MOSFET Physics Relevant to Device Modelling

  • Henk C. de Graaff
  • François M. Klaassen
Part of the Computational Microelectronics book series (COMPUTATIONAL)


In order to facilitate the discussion of specific transistor models, which is the subject of the next three chapters, in this chapter we introduce some general device concepts relevant to MOSFET modelling. We deal successively with the following subjects: formation of an inversion layer, the ideal drain current, threshold voltage, carrier mobility in an inversion layer, the saturation mode, dynamic operation and inherent parasitics. Unless stated otherwise, the device structure considered here is that of an n-channel transistor. In most cases, a p-channel device only needs a change of sign to produce its model formulas.


Threshold Voltage Depletion Layer Inversion Layer Gate Bias Device Modelling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [6.1]
    S. M. Sze: Physics of Semiconductor Devices. John Wiley & Sons, New York (1981).Google Scholar
  2. [6.2]
    E. H. Nicollian, J. R. Brews: MOS Physics and Technology. John Wiley & Sons, New York (1982).Google Scholar
  3. [6.3]
    Y. P. Tsividis: Operation and Modelling of the MOS Transistor. McGraw-Hill, New York (1987).Google Scholar
  4. [6.4]
    F. Stern, W. E. Howard: Properties of Semiconductor Surface Inversion Layers in Quantum Limit. Physical Reviews 163, 816–835 (1967).CrossRefGoogle Scholar
  5. [6.5]
    J. A. Pals: Quantization Effects in Semiconductor Inversion and Accumulation Layers. Ph.D. Thesis, Eindhoven University of Technology (1972).Google Scholar
  6. [6.6]
    A. S. Grove, E. H. Snot, B. E. Deal, C. T. Sah: Simple Physical Model for the Space-Charge Capacitance of MOS Structures. Journal of Applied Physics 35, 2458–2460(1964).CrossRefGoogle Scholar
  7. [6.7]
    R. H. Kingston, S. F. Neustadter: Calculation of Space Charge, Field and Free Carrier Concentration. Journal of Applied Physics 26, 718–720 (1955).CrossRefGoogle Scholar
  8. [6.8]
    C. G. Garrett, W. H. Brittain: Physical Theory of Semiconductor Surfaces. Physical Review 99, 376–387 (1955).CrossRefGoogle Scholar
  9. [6.9]
    J. A. Geurst: Theory of IGFETs Near and Beyond Pinch-Off. Solid-State Electronics 9, 129–142(1966).CrossRefGoogle Scholar
  10. [6.10]
    H. W. Loeb, R. Andrew, W. Love: Application of 2-D Solutions of the Poisson Equation to MOST Devices. Electronics Letters 4, 352–354 (1968).CrossRefGoogle Scholar
  11. [6.11]
    J. R. Brews: A Charge-Sheet Model of the MOSFET. Solid-State Electronics 21, 345–355 (1978).CrossRefGoogle Scholar
  12. [6.12]
    J. R. Brews: Subthreshold Behaviour of Uniformly and Non-Uniformly Doped Long-Channel MOST. IEEE Transactions Electron Devices ED-26, 1282–1292 (1979).CrossRefGoogle Scholar
  13. [6.13]
    R. J. V. Overstraeten, G. J. Declerck, P. A. Muls: Theory of the MOST in Weak Inversion. IEEE Transactions Electron Devices ED-22, 282–288 (1975).CrossRefGoogle Scholar
  14. [6.14]
    R. M. Swanson, J. D. Meindl: MOS Transistors in Low-Voltage Circuits. IEEE Journal of Solid-State Circuits SC-7, 146–153 (1972).CrossRefGoogle Scholar
  15. [6.15]
    G. Baccarani, M. Rudan, G. Spadini: Analytical IGFET Model Including Drift and Diffusion. lEE Journal of Solid-State Devices 2, 62–68 (1978).Google Scholar
  16. [6.16]
    F. v.d. Wiele: A Long-Channel MOSFET Model. Solid-State Electronics 22, 991–997 (1979).CrossRefGoogle Scholar
  17. [6.17]
    Y. P. Tsividis: reference [6.3], p. 106–123.Google Scholar
  18. [6.18]
    H. C. Pao, C. T. Sah: Effects of Diffusion Current on Characteristics of MOS Transistors. Solid-State Electronics 10, 927–937 (1966).CrossRefGoogle Scholar
  19. [6.19]
    C. T. Sah, H. C. Pao: Effects of Fixed Bulk Charge on the Characteristics of MOS Transistors. IEEE Trans. Electron Devices ED-13, 393–409 (1966).CrossRefGoogle Scholar
  20. [6.20]
    J. A. van Nielen, and O. W. Memelink: Influence of the Substrate Upon the DC Characteristics of MOS Transistors. Philips Research Reports 22, 55–71 (1967).Google Scholar
  21. [6.21]
    M. B. Baron: Low-Level Currents in IGFET Transistors. Solid-State Electronics 15, 293–302 (1972).CrossRefGoogle Scholar
  22. [6.22]
    M. R. MacPherson: The Adjustment of MOST Threshold Voltage by Ion Implantation. Applied Physics Letters 18, 502–504 (1971).CrossRefGoogle Scholar
  23. [6.23]
    L. C. Parillo: VLSI Process Integration. In: VLSI Technology. McGraw-Hill, New York (1984).Google Scholar
  24. [6.24]
    G. Doucet, F. v. d. Wiele, P. Jespers: Theoretical and Experimental Study of MOST Doped by SILOX Technique. Solid-State Electronics 19, 191–199 (1976).CrossRefGoogle Scholar
  25. [6.25]
    A. Das Gupta, S. K. Lahiri: An Analytical Solution of Poisson’s Equation for a MOSFET with a Gaussian Doped Channel. Solid-State Electronics 29, 1205–1206 (1986).CrossRefGoogle Scholar
  26. [6.26]
    V. L. Rideout, F. H. Gaensslen, A. LeBlanc: Device Design Considerations for Ion-Implanted MOSFETs. IBM Journal of R&D 19, 50–59 (1975).CrossRefGoogle Scholar
  27. [6.27]
    E. Demoulin, F. v. d. Wiele: Ion-Implanted MOS Transistors. In: Process and Device Modelling for IC Design. Noordhoff, Leyden (1977), pp. 617–676.Google Scholar
  28. [6.28]
    J. R. Edwards, G. Mar: Depletion-Mode IGFET Made by Deep Implantation. IEEE Transactions Electron Devices ED-20, 283–289 (1973).CrossRefGoogle Scholar
  29. [6.29]
    J. S. T. Huang: Characteristics of a Depletion-Mode IGFET. IEEE Transactions Electron Devices ED-20, 513–515 (1973).CrossRefGoogle Scholar
  30. [6.30]
    F. M. Klaassen, W. Hes: Compensated MOSFET Devices. Solid-State Electronics 28, 359–373 (1985).CrossRefGoogle Scholar
  31. [6.31]
    G. Merckel: Ion-Implanted MOS Transistors. In: Process and Device Modelling for IC Design. Noordhoff, Leyden (1977), pp. 677–688.Google Scholar
  32. [6.32]
    J. S. T. Huang, G. W. Taylor: Modelling of a Depletion-Mode IGFET. IEEE Transactions Electron Devices ED-22, 995–1001 (1975).CrossRefGoogle Scholar
  33. [6.33]
    S. Chiang, K. M. Cham, R. D. Rung: Optimization of Sub-Micron p-Channel FET. Technical Digest IEDM, Washington D. C. (1983), pp. 534–537.Google Scholar
  34. [6.34]
