Process and Geometry Dependence, Optimization and Statistics of Parameters

  • Henk C. de Graaff
  • François M. Klaassen
Part of the Computational Microelectronics book series (COMPUTATIONAL)


The parameters of a compact model are in general dependent on the geometry of the device and on the technological process steps. The geometry of the device is mainly characterized by the lateral dimensions of the junctions in bipolar transistors and by the channel length and width in MOS transistors. The dimensions must be known in silicon because only the real dimensions are electrically significant. They are determined by the dimensions of the mask, corrected for such effects as outdiffusion, underetching, misalignment of masks, encroachment of isolation oxides, etc.


Threshold Voltage Sheet Resistance Bipolar Transistor Unity Parameter Geometrical Scaling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [11.1]
    R. Berry: Correlation of Diffusion Process Variations with Variations in Electrical Parameters of Bipolar Transistors. Proc. IEEE 57, 1513 (1969).CrossRefGoogle Scholar
  2. [11.2]
    R. W. Dutton, D. A. Divekar: Bipolar Models for Statistical IC Design. In: Process and Device Modeling for Integrated Circuit Design ( F. van de Wiele, W. L. Engl, P. G. Jespers, eds.). Noordhoff, Leyden (1977).Google Scholar
  3. [11.3]
    C. J. B. Spanos, S. W. Director: Parameter Extraction for Statistical IC Process Characterization. IEEE Trans. Comp.-Aid. Des. CAD-5, 66 (1986).CrossRefGoogle Scholar
  4. [11.4]
    P. Yang, et al.: An Integrated and Efficient Approach for MOS VLSI Statistical Circuit Design. IEEE Trans. Comp.-Aid. Des. CAD-5, 5 (1986).CrossRefGoogle Scholar
  5. [11.5]
    P. Cox, et al.: Statistical Modeling for Efficient Parametric Yield Estimation of MOS VLSI Circuits. IEEE Trans. Electr. Dev. ED-32, 471 (1985).CrossRefGoogle Scholar
  6. [11.6]
    P. J. Rankin: Statistical Modelling for Integrated Circuits. IEEE Proc. 129, 186 (1982).Google Scholar
  7. [11.7]
    N. Herr, B. Garbs, J. J. Barnes: A Statistical Modeling Approach for Simulation of MOS VLSI Circuit Designs. lEDM Techn. Digest (1982), p. 290 (paper [11.5).Google Scholar
  8. [11.8]
    Ph. Balaban, J. J. Golembeski: Statistical Analysis for Practical Circuit Design. IEEE Trans. Circ. Syst. CAS-22,100(1975).CrossRefGoogle Scholar
  9. [11.9]
    S. Inohira, et al: Statistical Model Including Parameter Matching for Analog Integrated Circuits Simulation. Trans. Electr. Dev. ED-32, 2177 (1985).CrossRefGoogle Scholar
  10. [11.10]
    P. M. Solomon, D. D. Tang: Bipolar Circuit Scaling. IEEE Int. Solid-St. Circ. Conf. (1979), p. 86 (paper WPM 8. 4 ).Google Scholar
  11. [11.11]
    P. A. H. Hart, T. v. ’t Hof, F. M. Klaassen: Device Down Scaling and Expected Circuit Performance. IEEE J. Solid-St. Circ. SC-14, 343 (1979).CrossRefGoogle Scholar
  12. [11.12]
    T. Smedes: Optimization and Down Scaling of Processes for ECL Circuits. Master Thesis, Technical University, Eindhoven (1986).Google Scholar
  13. [11.13]
    H. C. de Graaff, W. J. Kloosterman: New Formulation of the Current and Charge Relations in Bipolar Transistor Modeling for CACD Purposes. IEEE Trans. Electr. Dev. ED-32, 2415 (1985).CrossRefGoogle Scholar
  14. [11.14]
    J. W. Slotboom: Computer-Aided Two-Dimensional Analysis of Bipolar Transistors. IEEE Trans. Electr. Dev. ED-20, 669 (1973).CrossRefGoogle Scholar
  15. [11.15]
    N. Shiono: Emitter Perimeter-to-Area Ratio Effects on High-Frequency Transistor Current Gain and Its Degradation. Jap. J. A. P. 18, 1097 (1979).CrossRefGoogle Scholar
  16. [11.16]
    G. A. M. Hurkx: On the Sidewall Effects in Submicrometer Bipolar Transistors. IEEE Trans. Electr. Dev. ED-34, 1939 (1987).CrossRefGoogle Scholar
  17. [11.17]
    R. K. Brayton, G. D. Hachtel, A. L. Sangiovanni-Vincentelli: A Survey of Optimization Techniques for Integrated-Circuit Design. Proc. IEEE 69, 1334 (1981).CrossRefGoogle Scholar
  18. [11.18]
    A. M. Mood, F. A. Graybill, D. C. Boes: Introduction to the Theory of Statistics, 3rd Ed. McGraw-Hill, Tokyo (1974).MATHGoogle Scholar
  19. [11.19]
    A Papoulis: Probability, Random Variables and Stochastic Processes. McGraw-Hill, Kogagusha, Tokyo (1965).MATHGoogle Scholar
  20. [11.20]
    P. Yang, P. Chatterjee: Statistical Modelling of Small Geometry MOSFETs. Techn. Digest IEDM 286 (1982), (paper [11.4).Google Scholar
  21. [11.21]
    K. R. Lakshmikumar, R. A. Hadaway, M. A. Copeland: Characterization and Modeling of Mismatch in MOS Transistors for Precision Analog Design. IEEE J. Solid-State Circ. SC-21, 1057 (1986).CrossRefGoogle Scholar
  22. [11.22]
    W. Maly, A. Strojwas: Statistical Simulation of the IC Manufacturing Process. IEEE Trans. Comp.-Aid. Des. CAD-1, 120 (1982).CrossRefGoogle Scholar
  23. [11.23]
    S. R. Nassif, A. Strojwas, S. W. Director: Fabrics II, A Statistically Based IC Fabrication Process Simulator. IEEE Trans. Comp.-Aid. Des. CAD-3, 40 (1984).CrossRefGoogle Scholar
  24. [11.24]
    J. B. Shyu, G. Temos, F. Krummenacher: Random Error Effects in Matched MOS Capacitors and Current Sources. IEEE Journal of Solid-State Circuits SC-19, 948–955 (1984).CrossRefGoogle Scholar
  25. [11.25]
    M. J. M. Pelgrom, A. C. J. Duinmayer: Matching Properties of MOS Transistors. Digest ESSCIRC (1988).Google Scholar
  26. [11.26]
    M. J. M. Pelgrom: Delay Lines with Surface Channel Charge-Coupled Devices. Ph.D. Thesis, University of Technology, Twente, The Netherlands (1988).Google Scholar
  27. [11.27]
    M. J. B. Bolt, A. Trip, H. J. Verhagen: Statistical Worst-Case MOS Parameter Extraction. Proceedings on Microelectronic Test Structures. Edinburgh (1989).Google Scholar

Copyright information

© Springer-Verlag/Wien 1990

Authors and Affiliations

  • Henk C. de Graaff
    • 1
  • François M. Klaassen
    • 1
  1. 1.Philips Research LaboratoriesEindhovenThe Netherlands

Personalised recommendations