Parameter Determination

  • Henk C. de Graaff
  • François M. Klaassen
Part of the Computational Microelectronics book series (COMPUTATIONAL)


A good set of parameters is as important as a good model; the most accurate model will perform badly if the parameter values are not correct. Unfortunately, the set of parameter values is not unique, which means that there are other parameter sets possible that give more or less the same fit to the measured characteristics. This is mainly caused by the fact that the various device phenomena, as described by certain parameters, cannot always be distinguished clearly from each other in the measured characteristics. As examples we may mention quasi-saturation and high injection in the base, or Early effect and avalanche multiplication in bipolar transistors, and static feedback and channel length modulation in MOS transistors. This also means that usually not all compact model parameters are independent from each other: the value given to one parameter may influence the value of another. The final judgement whether a parameter set is good enough lies in the fit to the measurements and in their physical plausibility.


Bipolar Transistor Parameter Extraction Gate Bias Parameter Determination Drain Bias 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [10.1]
    S. J. Wang, J. Y. Lee, C. Y. Chang: An Efficient and Reliable Approach for Semiconductor Device Parameter Extraction. IEEE Trans. Comp.-Aided Des. CAD-5, 170 (1986).CrossRefGoogle Scholar
  2. [10.2]
    D. E. Ward, K. Doganis: Optimized Extraction of MOS Model Parameters. IEEE Trans. CAD Int. Circ. Syst. CAD-1, 163 (1982).CrossRefGoogle Scholar
  3. [10.3]
    K. Doganis, D. L. Scharfetter: General Optimization and Extraction of IC Device Model Parameters. IEEE Trans. Electr. Dev. ED-30, 1219 (1983).CrossRefGoogle Scholar
  4. [10.4]
    D. W. Marquardt: An Algorithm for Least-Squares Estimation of Non-Linear Parameters. J. Soc. Indust. Appl. Math, 11, 431 (1963).MathSciNetMATHCrossRefGoogle Scholar
  5. [10.5]
    C. G. Broyden: In: Numerical Methods for Unconstrained Optimization ( W. Murray, ed.). Academic Press, New York (1972).Google Scholar
  6. [10.6]
    F. M. Klaassen, W. de Groot, F. L. van de Markt: Computer Algorithm to Determine MOS Process Parameters. Philips Res. Repts. 31 84 (1976).Google Scholar
  7. [10.7]
    H. P. Tuinhout, S. Swaving, J. J. M. Joosten: A Fully Analytical MOSFET Model Parameter Extraction Approach. Proc. IEEE Int. Conf. Microelectr. Test Structures, Long Beach (1988), p. 79.Google Scholar
  8. [10.8]
    T. H. Ning, D. D. Tang: Method for Determining the Emitter and Base Series Resistances of Bipolar Transistors. IEEE Trans. Electr. Dev. ED-31, 409 (1984).CrossRefGoogle Scholar
  9. [10.9]
    L. J. Giacoletto: Measurements of Emitter and Collector Series Resistances. IEEE Trans. Electr. Dev. ED-19, 692 (1972).CrossRefGoogle Scholar
  10. [10.10]
    J. Chôma, Jr.: Error Minimization in the Measurement of Bipolar Collector and Emitter Resistances. IEEE J. Solid-St. Circ. SC-11, 318 (1976).CrossRefGoogle Scholar
  11. [10.11]
    H. G. Rudenberg: On the Effect of Base Resistance and Collector-to-Base Overlap on the Saturation Voltage of Power Transistors. Proc. IRE 46, 1304 (1958).Google Scholar
  12. [10.12]
    W. D. Mack, M. Horowitz: Measurement of Series Collector Resistance in Bipolar Transistors. IEEE J. Solid-St. Circ. SC-17, 767 (1982).CrossRefGoogle Scholar
  13. [10.13]
    W. Filensky, H. Beneking: New Technique for Determination of Static Emitter and Collector Series Resistances of Bipolar Transistors. Electr. Ltrs. 27, 50 (1981).Google Scholar
  14. [10.14]
    W. M. C. Sansen, R. G. Meyer: Characterization and Measurement of the Base and Emitter Resistances of Bipolar Transistors. IEEE J. Solid-St. Circ. SC-7, 492 (1972).CrossRefGoogle Scholar
  15. [10.15]
    A. Neugroschel: Measurement of the Low-Current Base and Emitter Resistances of Bipolar Transistors. IEEE Trans. Electr. Dev. ED-34, 817 (1987).CrossRefGoogle Scholar
  16. [10.16]
    H. C. de Graaff, R. J. van der Wal: Measurement of the Onset of Quasi-Saturation in Bipolar Transistors. Solid-St. Electr. 17, 1187 (1974).CrossRefGoogle Scholar
  17. [10.17]
    Sh. T. Hsu: Noise in High-Gain Transistors and Its Application to the Measurement of Certain Transistor Parameters. IEEE Trans. Electr. Dev. ED-18, 425 (1971).CrossRefGoogle Scholar
  18. [10.18]
    H. R. Claessen, J. A. M. Geelen, H. C. de Graaff: The Influence of the Emitter Sidewall Injection on Transistor Noise Figure. In: Solid-State Devices ( G. Soncini, P. U. Calzolari, eds.). Elsevier, Amsterdam (1988).Google Scholar
  19. [10.19]
    H. K. Gummel: On the Definition of the Cut-Off Frequency f T.Proc. IEEE 57, 2159 (1969).CrossRefGoogle Scholar
  20. [10.20]
    J. Y. Sun, M. R. Wordeman, S. E. Laux: On the Accuracy of Channel Length Characterization of LDD MOSFETs. IEEE Trans. Electr. Dev. ED-33, 1556 (1986).Google Scholar
  21. [10.21]
    F. M. Klaassen, W. Hes: Compensated MOSFET Devices. Solid-State Electronics 28, 359 (1985).CrossRefGoogle Scholar
  22. [10.22]
    S. M. Sze: Physics of Semiconductor Devices. John Wiley & Sons, New York (1982), chapt. 7.Google Scholar
  23. [10.23]
    J. H. H. M. Quint, F. M. Klaassen, R. Petterson: 2-D and 3-D Capacitance Effects in MOS VLSI. Proceedings ESSDERC 87, Bologna. North-Holland, Amsterdam (1987), p. 417.Google Scholar
  24. [10.24]
    G. J. Hu, C. Chang, Y. Chia: Gate-Voltage-Dependent Effective Channel Length and Series Resistance of LDD MOSFETS. IEEE Transactions on Electron Devices ED-34, 2469 (1987).CrossRefGoogle Scholar
  25. [10.25]
    F. M. Klaassen, P. T. J. Biermans, R. M. D. Velghe: The Series Resistance of Submicron MOSFETS and Its Effect on Their Characteristics. Journal de Physique 49, C4–257 (1988).Google Scholar

Copyright information

© Springer-Verlag/Wien 1990

Authors and Affiliations

  • Henk C. de Graaff
    • 1
  • François M. Klaassen
    • 1
  1. 1.Philips Research LaboratoriesEindhovenThe Netherlands

Personalised recommendations