling for Analog Circuit Design. IEEE Journal of Solid-State Circuits SC-17, 983–988 (1982).CrossRefGoogle Scholar
  25. [7.25
    F. M. Klaassen: In: Process and Device Modelling for CAD. Elsevier, Amsterdam (1986), chapt. 12.Google Scholar
  26. [7.26]
    Y. P. Tsividis: Operation and Modelling of the MOS Transistor. McGraw-Hill, New York (1987), chapt. 8.Google Scholar
  27. [7.27]
    C. Turchetti, G. Masetti, Y. P. Tsividis: On the Small-Signal Behaviour of the MOS Transistor in Quasi-Static Operation. Solid-State Electronics 26, 941–949 (1983).CrossRefGoogle Scholar
  28. [7.28]
    P. P. Wang: Device Characteristics of Short-Channel and Narrow Width MOSFETs. Transactions on Electron Devices ED-25, 779–786 (1978).CrossRefGoogle Scholar
  29. [7.29]
    G. Merckel: A Simple Model of the Threshold Voltage in Short and Narrow Channel IGFETS. Solid-State Electronics 23, 1207–1213 (1980).CrossRefGoogle Scholar
  30. [7.30]
    F. M. Klaassen, W. C. J. de Groot: Modelling of Scaled Down MOS Transistors. Solid-State Electronics 23, 237–242 (1980).Google Scholar
  31. [7.31]
    T. Skotnicki, G. Merckel, T. Pedron: The Voltage-Doping Transformation, A New Approach to Modelling Short-Channel Effects. In: Proceedings ESSDERC 1987, Bologna. North-Holland, Amsterdam (1987), pp. 543–546.Google Scholar
  32. [7.32]
    B. Hoeflinger, H. Sibbert, G. Zimmer: Model and Performance of Hot-Electron MOS Transistor for VLSI. IEEE Transactions on Electron Devices ED-26, 513–520 (1979).CrossRefGoogle Scholar
  33. [7.33]
    T. Poorter, and J. H. Satter: A d-c Model for a MOS Transistor in the Saturation Region. Sohd-State Electronics 23, 765–772 (1980).CrossRefGoogle Scholar
  34. [7.34]
    CURRY, Proprietary Philips 2-D Device Simulation Routine.Google Scholar
  35. [7.35]
    G. Merckel: CAD Models for MOSFETs. In: Process and Device Modelling for IC Design. Noordhoff, Leyden (1977), pp. 751–764.Google Scholar
  36. [7.36]
    L. Lauwers, K. de Meyer: Novel Calculations in the Field of Accurate MOS Transistor Model. ESSDERC 1988. Journal de Physique C4, 249–252 (1988).Google Scholar
  37. [7.37]
    B. J. Sheu, D. L. Scharfetter, P. K. Ko, M. C. Jeng: BSIM, Berkeley Short-Channel IGFET Model. IEEE Journal of Solid State Circuits SC-22, 558–566 (1987).CrossRefGoogle Scholar
  38. [7.38]
    S. Liu: A Unified CAD Model for MOSFETs (Memo ERL-M81/31). Electron Research Labs, University of California, Berkeley (1981).Google Scholar
  39. [7.39
    P. Yang, B. D. Eppler, P. K. Chatterjee: An Investigation of the Charge Conservation Problem for MOSFET Circuit Simulation. IEEE Journal of Solid-State Circuits SC-18, 128–138(1983).CrossRefGoogle Scholar
  40. [7.40]
    G. W. Taylor, W. Fichtner, J. G. Simmons: A Description of MOS Internodal Capacitances for Transient Simulations. IEEE Transactions on Computer-Aided Design CAD-U 150–156 (1983).Google Scholar
  41. [7.41]
    D. E. Ward, R. W. Button: A Charge-Oriented Model for MOS Transistor Capacitances. IEEE Journal of Solid-State Circuits SC-13, 703–707 (1978).Google Scholar
  42. [7.42]
    Y. P. Tsividis: Operation and Modelling of the MOS Transistor. McGraw-Hill, New York (1987).Google Scholar
  43. [7.43]
    D. E. Ward: Charge-Based Modelling of Capacitance in MOS Transistors (Technical Report G201-11). Integrated Circuits Laboratory. Stanford University, California (1981).Google Scholar
  44. [7.
    44] T. Smedes: (to be published).Google Scholar
  45. [7.45
    J. Y. Sun, M. R. Wordeman, S. E. Laux: On the Accuracy of Channel Length Characterization of LDD MOSFETS. IEEE Transactions on Electron Devices ED-33, 1556–1562(1986).CrossRefGoogle Scholar
  46. [7.
    46] P. T. J. Biermans: (to be published).Google Scholar
  47. [7.47]
    F. M. Klaassen, P. T. J. Biermans, R. M. D. Velghe: The Series Resistance of Submicron MOSFETs and Its Effect on Their Characteristics. ESSDERC 1988. Journal de Physique C4, 257–260 (1988).Google Scholar
  48. [7.48]
    R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, A. R. LeBlanc: Design of Ion-Implanted MOSFETs with Small Physical Dimensions. IEEE Journal of Solid- State Circuits SC-9, 256–268 (1974).CrossRefGoogle Scholar
  49. [7.49]
    T. Toyabe, K. Yamaguchi, S. Asai, M. S. Mock: A Two-Dimensional Avalanche Breakdown Model of Submicron MOSFETs. Technical Digest IEDM (1977), pp. 432–435.Google Scholar
  50. [7.50]
    E. Sun, B. Alders, L. Forbes: The Effect of Electron Trapping on the Performance of Short-Channel MOS Transistors. IEEE Transactions on Electron Devices ED-26, 1849(1979).CrossRefGoogle Scholar
  51. [7.51]
    P. K. Chatterjee: VLSI Dynamic nMOS Design Constraints Due to Drain Induced Primary and Secondary Impact Ionization. Technical Digest IEDM (1979), pp. 14–17.Google Scholar
  52. [7.52]
    C. Hu, S. C. Tam, F. C. Hsu, P. K. Ko, T. Y. Chan, K. W. Terrill: Hot Electron- Induced MOSFET Degradation—Model, Monitor and Improvement. IEEE Transactions on Electron Devices ED-32, 375–385 (1985).Google Scholar
  53. [7.53]
    P. K. Ko, R. S. Muller, C Hu: A Unified Model for Hot-Electron Currents in MOSFETs. Technical Digest IEDM (1980), pp. 600–603.Google Scholar
  54. [7.54]
    J. Mar, S. S. Li, S. Y. Yu: Substrate Current Modelling for Circuit Simulation. IEEE Transactions on Computer-Aided Design of Integrated Circuits CAD-1, 183–186 (1982).CrossRefGoogle Scholar
  55. [7.55]
    F. Hsu, P. K. Ko, S. Tam, C. Hu, R. S. Muller: Hot-Electron-Induced Excess Current in n-Channel MOSFETs. IEEE Transactions on Electron Devices ED-29, 1735–1740 (1982).Google Scholar
  56. [7.56]
    W. Müller, L. Risch, A. Schütz: Short-Channel MOS Transistors in the Avalanche-Multiplication Regime. IEEE Transactions on Electron Devices ED-29, 1778–1784 (1982).CrossRefGoogle Scholar
  57. [7.57]
    C. Werner, R. Kuhnert, L. Risch: Optimization of Lightly Doped Drain MOSFETs Using a New Quasiballistic Simulation Tool. Technical Digest IEDM (1984), pp. 770–773.Google Scholar
  58. [7.58]
    J. W. Sing, B. Sudlow: Modelling and VLSI Design Constraints of Substrate Current. Technical Digest IEDM (1980), pp. 732–735.Google Scholar
  59. [7.59]
    G. Moore: VLSI: Some Fundamental Challenges? IEEE Spectrum 16, 30–37 (1979).Google Scholar
  60. [7.60]
    D. A. Hodges, P. R. Gray, R. W. Brodersen: Potential of MOS Technologies for Analog ICs. IEEE J. Solid-State Circuits SC-15, 285–294 (1978).CrossRefGoogle Scholar
  61. [7.61]
    P. P. Guebels, F.v.d. Wiele: A Small-Geometry MOSFET Model for CAD Apph- cations. Solid-State Electronics 26, 267–273 (1983).CrossRefGoogle Scholar
  62. [7.62]
    H. Ogney, S. Cserveny: Modele du Transistor MOS Valable Dans un Grand Domaine de Courants. Reprint from Bulletin des SEV/VSE 75, 113–116 (1982).Google Scholar
  63. [7.63]
    J. J. Paulos, D. A. Antoniadis: Limitations of Quasi-Static Capacitance Models for the MOS Transistor. IEEE Electron Device Letters EDL-4, 221–224 (1983).CrossRefGoogle Scholar
  64. [7.64]
    F. M. Klaassen, R. Velghe: (to be published).Google Scholar
  65. [7.65]
    M. Bagheri, Y. P. Tsividis: A Small-Signal d.c.-to-High-Frequency Non-Quasi-Static Model for the Four-Terminal MOSFET. IEEE Transactions on Electron Devices ED-32, 2383–2391 (1985).CrossRefGoogle Scholar
  66. [7.66]
    H. J. Park, P. K. Ko, C. Hu: A Non-Quasistatic MOSFET Model for SPICE. Technical Digest IEDM (1987), pp. 652–655.Google Scholar
  67. [7.67]
    J. A. van Nielen: A Simple and Accurate Approximation to the h.f. Characteristics of IGFETs. Solid-State Electronics 12, 826–829 (1969).CrossRefGoogle Scholar
  68. [7.68]
    F. M. Klaassen, J. Prins: Thermal Noise in MOS Transistors. Philips Research Reports 22, 505–514 (1967).Google Scholar
  69. [7.69]
    A.v.d. Ziel: Thermal Noise in Field-Effect Transistors. Proceedings of the IRE 50, 1808–1812(1962).CrossRefGoogle Scholar
  70. [7.70]
    R. Paul: Thermisches Rauschen von MOS-Transistoren. Nachrichtentechnik 17, 458–466(1967).Google Scholar
  71. [7.71]
    J. Fellrath: Short Noise Behaviour of Subthreshold MOS Transistors. Revue de Physique Appliqué 13, 719–723 (1978).CrossRefGoogle Scholar
  72. [7.72]
    G. Reimbold, P. Gentil: White Noise of MOS Transistors Operating in Weak Inversion. IEEE Transactions on Electron Devices ED-29, 1722–1725 (1982).CrossRefGoogle Scholar
  73. [7.73]
    F. M. Klaassen: A Computation of the h.f. Noise Quantities of a MOSFET. Philips Research Reports 24, 559–571 (1969).Google Scholar
  74. [7.74]
    F. M. Klaassen, J. Prins: Noise of Field-Effect Transistors at Very High Frequencies. IEEE Transactions on Electron Devices ED-16, 952–957 (1969).CrossRefGoogle Scholar
  75. [7.75]
    M. Shoji: Analysis of High-Frequency Thermal Noise of MOS Field Transistors. IEEE Transactions on Electron Devices ED-13, 520–524 (1966).CrossRefGoogle Scholar
  76. [7.76]
    A.v.d. Ziel: Gate Noise in Field Effect Transistors at High Frequencies. Proceedings IEEE 52, 461–467 (1963).CrossRefGoogle Scholar
  77. [7.77]
    A.v.d. Ziel: Noise in Solid-State Devices. Advances in Electronics and Electron Physics 46, 313–383 (1978).Google Scholar
  78. [7.78]
    F. M. Klaassen: Characterization of Low 1/f Noise in MOS Transistors. IEEE Transactions on Electron Devices ED-18, 887–891 (1971).CrossRefGoogle Scholar
  79. [7.79]
    G. Abowitz, E. Arnold, E. A. Leventhal: Surface States and 1/f Noise in MOS Transistors. IEEE Transactions on Electron Devices ED-14, 775–777 (1967).CrossRefGoogle Scholar
  80. [7.80]
    Z. H. Fang, H. Haddara, S. Cristoloveanu, G. Ghibaudo, A. Chovet: Aging Characterisation of Short Channel MOSFET by 1/f Noise ( Europhysics Conference Abstracts ). Digest ESSDERC (1985), pp. 75–76.Google Scholar
  81. [7.81]
    F. N. Hooge, T. G. Kleinpenning, L. K. J. Vandamme: Experimental Studies on 1/f Noise. Reports on Progress in Physics 44, 479–532 (1981).CrossRefGoogle Scholar
  82. [7.82]
    L. K. J. Vandamme, H. M. M. de Werd: 1/f Noise Model for MOST’s Biased in Nonohmic Region. Solid-State Electronics 23, 325–329 (1980).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1990

Authors and Affiliations

  • Henk C. de Graaff
    • 1
  • François M. Klaassen
    • 1
  1. 1.Philips Research LaboratoriesEindhovenThe Netherlands

Personalised recommendations