    F. M. Klaassen, J. J. Bastiaens, W. Hes, M. Sprokel: Scahng of Compensated MOSFETs. Technical Digest IEDM, San Francisco (1984), pp. 613–616.Google Scholar
  35. [6.35]
    F. M. Klaassen, W. Hes: On the Temperature Coefficient of the MOSFET Threshold Voltage. Solid-State Electronics 29, 787–789 (1986).CrossRefGoogle Scholar
  36. [6.36]
    G. Giralt, B. Andre, J. Simon, D. Esteve: Influence de la Température sur les Dispositifs Semiconducteurs du Type MOS. Electronics Letters 1, 185–186 (1965).CrossRefGoogle Scholar
  37. [6.37]
    R. Wang, J. Dunkley, T. A. De Massa, J. Jelsma: Threshold Voltage Variations with Temperature in MOS Transistors. IEEE Transactions Electron Devices ED-18, 386–388 (1971).CrossRefGoogle Scholar
  38. [6.38]
    L. D. Yau: A Simple Theory to Predict the Threshold Voltage of Short-Channel IGFETs. Solid-State Electronics 17, 1059–1063 (1974).CrossRefGoogle Scholar
  39. [6.39]
    D. J. Coe, H. E. Brakman, K. H. Nicholas: A Simple Approach for Accurate ModelHng the MOST Threshold Voltage. Solid-State Electronics 20, 993–998 (1977).CrossRefGoogle Scholar
  40. [6.40]
    G. W. Taylor: Subthreshold Conduction in MOSFETs. IEEE Transactions on Electron Devices ED-25, 337–350 (1978).CrossRefGoogle Scholar
  41. [6.41]
    G. Merckel: Short Channel MOSFETs. In: Process and Device Modelling for IC Region. Noordhoff, Leyden (1977), 705–724.Google Scholar
  42. [6.42]
    W. Fichtner, H. W. Pö78tzl: MOS Modelling by Analytical Approximations, Part I. International Journal of Electronics 46, 33–55 (1979).CrossRefGoogle Scholar
  43. [6.43]
    K. N. Ratnakumar, J. D. Meindl, D. L. Scharfetter: New IGFET Short-Channel Threshold Voltage Model. IEEE Journal of Solid State Circuits 17, 937–947 (1982).CrossRefGoogle Scholar
  44. [6.44]
    T. N. Nguygen, J. D. Plummer: Physical Mechanisms Responsible for Short-Channel Effects in MOS Devices. Technical Digest IEDM, Washington D. C. (1981), pp. 596–599.Google Scholar
  45. [6.45]
    V. Marash, R. W. Dutton: Submicron 2-D MOS Modelling. Digest of Technical Papers ICCAD-86. Washington D. C. (1986), pp. 476–479.Google Scholar
  46. [6.46]
    P. P. Wang: Device Characteristics of Short-Channel, Narrow-Width MOSFETs. IEEE Transactions on Electron Devices ED-25, 779–786 (1978).CrossRefGoogle Scholar
  47. [6.47]
    R. R. Troutman: VLSI Limitations from Drain-Induced Barrier Lowering. IEEE Journal of Solid-State Circuits SC-14, 383–391 (1979).CrossRefGoogle Scholar
  48. [6.48]
    E. Sun: Short-Channel MOS Modelling for CAD. In: Proceedings Asilomar Conference on Circuits and Systems. Pacific Grove, CA (1978), pp. 493–499.Google Scholar
  49. [6.49]
    T. Skotnicki, W. Marciniak: New Approach to Threshold Voltage Modelling of MOSFETs. Solid-State Electronics 29, 1115–1128 (1986).CrossRefGoogle Scholar
  50. [6.50]
    T. Skotnicki, G. Merckel, T. Pedron: The Voltage-Doping Transformation, A New Approach to Modelling Short-Channel Effects. In: Proceedings ESSDERC 87, Bologna. North-Holland, Amsterdam (1987), pp. 543–546.Google Scholar
  51. [6.51]
    R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassou, A. R. Leblanc: Design of Ion-Implanted MOSFETs with Very Small Physical Dimensions. IEEE Journal of Solid-State Circuits SC-9, 256–268 (1974).CrossRefGoogle Scholar
  52. [6.52]
    F. M. Klaassen: Design and Performance of Micron-Size Devices. Solid-State Electronics 21, 565–572 (1978).CrossRefGoogle Scholar
  53. [6.53]
    J. R. Brews, W. Fichtner, E. H. Nicollian, S. M. Sze: Generalized Guide for MOSFET Miniaturization. IEEE Electron Device Letters EDL-1 2–3 (1980).CrossRefGoogle Scholar
  54. [6.54]
    F. M. Klaassen, W. C. J. de Groot: Modelling of Scaled-Down MOS Transistors. Solid-State Electronics 23, 237–242 (1980).CrossRefGoogle Scholar
  55. [6.55]
    G. Merckel: Simple Model of the Threshold Voltage of Short and Narrow Channel IGFETs. Solid-State Electronics 23, 1207–1213 (1980).CrossRefGoogle Scholar
  56. [6.56]
    L. A. Akers, J. J. Sanchez: Threshold Voltage Models of Small Geometry MOSFETs. Solid-State Electronics 25, 621–641 (1982).CrossRefGoogle Scholar
  57. [6.57]
    T. Ando, A. B. Fowler, F. Stern: Electronic Properties of Two-Dimensional Systems. Review of Modern Physics 54, 437–672 (1982).CrossRefGoogle Scholar
  58. [6.58]
    S. R. Hofstein, G. Warfield: Carrier Mobility and Current Saturation in MOS Transistors. IEEE Transactions on Electron Devices ED-12, 129–138 (1965).CrossRefGoogle Scholar
  59. [6.59]
    G. Baum, H. Beneking: Drift Velocity Saturation in MOS Transistors. Solid-State Electronics 13, 789–798 (1970).CrossRefGoogle Scholar
  60. [6.60]
    A. G. Sabnis, J. T. Clemens: Characterization of the Electron Mobility in Inverted Si. Technical Digest IEDM, Washington D. C. (1979), pp. 18–21.Google Scholar
  61. [6.61]
    G. T. Wright: Physical and CAD Models for the VLSI MOSFET. IEEE Transactions on Electron Devices ED-34, 823–833 (1987).CrossRefGoogle Scholar
  62. [6.62]
    D. M. Caughey, R. E. Thomas: Carrier Mobility in Silicon Empirically Related to Doping and Field. Proc. IEEE 52, 2192–2193 (1967).CrossRefGoogle Scholar
  63. [6.63]
    J. A. Cooper, D. F. Nelson: High-Field Drift Velocity of Electrons at the Si-SiOj Interface. Journal of Applied Physics 54, 1445–1456 (1983).CrossRefGoogle Scholar
  64. [6.64]
    G. Merckel, J. Borel, N. Z. Cupcea: Accurate Large-Signal MOS Transistor Model for Use in CAD. IEEE Trans. Electron Devices ED-19, 681–690 (1972).CrossRefGoogle Scholar
  65. [6.65]
    P. Smith, M. Inoue, J. Frey: Electron Velocity in Si and GaAs at Very High Fields. Applied Physics Letters 37, 797–798 (1980).CrossRefGoogle Scholar
  66. [6.66]
    K. K. Thornber: Relation of Drift Velocity to Low-Field Mobility. Journal of Applied Physics 51, 2127–2133 (1980).CrossRefGoogle Scholar
  67. [6.67]
    F. M. Klaassen: Compact MOSFET Modelling. In: Process and Device Modelling. North-Holland, Amsterdam (1986), pp. 393–412.Google Scholar
  68. [6.68]
    F. M. Klaassen, P. T. J. Biermans, R. M. D. Velghe: The Series Resistance of Submicron MOSFETS and Its Effect on Their Characteristics. ESSDERC 1988, Montpellier. Journal de Physique 257–260 (1988).Google Scholar
  69. [6.
    69] F. M. Klaassen: (to be published).Google Scholar
  70. [6.70]
    T. Poorter, J. H. Satter, V. A. Satyadharma: Journee d’Electronique 285–301 (1977)Google Scholar
  71. [6.71]
    J. E. Schroeder, R. S. Muller: IGFET Analysis Through Numerical Solution of Poisson’s Equation. IEEE Trans. Electron Devices ED-15, 954–961 (1968).CrossRefGoogle Scholar
  72. [6.72]
    J. A. El-Mansy, A. R. Boothroyd: A Simple 2-D Model for IGFET Operation in Saturation Region. IEEE Trans. Electron Devices ED-24, 254–262 (1977).CrossRefGoogle Scholar
  73. [6.73]
    T. Poorter, J. H. Satter: A d-c Model for a MOS Transistor in the Saturation Region. Solid-State Electronics 23, 765–772 (1980).CrossRefGoogle Scholar
  74. [6.74]
    P. P. Guebels, F. v. d. Wiele: A Small Geometry MOSFET Model for CAD Applications. Solid-State Electronics 26, 267–273 (1983).CrossRefGoogle Scholar
  75. [6.75]
    P. K. Ko, R. S. Muller, C. Hu: A Unified Model for Hot-Electron Currents in MOSFETs. Technical Digest IEDM 81, 600–603 (1981).Google Scholar
  76. [6.76]
    H. Shichman, D. A. Hodges: Modelling and Simulation of Insulated-Gate Field- Effect Transistor Circuits. IEEE Journal of Solid-State Circuits SC-3, 285–289 (1968).CrossRefGoogle Scholar
  77. [6.77]
    G. Merckel: CAD Models of MOSFETs. In: Process and Device Modelling for IC Design. Noordhoff, Leyden (1977), pp. 751–764.Google Scholar
  78. [6.78]
    F. M. Klaassen: A MOS Model for CAD. Philips Research Reports 31, 71–83 (1976).Google Scholar
  79. [6.79]
    D. E. Ward, R. W. Dutton: A Charge-Oriented Model for MOS Transistor Capacitance. IEEE Journal of Solid-State Circuits SC-13, 703–707 (1978).CrossRefGoogle Scholar
  80. [6.80]
    J. A. Robinson, Y. A. El-Mansy, A. R. Boothroyd: A General Four-Terminal Charging Current Model for the IGFET. Solid-State Electronics 25, 405–414 (1980).CrossRefGoogle Scholar
  81. [6.81]
    T. J. O’Reilly: Transient Response of IGFETs. Solid-State Electronics 8, 947–956 (1965).CrossRefGoogle Scholar
  82. [6.82]
    Z. S. Gribnikov, Y. A. Tkhorik: Calculation of Transients in Field Triodes. Radio Engineering and Electronic Physics 11, 776–781 (1966).Google Scholar
  83. [6.83]
    A. Möschwitzer: Zum statischen und dynamischen Großsignal-Verhalten des MOS- Transistors. Nachrichten-Technik 20, 150–154 (1967).Google Scholar
  84. [6.84]
    K. Goser: Einschaltzeiten und Umladungsvorgänge bei MOS-Transistoren. Archiv Elektrische Übertragung 24, 21–28 (1970).Google Scholar
  85. [6.85]
    C. Turchetti, P. Mancini, G. Masetti: A CAD-Oriented Non-Quasi-Static Approach for Transient Analysis of MOS ICs. IEEE Journal of Solid-State Circuits SC-21, 827–836 (1986).CrossRefGoogle Scholar
  86. [6.86]
    H. Park, P. Ko, C. Hu: A Non-Quasi Static MOSFET Model for SPICE. Technical Digest IEDM 87, 652–655 (1987).Google Scholar
  87. [6.87]
    G. W. Taylor, W. Fichtner, J. G. Simons: Description of MOS Internodal Capacitances for Transient Simulations. IEEE Transactions on CAD CAD-1, 150–156 (1982).Google Scholar
  88. [6.88]
    P. Yang, B. D. Eppler, P. K. Chatterjee: An Investigation of the Charge Conservation Problem for MOSFET Circuit Simulation. IEEE Journal of Solid-State Circuits SC-18, 128–138(1983).CrossRefGoogle Scholar
  89. [6.89]
    B. J. Sheu, D. L. Scharfetter, C. Hu, D. O. Pederson: A Compact IGFET Charge Model. IEEE Transactions on Circuits and Systems CAS-31, 745–749 (1984).CrossRefGoogle Scholar
  90. [6.90]
    S. Y. Oh, D. E. Ward, R. W. Dutton: Transient Analysis of MOS Transistors. IEEE Journal of Solid-State Circuits SC-15, 636–643 (1980).Google Scholar
  91. [6.91]
    M. F. Sevat: On the Channel Charge Division in MOSFET Modelling. Digest Technical Papers ICCAD-87, 208–210 (1987).Google Scholar
  92. [6.92]
    J. G. Fossum, H. Jeong, S. Veeragaghavan: Significance of Channel-Charge Partition in the Transient MOSFET Model. IEEE Transactions on Electron Devices ED-33, 1621–1623(1986).CrossRefGoogle Scholar
  93. [6.93]
    K. W. Chai, J. J. Paulos: Comparison of Quasi-Static and Non-Quasi-Static Capacitance Models for the MOSFET. IEEE Electron Device Letters EDL-8, 377–379 (1987).CrossRefGoogle Scholar
  94. [6.94]
    P. E. Cottrell, E. M. Buturla: VLSI Wiring Capacitance. IBM Journal of R&D 29, 277–287 (1985).CrossRefGoogle Scholar
  95. [6.95]
    J. H. H. M. Quint, F. M. Klaassen, R. Petterson: 2-D and 3-D Capacitance Effects in MOS VLSI. In: Proceedings ESSDERC 87, Bologna. North-Holland, Amsterdam (1987), pp. 417–420.Google Scholar
  96. [6.96]
    H. Murrman, D. Widmann: Current Crowding on Metal Contacts to Planar Devices. IEEE Transactions Electron Devices ED-16, 1022–1026 (1969).CrossRefGoogle Scholar
  97. [6.97]
    H. H. Berger: Models for Contacts to Planar Devices. Solid-State Electronics 15, 145–158 (1972).CrossRefGoogle Scholar
  98. [6.98]
    K. K. Ng, W. T. Lynch: Analysis of the Series Resistance of MOSFETs. IEEE Transactions Electron Devices ED-33, 965–972 (1986).CrossRefGoogle Scholar
  99. [6.99]
    G. Baccarani, G. A. Sai-Halasz: Spreading Resistance in Submicron MOSFETs. IEEE Electron Device Letters EDL-4, 27–29 (1983).CrossRefGoogle Scholar
  100. [6.100]
    K. K. Ng, R. J. Bayruns, S. C. Fang: The Spreading Resistance of MOSFETs. IEEE Electron Device Letters EDL-6, 195–197 (1985).CrossRefGoogle Scholar
  101. [6.101]
    H. El Kamchouchi, A. A. Zaky: A Direct Method for the Calculation of the Edge Capacitance. Journal of Applied Physics 8, 1365–1371 (1975).Google Scholar
  102. [6.102]
    E. W Greeneich: An Analytical model for the Gate Capacitance of Small-Geometry MOS Structures. IEEE Transactions on Electron Devices ED-30, 1838–1839 (1983).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1990

Authors and Affiliations

  • Henk C. de Graaff
    • 1
  • François M. Klaassen
    • 1
  1. 1.Philips Research LaboratoriesEindhovenThe Netherlands

Personalised recommendations