Skip to main content

Process and Geometry Dependence, Optimization and Statistics of Parameters

  • Chapter
Compact Transistor Modelling for Circuit Design

Part of the book series: Computational Microelectronics ((COMPUTATIONAL))

  • 341 Accesses

Abstract

The parameters of a compact model are in general dependent on the geometry of the device and on the technological process steps. The geometry of the device is mainly characterized by the lateral dimensions of the junctions in bipolar transistors and by the channel length and width in MOS transistors. The dimensions must be known in silicon because only the real dimensions are electrically significant. They are determined by the dimensions of the mask, corrected for such effects as outdiffusion, underetching, misalignment of masks, encroachment of isolation oxides, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Berry: Correlation of Diffusion Process Variations with Variations in Electrical Parameters of Bipolar Transistors. Proc. IEEE 57, 1513 (1969).

    Article  Google Scholar 

  2. R. W. Dutton, D. A. Divekar: Bipolar Models for Statistical IC Design. In: Process and Device Modeling for Integrated Circuit Design ( F. van de Wiele, W. L. Engl, P. G. Jespers, eds.). Noordhoff, Leyden (1977).

    Google Scholar 

  3. C. J. B. Spanos, S. W. Director: Parameter Extraction for Statistical IC Process Characterization. IEEE Trans. Comp.-Aid. Des. CAD-5, 66 (1986).

    Article  Google Scholar 

  4. P. Yang, et al.: An Integrated and Efficient Approach for MOS VLSI Statistical Circuit Design. IEEE Trans. Comp.-Aid. Des. CAD-5, 5 (1986).

    Article  Google Scholar 

  5. P. Cox, et al.: Statistical Modeling for Efficient Parametric Yield Estimation of MOS VLSI Circuits. IEEE Trans. Electr. Dev. ED-32, 471 (1985).

    Article  Google Scholar 

  6. P. J. Rankin: Statistical Modelling for Integrated Circuits. IEEE Proc. 129, 186 (1982).

    Google Scholar 

  7. N. Herr, B. Garbs, J. J. Barnes: A Statistical Modeling Approach for Simulation of MOS VLSI Circuit Designs. lEDM Techn. Digest (1982), p. 290 (paper [11.5).

    Google Scholar 

  8. Ph. Balaban, J. J. Golembeski: Statistical Analysis for Practical Circuit Design. IEEE Trans. Circ. Syst. CAS-22,100(1975).

    Article  Google Scholar 

  9. S. Inohira, et al: Statistical Model Including Parameter Matching for Analog Integrated Circuits Simulation. Trans. Electr. Dev. ED-32, 2177 (1985).

    Article  Google Scholar 

  10. P. M. Solomon, D. D. Tang: Bipolar Circuit Scaling. IEEE Int. Solid-St. Circ. Conf. (1979), p. 86 (paper WPM 8. 4 ).

    Google Scholar 

  11. P. A. H. Hart, T. v. ’t Hof, F. M. Klaassen: Device Down Scaling and Expected Circuit Performance. IEEE J. Solid-St. Circ. SC-14, 343 (1979).

    Article  Google Scholar 

  12. T. Smedes: Optimization and Down Scaling of Processes for ECL Circuits. Master Thesis, Technical University, Eindhoven (1986).

    Google Scholar 

  13. H. C. de Graaff, W. J. Kloosterman: New Formulation of the Current and Charge Relations in Bipolar Transistor Modeling for CACD Purposes. IEEE Trans. Electr. Dev. ED-32, 2415 (1985).

    Article  Google Scholar 

  14. J. W. Slotboom: Computer-Aided Two-Dimensional Analysis of Bipolar Transistors. IEEE Trans. Electr. Dev. ED-20, 669 (1973).

    Article  Google Scholar 

  15. N. Shiono: Emitter Perimeter-to-Area Ratio Effects on High-Frequency Transistor Current Gain and Its Degradation. Jap. J. A. P. 18, 1097 (1979).

    Article  Google Scholar 

  16. G. A. M. Hurkx: On the Sidewall Effects in Submicrometer Bipolar Transistors. IEEE Trans. Electr. Dev. ED-34, 1939 (1987).

    Article  Google Scholar 

  17. R. K. Brayton, G. D. Hachtel, A. L. Sangiovanni-Vincentelli: A Survey of Optimization Techniques for Integrated-Circuit Design. Proc. IEEE 69, 1334 (1981).

    Article  Google Scholar 

  18. A. M. Mood, F. A. Graybill, D. C. Boes: Introduction to the Theory of Statistics, 3rd Ed. McGraw-Hill, Tokyo (1974).

    MATH  Google Scholar 

  19. A Papoulis: Probability, Random Variables and Stochastic Processes. McGraw-Hill, Kogagusha, Tokyo (1965).

    MATH  Google Scholar 

  20. P. Yang, P. Chatterjee: Statistical Modelling of Small Geometry MOSFETs. Techn. Digest IEDM 286 (1982), (paper [11.4).

    Google Scholar 

  21. K. R. Lakshmikumar, R. A. Hadaway, M. A. Copeland: Characterization and Modeling of Mismatch in MOS Transistors for Precision Analog Design. IEEE J. Solid-State Circ. SC-21, 1057 (1986).

    Article  Google Scholar 

  22. W. Maly, A. Strojwas: Statistical Simulation of the IC Manufacturing Process. IEEE Trans. Comp.-Aid. Des. CAD-1, 120 (1982).

    Article  Google Scholar 

  23. S. R. Nassif, A. Strojwas, S. W. Director: Fabrics II, A Statistically Based IC Fabrication Process Simulator. IEEE Trans. Comp.-Aid. Des. CAD-3, 40 (1984).

    Article  Google Scholar 

  24. J. B. Shyu, G. Temos, F. Krummenacher: Random Error Effects in Matched MOS Capacitors and Current Sources. IEEE Journal of Solid-State Circuits SC-19, 948–955 (1984).

    Article  Google Scholar 

  25. M. J. M. Pelgrom, A. C. J. Duinmayer: Matching Properties of MOS Transistors. Digest ESSCIRC (1988).

    Google Scholar 

  26. M. J. M. Pelgrom: Delay Lines with Surface Channel Charge-Coupled Devices. Ph.D. Thesis, University of Technology, Twente, The Netherlands (1988).

    Google Scholar 

  27. M. J. B. Bolt, A. Trip, H. J. Verhagen: Statistical Worst-Case MOS Parameter Extraction. Proceedings on Microelectronic Test Structures. Edinburgh (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag/Wien

About this chapter

Cite this chapter

de Graaff, H.C., Klaassen, F.M. (1990). Process and Geometry Dependence, Optimization and Statistics of Parameters. In: Compact Transistor Modelling for Circuit Design. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9043-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9043-2_11

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9045-6

  • Online ISBN: 978-3-7091-9043-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics