Skip to main content

Part of the book series: Computational Microelectronics ((COMPUTATIONAL))

  • 348 Accesses

Abstract

In this chapter we will first discuss some general problems in bipolar device modelling, namely the choice between injection and transport models and the validity of the charge control principle. After that we will show how the various device phenomena like main currents, Early effect, depletion capacitance etc., can be described by means of compact, explicit and analytical mathematical expressions. Unless stated otherwise, the device structure considered here is that of a vertical npn transistor. In most cases the vertical pnp transistor only needs a change of sign in its model formulas. The lateral pnp transistor, which is quite different, will be treated in a separate chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. K. Gummel: Measurement of the Number of Impurities in the Base Layer of a Transistor. Proc. I.R.E. 42, 1761 (1954).

    Article  Google Scholar 

  2. H. C. de Graaff, J. W. Slotboom, A. Schmitz: The Emitter Efficiency of Bipolar Transistors. Solid-State Electr. 20, 515 (1977).

    Article  Google Scholar 

  3. H, Schaber et al: Process and Device Related Scaling Considerations for Polysilicon Emitter Bipolar Transistors. IEDM Techn. Digest 170 (1987).

    Google Scholar 

  4. R. Beaufroy, J. J. Sparkes: The Junction Transistor as a Charge-Controlled Device. Automat. Tel. Eng. J. 13, 310 (1957).

    Google Scholar 

  5. J. te Winkel: Past and Present of the Charge-Control Concept in the Characterization of the Bipolar Transistor. Adv. Electr. and Electr. Phys. 39, 253 (1975).

    Article  Google Scholar 

  6. J. J. Ebers, J. L. Moll: Large Signal Behaviour of Junction Transistors. Proc. I.R.E. 42, 1761 (1954).

    Article  Google Scholar 

  7. J. L. Moll, J. M. Ross: The Dependence of Transistor Parameters on the Distribution of Base Layer Resistivity. Proc. I.R.E. 44, 72 (1956).

    Article  Google Scholar 

  8. H. K. Gummel: A Charge-Control Relation for Bipolar Transistors. Bell Syst. Techn. J. 49, 115 (1970).

    Google Scholar 

  9. H. K. Gummel, H. C. Poon: An Integral Charge-Control Model for Bipolar Transistors. Bell Syst. Techn. J. 49, 827 (1970).

    Google Scholar 

  10. L Getreu: Modeling the Bipolar Transistor. Tektronix Inc., Beaverton OR (1979).

    Google Scholar 

  11. H. C. de Graaff, W. J. Kloosterman: New Formulation of the Current and Charge Relations in Bipolar Transistor Modeling for CACD Purposes. IEEE Trans. Electr. Dev. ED-32, 2415 (1985).

    Article  Google Scholar 

  12. J. L. Moll: Physics of Semiconductors. McGraw-Hill, New York (1964).

    MATH  Google Scholar 

  13. H. C. de Graaff: Review of Models for Bipolar Transistors. In: Process and Device Modeling for Integrated Circuit Design ( F. van de Wiele, W. L. Engl, P. G. Jespers, eds.). Noordhoff, Leiden (1977).

    Google Scholar 

  14. H. C. Poon, H. K. Gummel: Modeling of the Emitter Capacitance. Proc. IEEE 57, 2181 (1969).

    Article  Google Scholar 

  15. C. T. Kirk: A Theory of Transistor Cut-Off Frequency (f T) Fall-Off at High Current Densities. I.R.E. Trans. Electr. Dev. ED-9, 164 (1962).

    Google Scholar 

  16. J. M. Early: Effects of Space-Charge Layer Widening in Junction Transistors. Proc. I.R.E. 40, 1401 (1952).

    Article  Google Scholar 

  17. J. W. Slotboom: Iterative Scheme for 1- and 2-Dimensional D.C. Transistor Simulation. Electr. Ltrs. 5, 677 (1969).

    Article  Google Scholar 

  18. J. R. A. Beale, J. A. G. Slatter: The Equivalent Circuit of a Transistor with a Lightly Doped Collector Operating in Saturation. Solid-State Electr. 11, 241 (1968).

    Article  Google Scholar 

  19. J. A. Pals, H. C. de Graaff: On the Behaviour of the Base-Collector Junction of a Transistor at High Collector Current Densities. Philips Res. Rep. 24, 53 (1969).

    Google Scholar 

  20. L. A. Hahn: The Effect of Collector Resistance Upon the High Current Capability of n-p-v-n Transistors. IEEE Trans. Electr. Dev. ED-16, 654 (1969).

    Article  Google Scholar 

  21. D. L. Bowler, F. A. Lindholm: High Current Regimes in Transistor Collector Regions. IEEE Trans. Electr. Dev. ED-20, 257 (1973).

    Article  Google Scholar 

  22. H. C. de Graaff: High Current Density Effects in the Collector of Bipolar Transistors. In: Process and Device Modeling for Integrated Circuit Design ( F. van de Wiele, W. L. Engl, P. G. Jespers, eds). Noordhoff, Leiden (1977).

    Google Scholar 

  23. L. J. Turgeon, J. R. Mathews: A Bipolar Transistor Model of Quasi-Saturation for Use in CAD. IEDM Techn. Digest 394 (1980).

    Google Scholar 

  24. H. C. de Graaff: Compact Bipolar Transistor Modeling. In: Process and Device Modeling ( W. L. Engl, ed.). North-Holland, Amsterdam (1986).

    Google Scholar 

  25. G. M. Kull et al.: A Unified Circuit Model for Bipolar Transistors Including Quasi-Saturation Effects. I.E.E.E. Trans. Electr. Dev. ED-32, 1103 (1985).

    Article  Google Scholar 

  26. S. L. Miller: Ionization Rates for Holes and Electrons in Silicon. Phys. Rev. 105, 1246 (1957).

    Article  Google Scholar 

  27. R. W. Dutton: Bipolar Transistor Modeling of Avalanche Generation for Computer Simulation. I.E.E.E. Trans. Electr. Dev. ED-22, 334 (1975).

    Google Scholar 

  28. D. A. Divekar, R. E. Lovelace: Modeling of Avalanche Current of Bipolar Junction Transistors for Computer Circuit Simulation. I.E.E.E. Trans. CAD Int. Circ. and Syst. CAD-1, 114(1982).

    Google Scholar 

  29. H. C. Poon, J. C. Meckwood: Modeling of Avalanche Effect in Integral Charge Control Model. I. E.E.E. Trans. Electr. Dev. ED-19, 90 (1972).

    Google Scholar 

  30. S. M. Sze: Physics of Semiconductor Devices, 2nd ed. John Wiley & Sons, New York (1981).

    Google Scholar 

  31. J. R. Hauser: The Effects of Distributed Base Potential on Emitter Current Density and Effective Base Resistance for Stripe Transistor Geometries. I.E.E.E. Trans. Electr Dev. £D-11, 238(1964).

    Google Scholar 

  32. J. E. Lary, R. L. Anderson: Effective Base Resistance of Bipolar Transistors. I.E.E.E Trans. Electr. Dev. ED-32, 2503 (1985).

    Article  Google Scholar 

  33. G. Rey: Effets de la Défocalisation sur le Comportement des Transistors à Jonctions Solid-State Electr. 12, 645 (1969).

    Google Scholar 

  34. H. Groendijk: Modeling Base Crowding in a Bipolar Transistor. I.E.E.E. Trans Electr. Dev. ED-20, 329 (1973).

    Article  Google Scholar 

  35. H. C. de Graaff: Electrical Behaviour of Lightly Doped Collectors in Bipolar Transis tors. Thesis, University of Technology, Eindhoven (1975).

    Google Scholar 

  36. H. C. de Graaff: Approximate Calculations on the Spreading Resistance in Multi Emitter Structures. Philips Res. Rep. 24, 34 (1969).

    Google Scholar 

  37. J. Lindmayer, C. Y. Wrigley: Fundamentals of Semiconductor Devices. Van Nostrand, Princeton (1965).

    Google Scholar 

  38. J. te Winkel: Extended Charge-Control Model for Bipolar Transistors. I.E.E.E. Trans. Electr. Dev. ED-20, 389 (1973).

    Article  Google Scholar 

  39. J. G. Possum, S. Veeraraghavan: Partitioned-Charge-Based Modeling of Bipolar Transistors for Non-Quasi-Static Circuit Simulation. I.E.E.E. Electr. Dev. Ltrs. EDL-7, 652 (1986).

    Google Scholar 

  40. H. Klose, A. W. Wieder: The Transient Integral Charge Control Relation—A Novel Formulation of the Currents in a Bipolar Transistor. I.E.E.E. Trans. Electr. Dev. ED-34, 1090 (1987).

    Article  Google Scholar 

  41. P. B. Weil, L. P. McNamee: Simulation of Excess Phase in Bipolar Transistors. I. E.E.E. Trans. CAS-25, 114 (1978).

    Google Scholar 

  42. J. J. H. van den Biesen: A Simple Regional Analysis of Transit Times in Bipolar Transistors. Solid-State Electr. 29, 529 (1986).

    Article  Google Scholar 

  43. R. G. Meyer, R. S. Mullen Charge-Control Analysis of the Collector-Base Space- Charge-Region Contribution to Bipolar Transistor Time Constant T T. I. E.E.E. Trans. Electr. Dev. ED-34, 450 (1987).

    Article  Google Scholar 

  44. J. A. Pals: On the Noise of a Transistor with d. c. Current Crowding. Philips Res. Rep. 26, 91 (1971).

    Google Scholar 

  45. J. L. Plumb, E. R. Chenette: Flicker Noise in Transistors. I.E.E.E. Trans. Electr. Dev. ED-10, 304(1963).

    Article  Google Scholar 

  46. J. M. C. Stork et al.: High Performance Operation of Silicon Bipolar Transistors at Liquid Nitrogen Temperatures. IEDM Techn. Digest 405 (1987).

    Google Scholar 

  47. J. W. Slotboom, H. C. de Graaff: Bandgap Narrowing in Silicon Bipolar Transistors. I.E.E.E. Trans. Electr. Dev.ED-24, 1123 (1977).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag/Wien

About this chapter

Cite this chapter

de Graaff, H.C., Klaassen, F.M. (1990). Modelling of Bipolar Device Phenomena. In: Compact Transistor Modelling for Circuit Design. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9043-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9043-2_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9045-6

  • Online ISBN: 978-3-7091-9043-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics