Skip to main content

Parameter Determination

  • Chapter
  • 342 Accesses

Part of the book series: Computational Microelectronics ((COMPUTATIONAL))

Abstract

A good set of parameters is as important as a good model; the most accurate model will perform badly if the parameter values are not correct. Unfortunately, the set of parameter values is not unique, which means that there are other parameter sets possible that give more or less the same fit to the measured characteristics. This is mainly caused by the fact that the various device phenomena, as described by certain parameters, cannot always be distinguished clearly from each other in the measured characteristics. As examples we may mention quasi-saturation and high injection in the base, or Early effect and avalanche multiplication in bipolar transistors, and static feedback and channel length modulation in MOS transistors. This also means that usually not all compact model parameters are independent from each other: the value given to one parameter may influence the value of another. The final judgement whether a parameter set is good enough lies in the fit to the measurements and in their physical plausibility.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. J. Wang, J. Y. Lee, C. Y. Chang: An Efficient and Reliable Approach for Semiconductor Device Parameter Extraction. IEEE Trans. Comp.-Aided Des. CAD-5, 170 (1986).

    Article  Google Scholar 

  2. D. E. Ward, K. Doganis: Optimized Extraction of MOS Model Parameters. IEEE Trans. CAD Int. Circ. Syst. CAD-1, 163 (1982).

    Article  Google Scholar 

  3. K. Doganis, D. L. Scharfetter: General Optimization and Extraction of IC Device Model Parameters. IEEE Trans. Electr. Dev. ED-30, 1219 (1983).

    Article  Google Scholar 

  4. D. W. Marquardt: An Algorithm for Least-Squares Estimation of Non-Linear Parameters. J. Soc. Indust. Appl. Math, 11, 431 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  5. C. G. Broyden: In: Numerical Methods for Unconstrained Optimization ( W. Murray, ed.). Academic Press, New York (1972).

    Google Scholar 

  6. F. M. Klaassen, W. de Groot, F. L. van de Markt: Computer Algorithm to Determine MOS Process Parameters. Philips Res. Repts. 31 84 (1976).

    Google Scholar 

  7. H. P. Tuinhout, S. Swaving, J. J. M. Joosten: A Fully Analytical MOSFET Model Parameter Extraction Approach. Proc. IEEE Int. Conf. Microelectr. Test Structures, Long Beach (1988), p. 79.

    Google Scholar 

  8. T. H. Ning, D. D. Tang: Method for Determining the Emitter and Base Series Resistances of Bipolar Transistors. IEEE Trans. Electr. Dev. ED-31, 409 (1984).

    Article  Google Scholar 

  9. L. J. Giacoletto: Measurements of Emitter and Collector Series Resistances. IEEE Trans. Electr. Dev. ED-19, 692 (1972).

    Article  Google Scholar 

  10. J. Chôma, Jr.: Error Minimization in the Measurement of Bipolar Collector and Emitter Resistances. IEEE J. Solid-St. Circ. SC-11, 318 (1976).

    Article  Google Scholar 

  11. H. G. Rudenberg: On the Effect of Base Resistance and Collector-to-Base Overlap on the Saturation Voltage of Power Transistors. Proc. IRE 46, 1304 (1958).

    Google Scholar 

  12. W. D. Mack, M. Horowitz: Measurement of Series Collector Resistance in Bipolar Transistors. IEEE J. Solid-St. Circ. SC-17, 767 (1982).

    Article  Google Scholar 

  13. W. Filensky, H. Beneking: New Technique for Determination of Static Emitter and Collector Series Resistances of Bipolar Transistors. Electr. Ltrs. 27, 50 (1981).

    Google Scholar 

  14. W. M. C. Sansen, R. G. Meyer: Characterization and Measurement of the Base and Emitter Resistances of Bipolar Transistors. IEEE J. Solid-St. Circ. SC-7, 492 (1972).

    Article  Google Scholar 

  15. A. Neugroschel: Measurement of the Low-Current Base and Emitter Resistances of Bipolar Transistors. IEEE Trans. Electr. Dev. ED-34, 817 (1987).

    Article  Google Scholar 

  16. H. C. de Graaff, R. J. van der Wal: Measurement of the Onset of Quasi-Saturation in Bipolar Transistors. Solid-St. Electr. 17, 1187 (1974).

    Article  Google Scholar 

  17. Sh. T. Hsu: Noise in High-Gain Transistors and Its Application to the Measurement of Certain Transistor Parameters. IEEE Trans. Electr. Dev. ED-18, 425 (1971).

    Article  Google Scholar 

  18. H. R. Claessen, J. A. M. Geelen, H. C. de Graaff: The Influence of the Emitter Sidewall Injection on Transistor Noise Figure. In: Solid-State Devices ( G. Soncini, P. U. Calzolari, eds.). Elsevier, Amsterdam (1988).

    Google Scholar 

  19. H. K. Gummel: On the Definition of the Cut-Off Frequency f T.Proc. IEEE 57, 2159 (1969).

    Article  Google Scholar 

  20. J. Y. Sun, M. R. Wordeman, S. E. Laux: On the Accuracy of Channel Length Characterization of LDD MOSFETs. IEEE Trans. Electr. Dev. ED-33, 1556 (1986).

    Google Scholar 

  21. F. M. Klaassen, W. Hes: Compensated MOSFET Devices. Solid-State Electronics 28, 359 (1985).

    Article  Google Scholar 

  22. S. M. Sze: Physics of Semiconductor Devices. John Wiley & Sons, New York (1982), chapt. 7.

    Google Scholar 

  23. J. H. H. M. Quint, F. M. Klaassen, R. Petterson: 2-D and 3-D Capacitance Effects in MOS VLSI. Proceedings ESSDERC 87, Bologna. North-Holland, Amsterdam (1987), p. 417.

    Google Scholar 

  24. G. J. Hu, C. Chang, Y. Chia: Gate-Voltage-Dependent Effective Channel Length and Series Resistance of LDD MOSFETS. IEEE Transactions on Electron Devices ED-34, 2469 (1987).

    Article  Google Scholar 

  25. F. M. Klaassen, P. T. J. Biermans, R. M. D. Velghe: The Series Resistance of Submicron MOSFETS and Its Effect on Their Characteristics. Journal de Physique 49, C4–257 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag/Wien

About this chapter

Cite this chapter

de Graaff, H.C., Klaassen, F.M. (1990). Parameter Determination. In: Compact Transistor Modelling for Circuit Design. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9043-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9043-2_10

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9045-6

  • Online ISBN: 978-3-7091-9043-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics