Some Basic Semiconductor Physics

  • Henk C. de Graaff
  • François M. Klaassen
Part of the Computational Microelectronics book series (COMPUTATIONAL)


In this chapter we will deal shortly with a number of fundamental concepts of semiconductor physics (distribution functions, doping levels, carrier transport, mobility, etc.). One can also find here a set of formulas that are needed in the description of device phenomena and in the formulation of model equations.


Conduction Band High Electric Field Inversion Layer Bandgap Narrowing Boltzmann Transport Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [2.1]
    M. H. B. Stiddard: The Elementary Language of Solid State Physics. Academic Press, London (1975).Google Scholar
  2. [2.2]
    S. M. Sze: Physics of Semiconductor Devices, 2nd edn. John Wiley & Sons, New York (1981).Google Scholar
  3. [2.3]
    J. S. Blakemore: Solid State Physics, 2nd edn. Cambridge University Press, Cambridge (1985).Google Scholar
  4. [2.4]
    L. A. Pipes: Applied Mathematics for Engineers and Physicists. McGraw-Hill, New York (1958).MATHGoogle Scholar
  5. [2.5]
    R. A. Smith: Semiconductors. Cambridge University Press, Cambridge (1961).Google Scholar
  6. [2.6]
    J. Lindmayer, Ch. Y. Wrigley: Fundamentals of Semiconductor Devices. Van Nostrand, Princeton (1965).Google Scholar
  7. [2.7
    S. S. Li, W. R. Thurber: The Dopant Density and Temperature Dependence of Electron Mobility and Resistivity in n-Type Silicon. Solid-State Electronics 20, 609–616 (1977); S. S. Li: The Dopant Density and Temperature Dependence of Hole Mobility and Resistivity in Boron Doped Silicon. Solid-State Electronics 21, 1109–1117(1987).CrossRefGoogle Scholar
  8. [2.8]
    B. R. Nag: Theory of Electrical Transport in Semiconductors. Pergamon Press, Oxford (1972).Google Scholar
  9. [2.9]
    A. H. Marshak, C. M. van Vliet: Electrical Current and Carrier Density in Degenerate Materials with Non-Uniform Band Structure. Proc. IEEE 72, 148–164 (1984).CrossRefGoogle Scholar
  10. [2.10]
    G. Baccarani, M. Rudan, R. Guerrieri, P. Ciampolini: Physical Models for Numerical Device Simulation. In: Process and Device Modeling, ( W.L. Engl., ed.). North-Holland, Amsterdam (1986).Google Scholar
  11. [2.11]
    R. Stratton: Diffusion of Hot and Cold Electrons in Semiconductor Barriers. Phys. Rev. 126, 2002–2014 (1962).CrossRefGoogle Scholar
  12. [2.12]
    G. Baccarani, M. R. Wordeman: An Investigation of Steady-State Velocity Overshoot in Silicon. Solid-State Electronics 28, 407–416 (1985).CrossRefGoogle Scholar
  13. [2.13]
    E. H. Putley, W. H. Mitchell: The Electrical Conductivity and Hall Effect of Silicon. Proc. Phys. Soc. London A72, 193–200 (1958).CrossRefGoogle Scholar
  14. [2.14]
    J. W. Slotboom, H. C. de Graaff: Measurement of Bandgap Narrowing in Si Bipolar Transistors. Solid-State Electronics 19, 857–862 (1976).CrossRefGoogle Scholar
  15. [2.15]
    J. del Alamo, S. Swirhun, R. M. Swanson: Simultaneous Measurement of Hole Lifetime, Hole Mobility and Bandgap Narrowing in Heavily Doped n-Type Silicon. IEDM Techn. Digest 290–293 (1985).Google Scholar
  16. [2.16]
    M. S. Bennett: Improved Concepts for Predicting the Electrical Behavior of Bipolar Structures in Silicon. IEEE Trans. Electr. Dev. ED-30, 920–927 (1983).CrossRefGoogle Scholar
  17. [2.17]
    W. Shockley: Electrons and Holes in Semiconductors. Van Nostrand, Princeton (1950).Google Scholar
  18. [2.18]
    T. Ando, A. B. Fowler, F. Stern: Electronic Properties of 2D Systems. Rev. Modern Phys. 54, 437–671 (1982).CrossRefGoogle Scholar
  19. [2.19]
    D. M. Caughey, R. E. Thomas: Carrier Mobilities in Silicon Empirically Related to Doping and Field. Proc. IEEE 52, 2192–2193 (1967).CrossRefGoogle Scholar
  20. [2.20]
    W. E. Beadle, J. C. C. Tsai, R. D. Plummer: Quick Reference Manual for Silicon Integrated Circuit Technology. John Wiley & Sons, New York (1985).Google Scholar
  21. [2.21]
    A. J. Walker, P. H. Woerlee: Mobility Model for Silicon Inversion Layers, Proc. ESSDERC 1987. North-Holland, Amsterdam (1987), pp. 667–670.Google Scholar
  22. [2.22]
    W. Shockley, W. T. Read: Statistics of the Recombination of Holes and Electrons. Phys. Rev. 87, 835–842 (1952); R. N. Hall: Electron-Hole Recombination in Germanium. Phys. Rev. 87, 387 (1952).MATHCrossRefGoogle Scholar
  23. [2.23]
    J. Dziewior, W. Schmid: Auger Coefficient for Highly Doped and Highly Excited Silicon. Appl. Phys. Lett. 31, 346–348 (1977).CrossRefGoogle Scholar
  24. [2.24]
    J. del Alamo: Minority Carrier Transport in Heavily Doped n-Type Silicon. Ph. D. Thesis, Stanford (1985).Google Scholar
  25. [2.25]
    G. A. Baraff: Distribution Function and Ionization Rates for Hot Electrons in Semi-conductors. Phys. Rev. 128, 2507–2517 (1962).MATHCrossRefGoogle Scholar
  26. [2.26]
    A. G. Chynoweth: Ionization Rates for Electrons and Holes in Silicon. Phys. Rev. 109, 1537–1540(1958).CrossRefGoogle Scholar
  27. [2.27]
    R. J. van Overstraeten, H. J. de Man: Measurement of the Ionization Rates in Diffused Silicon p-n Junctions. Solid-State Electronics 13, 583–608 (1970).CrossRefGoogle Scholar
  28. [2.28]
    J. W. Slotboom, G. Streutker, G. J. T. Davids, P. B. Hartog: Surface Impact Ionization in Silicon Devices. IEDM Techn. Digest 494 (1987).Google Scholar
  29. [2.29]
    A. v. d. Ziel: Noise; Sources, Characterization, Measurements. Prentice Hall, Englewood Cliffs (1970).Google Scholar
  30. [2.30]
    W. Schottky: Über spontane Stromschwankungen in Elektricitätsleitern. Ann. Physik 57, 541 (1918).CrossRefGoogle Scholar
  31. [2.31]
    A. G. Th. Becking: For details see [2.29].Google Scholar
  32. [2.32]
    H. Nyquist: Thermal Agitation of Electric Charge in Conductors. Phys. Rev. 32, 110 (1928).CrossRefGoogle Scholar
  33. [2.33]
    A. L. McWhorter: 1/f Noise and Related Surface Effects. Ph.D. Thesis, MIT (1955).Google Scholar
  34. [2.34]
    T. G. M. Kleinpenning: 1/f Noise in Thermo emf of Semiconductors. Physica 77, 78 (1974).CrossRefGoogle Scholar
  35. [2.35]
    F. N. Hooge: 1/f Noise is no Surface Effect. Phys. Lett. 29A, 139 (1969).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1990

Authors and Affiliations

  • Henk C. de Graaff
    • 1
  • François M. Klaassen
    • 1
  1. 1.Philips Research LaboratoriesEindhovenThe Netherlands

Personalised recommendations