Skip to main content

Part of the book series: Computational Microelectronics ((COMPUTATIONAL))

  • 357 Accesses

Abstract

In this chapter we will deal shortly with a number of fundamental concepts of semiconductor physics (distribution functions, doping levels, carrier transport, mobility, etc.). One can also find here a set of formulas that are needed in the description of device phenomena and in the formulation of model equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. H. B. Stiddard: The Elementary Language of Solid State Physics. Academic Press, London (1975).

    Google Scholar 

  2. S. M. Sze: Physics of Semiconductor Devices, 2nd edn. John Wiley & Sons, New York (1981).

    Google Scholar 

  3. J. S. Blakemore: Solid State Physics, 2nd edn. Cambridge University Press, Cambridge (1985).

    Google Scholar 

  4. L. A. Pipes: Applied Mathematics for Engineers and Physicists. McGraw-Hill, New York (1958).

    MATH  Google Scholar 

  5. R. A. Smith: Semiconductors. Cambridge University Press, Cambridge (1961).

    Google Scholar 

  6. J. Lindmayer, Ch. Y. Wrigley: Fundamentals of Semiconductor Devices. Van Nostrand, Princeton (1965).

    Google Scholar 

  7. S. S. Li, W. R. Thurber: The Dopant Density and Temperature Dependence of Electron Mobility and Resistivity in n-Type Silicon. Solid-State Electronics 20, 609–616 (1977); S. S. Li: The Dopant Density and Temperature Dependence of Hole Mobility and Resistivity in Boron Doped Silicon. Solid-State Electronics 21, 1109–1117(1987).

    Article  Google Scholar 

  8. B. R. Nag: Theory of Electrical Transport in Semiconductors. Pergamon Press, Oxford (1972).

    Google Scholar 

  9. A. H. Marshak, C. M. van Vliet: Electrical Current and Carrier Density in Degenerate Materials with Non-Uniform Band Structure. Proc. IEEE 72, 148–164 (1984).

    Article  Google Scholar 

  10. G. Baccarani, M. Rudan, R. Guerrieri, P. Ciampolini: Physical Models for Numerical Device Simulation. In: Process and Device Modeling, ( W.L. Engl., ed.). North-Holland, Amsterdam (1986).

    Google Scholar 

  11. R. Stratton: Diffusion of Hot and Cold Electrons in Semiconductor Barriers. Phys. Rev. 126, 2002–2014 (1962).

    Article  Google Scholar 

  12. G. Baccarani, M. R. Wordeman: An Investigation of Steady-State Velocity Overshoot in Silicon. Solid-State Electronics 28, 407–416 (1985).

    Article  Google Scholar 

  13. E. H. Putley, W. H. Mitchell: The Electrical Conductivity and Hall Effect of Silicon. Proc. Phys. Soc. London A72, 193–200 (1958).

    Article  Google Scholar 

  14. J. W. Slotboom, H. C. de Graaff: Measurement of Bandgap Narrowing in Si Bipolar Transistors. Solid-State Electronics 19, 857–862 (1976).

    Article  Google Scholar 

  15. J. del Alamo, S. Swirhun, R. M. Swanson: Simultaneous Measurement of Hole Lifetime, Hole Mobility and Bandgap Narrowing in Heavily Doped n-Type Silicon. IEDM Techn. Digest 290–293 (1985).

    Google Scholar 

  16. M. S. Bennett: Improved Concepts for Predicting the Electrical Behavior of Bipolar Structures in Silicon. IEEE Trans. Electr. Dev. ED-30, 920–927 (1983).

    Article  Google Scholar 

  17. W. Shockley: Electrons and Holes in Semiconductors. Van Nostrand, Princeton (1950).

    Google Scholar 

  18. T. Ando, A. B. Fowler, F. Stern: Electronic Properties of 2D Systems. Rev. Modern Phys. 54, 437–671 (1982).

    Article  Google Scholar 

  19. D. M. Caughey, R. E. Thomas: Carrier Mobilities in Silicon Empirically Related to Doping and Field. Proc. IEEE 52, 2192–2193 (1967).

    Article  Google Scholar 

  20. W. E. Beadle, J. C. C. Tsai, R. D. Plummer: Quick Reference Manual for Silicon Integrated Circuit Technology. John Wiley & Sons, New York (1985).

    Google Scholar 

  21. A. J. Walker, P. H. Woerlee: Mobility Model for Silicon Inversion Layers, Proc. ESSDERC 1987. North-Holland, Amsterdam (1987), pp. 667–670.

    Google Scholar 

  22. W. Shockley, W. T. Read: Statistics of the Recombination of Holes and Electrons. Phys. Rev. 87, 835–842 (1952); R. N. Hall: Electron-Hole Recombination in Germanium. Phys. Rev. 87, 387 (1952).

    Article  MATH  Google Scholar 

  23. J. Dziewior, W. Schmid: Auger Coefficient for Highly Doped and Highly Excited Silicon. Appl. Phys. Lett. 31, 346–348 (1977).

    Article  Google Scholar 

  24. J. del Alamo: Minority Carrier Transport in Heavily Doped n-Type Silicon. Ph. D. Thesis, Stanford (1985).

    Google Scholar 

  25. G. A. Baraff: Distribution Function and Ionization Rates for Hot Electrons in Semi-conductors. Phys. Rev. 128, 2507–2517 (1962).

    Article  MATH  Google Scholar 

  26. A. G. Chynoweth: Ionization Rates for Electrons and Holes in Silicon. Phys. Rev. 109, 1537–1540(1958).

    Article  Google Scholar 

  27. R. J. van Overstraeten, H. J. de Man: Measurement of the Ionization Rates in Diffused Silicon p-n Junctions. Solid-State Electronics 13, 583–608 (1970).

    Article  Google Scholar 

  28. J. W. Slotboom, G. Streutker, G. J. T. Davids, P. B. Hartog: Surface Impact Ionization in Silicon Devices. IEDM Techn. Digest 494 (1987).

    Google Scholar 

  29. A. v. d. Ziel: Noise; Sources, Characterization, Measurements. Prentice Hall, Englewood Cliffs (1970).

    Google Scholar 

  30. W. Schottky: Über spontane Stromschwankungen in Elektricitätsleitern. Ann. Physik 57, 541 (1918).

    Article  Google Scholar 

  31. A. G. Th. Becking: For details see [2.29].

    Google Scholar 

  32. H. Nyquist: Thermal Agitation of Electric Charge in Conductors. Phys. Rev. 32, 110 (1928).

    Article  Google Scholar 

  33. A. L. McWhorter: 1/f Noise and Related Surface Effects. Ph.D. Thesis, MIT (1955).

    Google Scholar 

  34. T. G. M. Kleinpenning: 1/f Noise in Thermo emf of Semiconductors. Physica 77, 78 (1974).

    Article  Google Scholar 

  35. F. N. Hooge: 1/f Noise is no Surface Effect. Phys. Lett. 29A, 139 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag/Wien

About this chapter

Cite this chapter

de Graaff, H.C., Klaassen, F.M. (1990). Some Basic Semiconductor Physics. In: Compact Transistor Modelling for Circuit Design. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9043-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9043-2_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9045-6

  • Online ISBN: 978-3-7091-9043-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics