Sucrose, the most abundant of all sugars, has been produced as a food and sweetener since 2000 BC from the juice in the stem of the sugar cane plant, a perennial tropical grass that originated in the South Pacific. As early as 325 BC sugar cane was cultivated in India from where it spread to the Mediterranian countries, and consequently sugar had gradually replaced honey as the major sweetener in Europe by the 15th century. In 1493 Christopher Columbus took sugar cane from the Canary Islands on his second transatlantic voyage to the Caribbean, the old Spanish Main, thus initiating a vast agricultural industry in the tropics and with it the hideous slave trade for plantation labour. In the mid-16th century sugar was a luxury and cost as much as caviar does today.


Molar Equivalent Acyl Group Migration Sucrose Ester Raney Nickel Selective Esterification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Strong, L.A.G.: The Story of Sugar. London: George Weidenfold and Nicholson. 1954.Google Scholar
  2. 2.
    Hugill, A.: Sugar and All That. London; Gentry Books, 1978.Google Scholar
  3. 3.
    Levi, I., and Purves, C.B.: Structure and Configuration of Sucrose. Adv. Carbohydr. Chem. 4, 1 (1949).Google Scholar
  4. 4.
    Hudson, C.S.: Relations between Rotatory Power and Structure in the Sugar Group. XXVI. The Ring Structures of Various Compound Sugars. J. Amer. Chem. Soc. 52, 1707 (1930).Google Scholar
  5. 5.
    Haworth, W.N. and Hirst, E.L.: The Structure of Fructose, y-fructose and Sucrose. J. Chem. Soc. 1858 (1926).Google Scholar
  6. 6.
    Haworth, W.N., Hirst, E.L., and Learner, A.: 1,3,4,6-Tetramethyl (y-) Fructose and 2,3,5-trimethyl (y-) Arabinose. Oxidation of d-and 1-Trimethyl Arabinolactone. J. Chem. Soc. 2432 (1927).Google Scholar
  7. 7.
    Fleury, P., and Courtois, J.E.: Oxidation of Sucrose by Periodic Acid. Compt. Rend. 214, 366 (1942).Google Scholar
  8. 8.
    Schlubach, H.H., and Rauchalles, G.: Die Spaltung des y-Methylfructosids durch Saccharasen. Zur Konfiguration des Rohrzuckers. Ber. 58, 1842 (1925).Google Scholar
  9. 9.
    Beevers, C.A., and Cociman, W.: The Crystal Structure of Sucrose Sodium Bromide Dihydrate. Proc. Roy. Soc. A. 190, 257 (1947).Google Scholar
  10. 10.
    Purves, C.B., and Hudson, C.S.: The Analysis of Gamma-methyl Fructoside Mixtures by Means of Invertase. IV. Behaviour of Sucrose in Methyl Alcohol containing Hydrogen Chloride. J. Amer. Chem. Soc. 56, 1973 (1934).Google Scholar
  11. 11.
    Jenner, M.R.: In Developments in Food Carbohydrate-2. Ed., pp. 99–143. C.K. LEE. London: Applied Science Publishers Ltd. 1980.Google Scholar
  12. 12.
    Khan, R.: Chemistry and New Uses of Sucrose: How Important? Pure and Appl. Chem. 56, No. 7. 833–844 (1984).Google Scholar
  13. 13.
    Levi, I., and Purves, C.B.: Structure and Configuration of Sucrose. Adv. Carbohydr. Chem. 4, 27 (1949).Google Scholar
  14. 14.
    Lemieux, R.U., and Huber, G.: A Chemical Synthesis of Sucrose. J. Amer. Chem. Soc. 75, 4118 (1953).Google Scholar
  15. 15.
    Tsuchida, H., and Komoto, M.: A Modified Procedure for the Synthesis of Sucrose. Agr. Biol. Chem. 29, 239 (1965).Google Scholar
  16. 16.
    Ness, R.K., and Fletcher, H.G.: Synthesis of Sucrose and of a-D-Glucopyranosyl a-D-Fructofuranoside through the Use of 1,3,4,6-tetra-O-Benzyl-D-fructofuranose. Carbohydr. Res. 17, 465 (1971).Google Scholar
  17. 17.
    Queen’s University.: L-Sucrose. Canadian Patent 1556 007 (1979).Google Scholar
  18. 18.
    Iley, D., and Fraser-Reid, B.: A New Synthesis of Sucrose which Demonstrates a novel Approach to the Synthesis of a-Linked Disaccharides. J. Amer. Chem. Soc. 97, 2563 (1975).Google Scholar
  19. 19.
    Dyer, Y.C., and Kim, Y.: Synthesis of C-Sucrose. J. Org. Chem. 53, 33–83 (1988).Google Scholar
  20. 20.
    Defaye, J., Driguez, H., Poncet, S., Chambert, R., and Petit-Glateon, M.F.: Synthesis of l’-Thiosucrose and Anomers and the Behaviour of Levansucrase and Invertase with this Substrate Analog. Carbohydr. Res. 130, 299 (1984).Google Scholar
  21. 21.
    Leloir, L.F., and Cardini, C.E.: The Biosynthesis of Sucrose Phosphate. J. Biol. Chem. 214, 157 (1955).Google Scholar
  22. 22.
    Nikaido, M., and Hassid, W.Z.: Biosynthesis of Sacharides. Adv. Carbohydr. Chem. and Biochem. 26, 366 (1971).Google Scholar
  23. 23.
    Hassid, W.Z., Doudoroff, M., and Barker, H.A.: Enzymatically Synthesised Crystalline Sucrose. J. Amer. Chem. Soc. 66, 1416 (1944).Google Scholar
  24. 24.
    Hassid, W.Z., Doudoroff, M., Barker, H.A., and Dore, W.H.: Isolation and Structure of an Enzymatically Synthesised Crystalline Disaccharide, D-Glucosido-DKetoxyloside. J. Amer. Chem. Soc. 68, 1465 (1946).Google Scholar
  25. 25.
    Card, P.J., and Hitz, W.D.: Synthesis of 1’-Deoxy-l’-fluorosucrose via Sucrose Synthetase Mediated Coupling of 1’-Deoxy-l-fluorofructose with Uridine Diphosphate Glucose. J. Amer. Chem. Soc. 106, 5348 (1984).Google Scholar
  26. 26.
    Zemek, J, and Kusar, S.: Biosynthesis of Sucrose and its Deoxy Derivatives. Coll. Czech. Chem. Commun. 53, 173 (1988).Google Scholar
  27. 27.
    Brown, G.M., and Levy, H.A.: Sucrose: Precise Determination of Crystall and Molecular Structure by Neutron Diffraction. Science 141, 921 (1963); Further Refinement of the Structure of Sucrose Based on Neutron Diffraction Data. Acta crystallogr. Sect. B, 29, 790 (1973).Google Scholar
  28. 28.
    Bock, K., and Lemieux, R.U.: The Conformational Properties of Sucrose in Aqueous Solution: Intramolecular Hydrogen Bonding. Carbohydr. Res. 100, 63 (1982).Google Scholar
  29. 29.
    Mathlouthi, M., Luu, C., Mefroy-Biget, A.M., and Luu, D.V.: Laser-Raman Study of Solute-Solvent interactions in Aqueous Solutions of D-Fructose, D-Glucose and Sucrose. Carbohydr. Res. 81, 213 (1980).Google Scholar
  30. 30.
    Mccain, D.C., and Markley, J.L.: The Solution Conformation of Sucrose: Concentration and Temperature Dependence. Carbohydr. Res. 152, 73 (1986).Google Scholar
  31. 31.
    Christofides, J.C., and Davies, D.B.: Comparison of Intramolecular Hydrogen-bonding Conformations of Sucrose Containing Oligosaccharides in Solution and the Solid State. Carbohydr. Res. 163, 269 (1987).Google Scholar
  32. 32.
    Mathlouthi, M., Seuvre, A.-M., and Birch, G.G.: Relationship between the Structure and the Properties of Carbohydrates in Aqueous Solutions; Sweetness of Chlorinated Sugars. Carbohydr. Res. 152, 47 (1986).Google Scholar
  33. 33.
    Shamil S., Birch, G.G., and Njoroge, S.: Intrinsic Viscosities and other Solution Properties of Sugars and their Possible Relation to Sweetness. Chemical Senses 13, 457 (1988).Google Scholar
  34. 34.
    Birch, G.G., and Shamil, S.: Structure, Sweetness and Solution Properties of small Carbohydrate Molecules. J. Chem. Soc. Faraday Trans. 1, 84, (8) 2635 (1988).Google Scholar
  35. 35.
    Becton, P.S., and Wright, K.M.: An “O-Nuclear Magnetic Resonance Relaxation-time Study of Sucrose-Water Interactions. J. Chem. Soc. Faraday Trans. 1, 82, 451 (1986).Google Scholar
  36. 36.
    Helferich, B.: Trityl Ethers of Carbohydrates. Adv. Carbohydr. Chem. 3, 79 (1948).Google Scholar
  37. 37.
    Josephson, K.: Über Triphenylmethyl-äther einiger Di-und Trisaccharide. Ein Beitrag zur Kenntnis der Konstitution der Maltose, Saccharose und Raffinose. Ann. 472, 230 (1929).Google Scholar
  38. 38.
    Mckeown, G.G., Serenius, R.S.E., and Hayward, L.D.: Selective Substitution in Sucrose. I. The Synthesis of 1’,4,6’-Tri-O-methylsucrose. Can. J. Chem. 35, 28 (1957).Google Scholar
  39. 39.
    Mckeown, G.G., and Hayward, L.D.: Selective Substitution in Sucrose. II. The Synthesis of 2,3,3’,4,4’-Penta-O-methylsucrose and C4 to C6 Acetyl Migration in Sucrose. Can. J. Chem. 35, 992 (1957).Google Scholar
  40. 40.
    Otake, T.: Studies of Tritylated Sucrose. I. Mono-O-tritylsucroses. Bull. Chem. Soc. Jpn. 45, 3199 (1970).Google Scholar
  41. 41.
    Otake, T.: Studies on Tritylated Sucrose. II. Di-O-tritylsucroses. Bull. Chem. Soc. Jpn. 43, 2895 (1972).Google Scholar
  42. 42.
    Hough, L., Mufti, K.S., and Khan, R.: Sucrochemistry. Part II. 6,6-Di-O-tritylsucrose. Carbohydr. Res. 21, 144 (1972).Google Scholar
  43. 43.
    Buchanan, J.G., and Cummerson, D.A.: l’,4:3’,6’-Dianhydrosucrose. Carbohydr. Res. 21, 293 (1972).Google Scholar
  44. 44.
    Buchanan, J.G., Cummerson, D.A., and Turner, D.M.: The Synthesis of Sucrose 6’-Phosphate. Carbohydr. Res. 21, 283 (1972).Google Scholar
  45. 45.
    Otake, T.: Studies of Tritylated Sucroses. III. NMR Studies of Tritylacetylsucroses. Bull. Chem. Soc. Jpn. 47, 1939 (1974).Google Scholar
  46. 46.
    Khan, R., and Mufti, K.S.: Synthesis and Reactions of 1’,2:4,6-Di-O-isopropylidene Sucrose. Carbohydr. Res. 43, 247 (1975).Google Scholar
  47. 47.
    Bredereck, H., Hagelloch, G., and Hambsch, E.: Notiz zur Darstellung der Oktamethyl-saccharose. Chem. Ber. 87, 35 (1954).Google Scholar
  48. 48.
    Percival, E.G.V.: Addition Compounds of the Carbohydrates. Part II. Potassium Hydroxide-Sucrose. J. Chem Soc. 648 (1935).Google Scholar
  49. 49.
    Lindley, M.G., Birch, G.G., and Khan, R.: Synthesis of Methyl Ether Derivatives of Sucrose. Carbohydr. Res. 43, 360 (1975).Google Scholar
  50. 50.
    Moody, W., Richards, G.N., Cheetham, N.W.H. and Sirimanne, P.: Isolation and Alkaline Degradation of Some Mono-O-methyl Sucroses. Carbohydr. Res. 114, 306 (1983).Google Scholar
  51. 51.
    Manley-Harris, M., and Richards, G.N.: Studies of the Alkaline Degradation of Mono-O-methyl Sucroses. Carbohydr. Res. 90, 27 (1981).Google Scholar
  52. 52.
    Henglein, F.A., Abelsnes, G., Heneka, H., Leinhard, K., Nakmre, P., and Scheinost, K.: Organosilyl Derivatives of Dicarboxylic Acids, Hydroxy acids and Sugars. Makromol. Chem. 24, 1 (1957).Google Scholar
  53. 53.
    Chang, C.D., and Hass, H.B.: Synthesis of a Silicone Derivative of Sucrose. J. Org. Chem. 23, 773 (1958).Google Scholar
  54. 54.
    Bentley, R.: Preparation of Crystalline Octa-O-(trimethylsilyl)sucrose. Carbohydr. Res. 59, 274 (1977).Google Scholar
  55. 55.
    Franke, F., and Guthrie, R.D.: t-Butyldimethylsilyl Ethers of Sucrose. Aust. J. Chem. 30, 639 (1977).Google Scholar
  56. 56.
    Franke, F., and Guthaie, R.D.: 6,6’-Di-O-t-butyldimethylsilylsucrose: Studies on the Rearrangements Accompanying Deblocking of Such Silyl Ethers. Aust. J. Chem. 31, 1285 (1978).Google Scholar
  57. 57.
    Karl, H., Cee, C.K., and Khan, R.: Synthesis and Reactions of tert-Butyldiphenylsilyl Ethers of Sucrose. Carbohydr. Res. 101, 31 (1982).Google Scholar
  58. 58.
    Khan, R.: Sucrochemistry. Part XIII. Synthesis of 4,6-O-benzylidene Sucrose. Carbohydr. Res. 32, 375 (1974).Google Scholar
  59. 59.
    Khan, R., Mufti, K.S., and Jenner, M.R.: Synthesis and Reactions of 4,5-Acetals of Sucrose. Carbohydr. Res. 65, 109 (1978).Google Scholar
  60. 60.
    Khan, R., and Lindseth, H.: Selective Diacetalation of 1’,2:4,6-di-O-isopropylidene Sucrose Tetra-acetate. Carbohydr. Res. 71, 327 (1979).Google Scholar
  61. 61.
    Cortes-Garcia, R., Hough, L., and Richardson, A.C.: Acetalation of Sucrose by Acetal Exchange with Concomitant Fission of the Glycosidic Bond. J. Chem. Soc. Perkin I. 3176 (1981).Google Scholar
  62. 62.
    Khan, R., Jenner, M.R., and Jones, H.F.: Synthesis and Reactions of Cyclic Acetal Derivatives of 6,6-dichloro-6,6’-dideoxysucrose. Carbohydr. Res. 49, 259 (1976).Google Scholar
  63. 63.
    SCI-Iützenberger, P., and Naudin, M.: Sucre de canne et anhydride acetique. Bull. Chim. Soc. Fr. 12, 206 (1869).Google Scholar
  64. 64.
    Konenko, O.K., and Kestenbaum, I.L.: Sucrose Monoacetate. J. Appl. Chem. II, 7 (1961).Google Scholar
  65. 65.
    Khan, R., and Mufti, K.S.: Process for the Preparation of 4,1’,6’-trideoxygalactosucrose. U.K. patent 2079749 (1982).Google Scholar
  66. 66.
    Bredereck, H., Zimmer, H., Wagner, A., Faber, G., Greiner, W., and Huber, W.: Darstellung und Konstitution zweier Pentaacetyl-saccharosen. Chem. Ber. 91, 2824 (1958).Google Scholar
  67. 67.
    Ballard, J.M., Hough, L., and Richardson, A.C.: Sucrochemistry. Part IV. A Direct Preparation of Sucrose 2,3,4,6,1’,3’,4’-Hepta-acetate. Carbohydr. Res. 24, 152 (1972).Google Scholar
  68. 68.
    Franzkowiak, L., and Thiem, J.: Synthesis of Agrocinopin A + B. Liebigs Ann. Chem. 1065 (1987).Google Scholar
  69. 69.
    Capek, K., Vydra, T., Ranny, M., and Sedmera, P.: Structures of Hexa-O-acetyl Sucroses Formed by Deacetylation of Sucrose Octaacetate. Coll. Czech. Chem. Commun. 2191 (1985).Google Scholar
  70. 70.
    Capek, K.,Vydra, T., and Sedmera, P.: Structure of Penta-O-acetylsucroses Formed by Deacetylation of Octa-O-acetylsucrose. Reaction of 2,3,4,6,6’-Penta-O-acetylsucrose. Coll. Czech. Chem. Commun. 23, 1317 (1988).Google Scholar
  71. 71.
    Khan, R., Jenner, M.R., and Lindseth, H.: Synthesis of Sucrose Epoxides; Partial De-esterification of 1’,2:4,6-di-O-isopropylidene Sucrose Tetra-acetate and Selective Tosylation of 3,6’-di-O-Acetyl-1’,2:4,6-di-O-isopropylidene Sucrose. Carbohydr. Res. 65, 99 (1978).Google Scholar
  72. 72.
    Avela, E., Aspellind, S., Holmbom, B., and Melander, B.: Selective Substitution of Hydroxyl Groups via Metal Chelates. In: Sucrochemistry, Ed. C.K. LEE, A.C.S. Symposium Series 41, 62 (1977).Google Scholar
  73. 73.
    Hough, L., James, C.E., Khan, R., and Richardson, A.C.: Unpublished Results.Google Scholar
  74. 74.
    Clods, D.M., Mchale, D., Sheridan, J.B., Birch, G.G., and Rathbone, E.B.: Partial Benzoylation of Sucrose. Carbohydr. Res. 139, 141 (1985).Google Scholar
  75. 75.
    Clode, D.M., Mchale, D., Laurie, W.A., and Sheridan, J.B.: Partial Benzoylation of 2,1’: 4,6-Di-O-Isopropylidene Sucrose. Carbohydr. Res. 139, 147 (1985).Google Scholar
  76. 76.
    Clode, D.M., Laurie, W.A., Mchale, D., and Sheridan, J.B.: Synthesis of 6,1’,3’-, 2,6,1’-, 1’,3’,6’- and 2,1’,6’-Tri-O-benzoyl Sucrose. Carbohydr. Res. 161, 139 (1988).Google Scholar
  77. 77.
    Ogawa, T., and Matsui, M.: A New Approach to the Regioselective Acylation of Polyhydroxy Compounds. Carbohydr. Res. 56, Cl (1977).Google Scholar
  78. 78.
    Belorizky, R., Excoffier, G., Gagnaire, D., Utille, J.P., Vignon, M., and Vottero, P.: Synthese d’oligosaccharides sur polymere support. I — Le groupe 13-benzoyl propionyle comme substituant temporaire. Bull. Soc. Chim. Fr. 4749 (1972).Google Scholar
  79. 79.
    Guthrie, R.D., Lucias, T.J., and Khan, R.: The 4-Oxovaleryl and 3-Benzoylproprionyl Groups for the Protection of Hydroxyl Functions. Carbohydr. Res. 33, 391 (1974).Google Scholar
  80. 80.
    Hough, L., Chowdhary, M.S., and Richardson, A.C.: Selective Esterification of Sucrose using Pivaloyl Chloride. J. Chem. Soc. Chem. Commun. 664 (1978).Google Scholar
  81. 81.
    Chowdhary, M.S., Hough, L., and Richardson, A.C.: Sucrochemistry. Part 33. The Selective Pivaloylation of Sucrose. J. Chem. Soc. Perkin I 419 (1984).Google Scholar
  82. 82.
    Lemieux, R.U., and Barrette, J.P.: A Chromatographic Analysis of the Product from the Tritosylation of Sucrose: Crystalline 6,6’-Di-O-tosylsucrose. Can. J. Chem. 38, 656 (1960).Google Scholar
  83. 83.
    Bolton, C.H., Hough, L., and Khan, R.: New Derivatives of Sucrose Prepared from the 6,6’-di-O-tosyl-and the Octa-O-mesyl Derivatives. Carbohydr. Res. 21, 133 (1972).Google Scholar
  84. 84.
    Bragg, P.D., and Jones, J.K.N.: The Charaterisation of Tri-O-tosylsucrose. Can. J. Chem. 37, 575 (1959).Google Scholar
  85. 85.
    Ball, D.H., Bissett, F.H., and Chalk, R.C.: Synthesis of a 6,1’,6’-Tri-O-(mesitylenesulfonyl)-sucrose and a Further Examination of “Tri-O-tosyl-sucrose”. Carbohydr. Res. 55, 149 (1977).Google Scholar
  86. 86.
    Ballard, J.M., Hough, L., Phadnis, S.P., and Richardson, A.C.: Selective Tetratosylation of Sucrose: Isolation of the 2,6,1’,6’-Tetrasulphonate. Carbohydr. Res. 83, 138 (1980).Google Scholar
  87. 87.
    Creasey, S.E., and Guthrie, R.D.: Mesitylenesulphonyl Chloride: a Selective Sulphonylating Reagent for Carbohydrates. J. Chem. Soc., Perkin I. 1373 (1974).Google Scholar
  88. 88.
    Hough, L., Phadnis, S.P., and Tarelli, E.: The Direct Preparation of 1’,6,6’-Trideoxysucrose 1’,6,6’-Trimesitylenesulphonylsucrose. Carbohydr. Res. 44, C12 (1975).Google Scholar
  89. 89.
    Aliquist, R.G., and Reist, E.J.: Synthesis of 6,6’-Disubstituted Sucrose Derivatives from 1-,6,6’-Tri-O-tripsyl sucrose. Carbohydr. Res. 46, 33 (1976).Google Scholar
  90. 90.
    Isaacs, N.W., Kennard, C.H., O’donnell, G.W., and Richards, G.N.: X-ray Crystal Structure and Properties of a New Trianhydro-a-D-glucosyl 1,4: 3,6-dianhydro-1-D-fructoside. J. Chem. Soc, Chem. Commun. 360 (1970).Google Scholar
  91. 91.
    Hough, L., and Mufti, K.S.: Sucrochemistry. Part X. 1’,4,6’-Tri-O-mesylsucrose Pentaacetate: a Comparison of the Reactivity at the 4 and 1’ positions. Carbohydr. Res. 29, 291 (1973).Google Scholar
  92. 92.
    Chui, A.K.B., Gurjar, M.K., Hough, L., Sincharoenkul, L.V., and Richardson, A.C.: The Synthesis of 2,1’-Anhydro-2,1’:3,6-Dianhydro and 2,1’: 3,6: 3’,6’-Trianhydro-sucrose. Carbohydr. Res. 100, 247 (1982).Google Scholar
  93. 93.
    Fairclough, P.H., Hough, L., and Richardson, A.C.: Derivatives of 1-D-Fructofuranosyl a-D-Galactopyranoside. Carbohydr. Res. 40, 285 (1975).Google Scholar
  94. 94.
    Gurjar, M.K., Hough, L., Richardson, A.C., and Sincharoenkul, L.V.: Preparation and Ring-opening of a 2,3-Anhydride derived from Sucrose. Carbohydr. Res. 150, 53 (1986).Google Scholar
  95. 95.
    Hough, L., Chowdhary, M.S., and Richardson, A.C.: The use of Pivalic Esters for the Synthesis of Chloro, Azido and Anhydro Derivatives. Carbohydr. Res. 147, 49 (1986).Google Scholar
  96. 96.
    Khan, R., Jenner, M.R., and Lindseth, M.: Synthesis of Sucrose Epoxides. Carbohydr. Res. 65, 99 (1978).Google Scholar
  97. 97.
    Gurjar, M.R.: Further Transformations of Sucrose. Ph.D. Thesis. University of London (1980).Google Scholar
  98. 98.
    Houci, L., Kabir, A.K.M.S., and Richardson, A.C.: The Synthesis of Some Fluoro Derivatives of Sucrose. Carbohydr. Res. 125, 247 (1984).Google Scholar
  99. 99.
    Helferich, B., Sprock, G., and Belser, E.: Ober ein d-Glucose-5,6-dichlorohydrin. Ber. 58, 886 (1925).Google Scholar
  100. 100.
    Buncel, E.: Chlorosulphates. Chem. Rev. 70, 323 (1970).Google Scholar
  101. 101.
    Szarek, W.: Deoxyhalogeno Sugars. Adv. Carbohydr. Chem. 28, 230 (1973).Google Scholar
  102. 102.
    Richardson, A.C.: Nucleophilic Replacement Reactions of Sulphonates. Part VI. A Summary of Steric and Polar Factors. Carbohydr. Res. 10, 395 (1969).Google Scholar
  103. 103.
    Hough, L.: The Sweeter Side of Chemistry. Chem. Soc. Rev. 14, 357 (1985).Google Scholar
  104. 104.
    Lee, C.K.: Synthesis of an Intensely Sweet Chlorodeoxysucrose: Mechanism of 4’-Chlorination of Sucrose by Sulphuryl Chloride. Carbohydr. Res. 162, 53 (1987).Google Scholar
  105. 105.
    Parolis, H.: The Preparation of 4,6-Dichloro-4,6-dideoxy-a-D-galactopyranosyl 6Chloro-6-deoxy-Il-D-fructofuranoside 1’,2,3,3’,4’-Pentachlorosulphate. Carbohydr. Res. 48, 132 (1976).Google Scholar
  106. 106.
    Ballard, J.M., Hough, L., Richardson, A.C., and Fairclough, P.H.: Sucrochemistry. Part XII. Reaction of Sucrose with Sulphuryl chloride. J. Chem. Soc. Perkin I 1524 (1973).Google Scholar
  107. 107.
    Khan, R.: Sucrochemistry. Part VII. Preparation and Reactions of Penta-O-benzoylsucrose 1’,6,6’-Tris(chlorosulphate) and Hexa-O-benzoylsucrose 6,6’-Bis(chlorosulphate). Carbohydr. Res. 25 504 (1972).Google Scholar
  108. 108.
    Riva, S., Chopineau, J., Kieboom, A.P.G., and Klibanov, A.M.: Protease-catalyzed Regioselective Esterification of Sugars and Related Compounds in Anhydrous Dimethylformamide. J. Amer. Chem. Soc. 110, 584 (1988).Google Scholar
  109. 109.
    Parkin, A., and Poller, R.C.: Sucrose Hydrogen Phthalates and Hydrogen Succinates. Carbohydr. Res. 62, 83 (1978).Google Scholar
  110. 110.
    Theobald, R.S.: Carbonic Esters of Sucrose. Part II. The Polymerisation of OAlkoxycarbonylsucroses. J. Chem. Soc. 5370 (1961).Google Scholar
  111. 111.
    Hough, L., Priddle, J.E., and Theobald, R.S.: The Carbonates and Thiocarbonates of Carbohydrates. Adv. Carbohydr. Chem. 15, 91 (1960).Google Scholar
  112. 112.
    Kollonitsch, V.: “Sucrochemicals”, Kline, The International Sugar Research Foundation, Washington D.C., p. 83 (1970).Google Scholar
  113. 113.
    Avenal, D., Neuman, A., and Gilliear-Pardraud, M.: X-ray Crystal Structure of Sucrose Octasulphate Heptahydrate. Acta Crystallogr. Sect. B 32, 2598 (1976).Google Scholar
  114. 114.
    Khan, R.: Sucrochemistry. Part III. 1’,6,6’-Tri-O-tosylsucrose and its Conversion into l’,4’: 3,6:3’,6’-Trianhydrosucrose. Carbohydr. Res. 22, 441 (1972).Google Scholar
  115. 115.
    Khan, R., Jenner, M.R., and Mufti, K.S.: Reaction of Methanesulphyl ChlorideN,N-Dimethylformaldehyde with Partially Esterified Derivatives of Sucrose. Carbohydr. Res. 39, 253 (1975).Google Scholar
  116. 116.
    Lemieux, R.U., and Barrette, J.P.: 3,6-Anhydro-a-D-galactopyranosyl 1,4:3,6Dianhydro-ß-D-frunctoside-Configuration at the Anomeric Center of the Fructose Moiety of Sucrose. J. Amer. Chem. Soc. 80, 2243 (1958).Google Scholar
  117. 117.
    Guthrie, R.D., Jenkins, I.D., Thang, S., and Yamasaki, R.: Derivatives of Sucrose 3’,4’-Epoxide. Carbohydr. Res. 121, 109 (1983).Google Scholar
  118. 118.
    Capek, K.,Vydra, T., and Sedera, P.: Oxirane-oxetane-1,4-dioxane Anhydro-ring Formation in Sucrose Derivatives. Carbohydr. Res. 186, Cl (1987).Google Scholar
  119. 119.
    Hough, L., and Mufti, K.S.: Sucrochemistry. Part VI. Further Reactions of 6,6’-DiO-tosylsucrose and a Comparison of the Reactivity at the 6 and 6’ positions. Carbohydr. Res. 25, 497 (1972).Google Scholar
  120. 120.
    Hough, L., and Mufti, K.S.: Mono-, Di-, Tri-and Tetrasubstituted Derivatives Prepared from Sucrose Octamethanesulphonate. Carbohydr. Res. 27, 47 (1973).Google Scholar
  121. 121.
    Guthrie, R.D., and Watters, J.J: 1’-Derivatives of Sucrose and their Acid Hydrolysis. Aust. J. Chem. 33, 2487 (1980).Google Scholar
  122. 122.
    Hough, L., Phadnis, S.A., and Tarelli, E.: The Preparation of 4,6-Dichloro-4,6dideoxy-a-D-galactopyranosyl 6-Chloro-6-deoxy-ß-D-Fructofuranoside and the Conversion of Chlorinated Derivatives into Anhydrides. Carbohydr. Res. 44, 37 (1975).Google Scholar
  123. 123.
    Castro, B., Chapleur, Y., and Gross, B.: Sels d’Alkyloxyphosphonium. Partie VII. Activation Selective de l’a,a-Trehalose et du Saccharose. Carbohydr. Res. 36, 412 (1974).Google Scholar
  124. 124.
    Khan, R., Bhardwaj, C.L., Mufti, K.S., and Jenner, M.R.: Synthesis of 6,6’Dichloro-6,6’-dideoxysucrose Hexaacetate and Conversion into 6,6’-Diamino-6,6’dideoxysucrose. Carbohydr. Res. 78, 185 (1980).Google Scholar
  125. 125.
    Anisuzzaman, A.K.M., and Whistler, R.L.: Selective Replacement of Primary Hydroxyl Groups in Carbohydrates: Preparation of some Carbohydrate Derivatives containing Halomethyl Groups. Carbohydr. Res. 61, 511 (1978).Google Scholar
  126. 126.
    Hough, L., Phadnis, S.P., Tarelli, E., and Price, R.: The Application of 13C-n.m.r. to Products Derived from Sucrose. Carbohydr. Res. 47, 151 (1976).Google Scholar
  127. 127.
    Hough, L., Kabir, A.K.M.S., and Richardson, A.C.: The Synthesis of 4-Deoxyfluoro and 4,6-Difluoro Derivatives of Sucrose. Carbohydr. Res. 131, 335 (1984).Google Scholar
  128. 128.
    Drucker, D.B.: Comparative Effects of Five Chlorosucrose Analogues on Acidogenecity and Adherence of the Oral Bacterium Streptococcus Mutans in vitro. Arch. oral Biol. 28, 833 (1983).Google Scholar
  129. 129.
    Chen, C.C., Whistler, R.L., and Daniel, J.R.: Synthesis of 6,6’-Dideoxysucrose. Carbohydr. Res. 117, 318 (1983).Google Scholar
  130. 130.
    Khan, R., and Jenner, M.R.: Synthesis and Reactions of Sucrose-5- and 5’-enes, Carbohydr. Res. 48, 306 (1976).Google Scholar
  131. 131.
    Toufeili, I.A., Dziedzic, S.Z., and Rathbone, E.B.: C-Methylation of Sucrose: Synthesis of 6- and 6’-C-Methylsucrose. Carbohydr. Res. 148, 279 (1986).Google Scholar
  132. 132.
    Chut, A.K.B., Hough, L., Richardson, A.C., Toufeili, I.A., and Dziedzic, S.Z.: Synthesis of 4-C-Methyl and 4-C-Ally! Derivatives of Sucrose. Carbohydr. Res. 162, 316 (1987).Google Scholar
  133. 133.
    Khan, R., and Patel, G.: Branched-chain Sucroses: Synthesis of 4,1’,6’-Trichloro4,1’,4’,6’-tetradeoxy-4’-C-methylgalactosucrose. Carbohydr. Res. 162, 298 (1987).Google Scholar
  134. 134.
    Khan, R., and Patel, G.: Branched-chain Sucroses: Synthesis and Wittig Reaction of the 1’-Aldehydro Derivative of Sucrose. Carbohydr. Res. 162, 209 (1987).Google Scholar
  135. 135.
    Khan, R., Mufti, K.S., and Parker, K.J.: Sucrose Derivatives. U.K. Patient 1 431–559 (1976).Google Scholar
  136. 136.
    Umezawa, S., Tsuchiya, T., Nakada, S., and Tatsuta, K.: Studies of Aminosugars. XIV. Syntheses of 6,6’-Diamino-6,6’-dideoxymaltosylamine, 1’,6,6’-Triamino-1’,6,6’trideoxysucrose and 6,6’-Diamino-6,6’-dideoxytrehalose. Bull. Chem. Soc. Jpn. 40, 395 (1967).Google Scholar
  137. 137.
    Khan, R., Mufti, K.S., and Jenner, M.R.: Sucrochemistry. Part XI. Synthesis of 1’,6,6’-Triamino-1’,6,6’-trideoxy Derivatives of Sucrose. Carbohydr. Res. 30, 183 (1973).Google Scholar
  138. 138.
    Suami, T., Ikeda, T., Nishiyama, S., and Adachi, R.: Sucrose Chemistry. 6. Synthesis of Amino Derivatives of Sucrose. Bull. Chem. Soc. Jpn. 48, 1953 (1975).Google Scholar
  139. 139.
    Khan, R., Jenner, M.R., Lindseth, H., Mufti, K.S., and Patel, G.: Ring-opening Rections of Sucrose Epoxides: Synthesis of 4’-Derivatives of Sucrose. Carbohydr. Res. 162, 199 (1987).Google Scholar
  140. 140.
    Mitra, A.K., and Perlin, A.S.: The Reaction of Sucrose with Glycol-cleaving Reagents. Can. J. Chem. 37, 2047 (1959).Google Scholar
  141. 141.
    Hale, K.J., Hough, L., and Richardson, A.C.: Morpholinoglucosides: New Potential Sweeteners Derived from Sucrose. Chem. and Ind. 268 (1988).Google Scholar
  142. 142.
    Hale, K.J., Hough, L., and Richardson, A.C.: The Cyclisation of the Di-and Tetra-aldehydes Derived from Sucrose with Nitro-alkanes. Tetrahedron Letters 28, 891 (1987).Google Scholar
  143. 143.
    Hough, L., Sinchareonkul, L.V., Richardson, A.C., Akhtar, F., and Drew, M.G.B.: Bridged Derivatives of Sucrose: the Synthesis of 6,6’-Dithiosucrose, 6,6’Epidithiosucrose and 6,6’-Epithiosucrose. Carbohydr. Res. 174, 145 (1988).Google Scholar
  144. 144.
    Shallenberger, R.S., and Acree, T.E.: Molecular Theory of Sweet Taste. Nature 480, 216 (1967).Google Scholar
  145. 145.
    Lee, C.-K.: The Chemistry and the Biochemistry of the Sweetness of Sugars. Adv. Carbohydr. Chem. and Biochem. 45, 199 (1987).Google Scholar
  146. 146.
    Kier, B.K.: A Molecular Theory of Sweet Taste. J. Pharm. Sci. 61, 1394 (1972).Google Scholar
  147. 147.
    Hough, L., and Khan, R.: Enhancement of the Sweetness of Sugar. In: Developments in Sweetness - 4. Ed., to be published T.H. Grenby. London-New York: Elsevier Applied Science Ltd. 1989.Google Scholar
  148. 148.
    Hough, L.: Sucrose, Sweetness and Sucralose. International Sugar J. 91, 1062 (1989).Google Scholar
  149. 149.
    Hough, L., Phadnis, S.P., Khan, R., and Jenner, M.R.: Sweeteners. U.K. Patent 1 543–167 (1979).Google Scholar
  150. 150.
    Hough, L., and Khan, R.: Intensification of Sweetness. T.I.B.S. 61 (1978).Google Scholar
  151. 151.
    Khan, R., and Jenner, M.R.: Bittering Agents. U.K. Patent 2 057 561A (1980).Google Scholar
  152. 152.
    Thelwall, L.A.W. unpublished results.Google Scholar
  153. 153.
    Dziedzic, S.Z., and BirchG.G.: Structural Functions of Taste in the Sugar Series: Function of the y-Atribute in the Sweet Glycophore. J. Sci. Food Agric, 32, 283 (1981).Google Scholar
  154. 154.
    Christofides, J.C., Davies, D.B., Martin, J.A., and Rathbone, E.B.: Intramolecular Hydrogen Bonding in 1’-Sucrose Derivatives Determined by SIMPLE 1H NMR Spectroscopy. J. Amer. Chem. Soc. 5738 (1986).Google Scholar
  155. 155.
    Bacon, J.S.D.: The Trisaccharide Fraction of some Monocotyledons. Biochem. J. 73, 507 (1959).Google Scholar
  156. 156.
    Hikenda, H., Hirayama, M., and Sumi, N.: A Fructooligosaccharide-Producing Enzyme from Aspergillus Niger ATCC 20611. Agric. Biol. Chem. 52, 1181 (1988).Google Scholar
  157. 157.
    Shinohara, S.: Process for Producing Fructo-oligosaccharase. European Patent. 188047 (1986).Google Scholar
  158. 158.
    AlbonN., Bell, D.J., Blanchard, P.H., Gross, D., and Rundell, J.T.: Kestose-A Trisaccharide Formed by Yeast Invertase. J. Chem. Soc. 24 (1953).Google Scholar
  159. 159.
    Aspinall, G.O., Percival, E., Rees, D.A., and Rennie, M.: In Rodd’s Chemistry of the Carbon Compounds, ed. S. COFFEY, Vol. 1F, p. 654. Amsterdam: Elsevier. 1967.Google Scholar
  160. 160.
    Gross, D.G., Blanchard, P.H., and Bell, D.J.: A Trisaccharide formed from Sucrose by Yeast Invertase. J Chem. Soc. 1727 (1954).Google Scholar
  161. 161.
    Bacon, J.S.D.: Oligofructosides. Bull Soc. Chim. Biol. 1441 (1960).Google Scholar
  162. 162.
    Haq, S., and Adams, G.A.: Oligosaccharides from the Sap of Sugar Maple (Ager Saccharum Marsh). Can. J. Chem. 39, 1165 (1961).Google Scholar
  163. 163.
    Schlubach, H.H., and Berndt, J.: Untersuchungen über Polyfructosen. LIX. Der Kohlenhydratstoffwechsel im Hafer. Ann. 647, 41 (1961).Google Scholar
  164. 164.
    Oku, T., Tokunaga, T., and Hosoya, N.: Non-digestibility of a New Sweetener, “Neosugar” in the Rat. J. Nutrition 114, 1574 (1984).Google Scholar
  165. 165.
    White, J.W., and Maher, J.: a-Maltosyl ß-D-Fructofuranoside: a Trisaccharide Enzymically synthesised from Sucrose. J. Amer. Chem. Soc. 75, 1259 (1953).Google Scholar
  166. 166.
    Takeuchi, K., Satrai, S., and Miyake, T.: Crystalline Erlose. U.K. Patent. 2168352A (1983).Google Scholar
  167. 167.
    Rathbone, E.B.: Raffinose and Melezitose. In: Developments in Food Carbohydrate-2. Ed. C.K. LEE, p. 145. Applied Science Publishers Ltd. London (1980).Google Scholar
  168. 168.
    Richtmyer, N.K., and Hudson, C.S.: Melezitose Monohydrate and its Oxidation by Periodate. J. Org. Chem. 11, 610 (1946).Google Scholar
  169. 169.
    Hehre, E.J., and Carlson, A.S.: Evidence on the Constitution of Melezitose Through Degradation to Sucrose by Bacterial Action. Arch. Biochem. Biophys. 36, 158 (1952).Google Scholar
  170. 170.
    Avenel, P., Neuman, A., and Gillier-Pandraud, H.: Structure Crystalline du Melezitose Monohydrate. Acta Cryst. B32, 2598 (1976).Google Scholar
  171. 171.
    Clark, E.P.: An Improved Method for Preparing Raffinose. J. Amer. Chem. Soc. 44, 210 (1922).Google Scholar
  172. 172.
    Suami, T., Otake, T., Nishimura, T., and Ikeda, T.: Synthesis of Raffinose and an Isomer. Carbohydr. Res. 26, 234 (1973).Google Scholar
  173. 173.
    Pridham, J.B., and Walter, M.W.: a-Galactosidase and Alkaline ß-Fructofuranosidase Activity in vicia faba. Biochem. J. 92, 20P (1964).Google Scholar
  174. 174.
    Berman, H.M.: The Crystal Structure of a Trisaccharide, Raffinose Pentahydrate. Acta Cryst. B26, 290 (1970).Google Scholar
  175. 175.
    Suyama, K., Adachi, S., Taha, T., Shoma, T., Huang, C.-J., and Moh, T.: Isoraffinose (643-galactosylsucrose) Synthesised by the Intermolecular Transgalactosylation Reaction E. Coli ß-Galactosidase. Agric. Biol. Chem. 50, 2069 (1986).Google Scholar
  176. 176.
    Avigad, G.: Enzymatic Synthesis and Characterisation of a New Trisaccharide, a-Lactosyl-ß-fructofuranoside. J. Biol. Chem. 229, 121 (1957).Google Scholar
  177. 177.
    Svendson, A.B.: Die Verbreitung der Pflanzenfamilie der Umbelliferen. Acta Chem. Scand. 10, 1500 (1956).Google Scholar
  178. 178.
    Suzuki, M., and Mehre, E.J.: Lactulosucrose (4-ß-galactosylsucrose), a New Trisaccharide Synthesised by Cultures of Leuconostoe Mesenteroides strain K (NRRLB1299). Arch. Biochem. Biophys. 105, 339 (1964).Google Scholar
  179. 179.
    French, D., Wild, G.M., Young, B., and James, W.J.: Constitution of Planteose. J. Amer. Chem. Soc. 75, 709 (1953).Google Scholar
  180. 180.
    French, D., Youngquist, R.W., and Lee, A.: Isolation and Crystallisation of Planteose from Mint Seeds. Arch. Biochem. Biophys. 85, 471 (1959).Google Scholar
  181. 181.
    French, D., Wild, G.M., and James, W.J.: Constitution of Stachyose. J. Amer. Chem. Soc. 75, 3664 (1953).Google Scholar
  182. 182.
    Kashiwada, Y., Monak, G.-I., and Nishioka, I.: Galloylsucroses from Rhubarb. Phytochem. 27, 1472 (1988).Google Scholar
  183. 183.
    Ryder, M.H., Tate, M.E., and Jones, G.P.: Agrocinopin A, a Tumour-Inducing Plasmid-Coded Enzyme Product; a Phosphodiester of Sucrose and L-Arabinose. J. Biol. Chem. 259, 9704 (1984).Google Scholar
  184. 184.
    Messen, E., Lenaerts, A., Montagne, M.V., Bruyn, A.D., Jans, A.W.H., and Binst, G.V.: 111 and 31P NMR Spectroscopy of Agrocinopine. J. Carbohydr. Chem. 5, 683 (1986).Google Scholar
  185. 185.
    King, R.R., Pelletier, Y., Singh, R.P., and Calhoun, L.A.: 3,4-Di-O-isobutyryl-6O-caprylsucrose: the Major Component of a Novel Sucrose Ester Complex. J. Chem. Soc. Chem. Commun. 1078 (1986).Google Scholar
  186. 186.
    King, R.R., Singh, R.P., and Calhoun, L.A.: Isolation and Characterisation of 3,3’,4,6-Tetra-O-acylated Sucrose Esters from the Type B Glandular Trichomes of Solanum Berthanetii. Hawkes (PI 265957). Carbohydr. Res. 166, 113 (1987).Google Scholar
  187. 187.
    King, R.R., Singh, R.P., and Calhoun, L.A.: Elucidation of Structures for a Unique Class of 2,3,4,3’-Tetra-O-acylated Sucrose Esters from the Type B Glandular Trichomes of Solanum Neocardenasii. Hawkes and Hjerting (P1 498129). Carbohydr. Res. 173, 235 (1988).Google Scholar
  188. 188.
    Severson, R.F., Arrendale, R.F., Chortyk, O.T., Green, C.R., Thorne, F.A., Stewart, J.L., and Johnson, A.W.: Isolation and Characterisation of the Sucrose Esters of the Cuticular Waxes of Green Tobacco Leaf. J. Agric. Food Chem. 33, 870 (1985).Google Scholar
  189. 189.
    Wahlberg, I., Walsh, E.B., Forsblom, I., Oscarson, S., Enzel, C.R., Ryhaze, R., and Isaksson, R.: Tobacco Chemistry 64. A New Sucrose Ester from Greek Tobacco. Acta Chem. Scand. B40, 724 (1986).Google Scholar
  190. 190.
    Garegg, P.J., Oscarson, S., and Ritzen, H.: Partially Esterified Sucrose Derivatives: Synthesis of 6-O-Acetyl-2,3,4-tri-O-[(s)-3-methylpentanoyl]sucrose, a Naturally Occuring Flavour Precursor of Tobacco. Carbohydr. Res. 181, 89 (1988).Google Scholar

Copyright information

© Springer-Verlag/Wien 1989

Authors and Affiliations

  • Catherine E. James
    • 1
  • Leslie Hough
    • 1
  • Riaz Khan
    • 2
  1. 1.Department of Chemistry, King’s College LondonUniversity of LondonLondonUK
  2. 2.Tate and Lyle Research and TechnologyPhilip Lyle Memorial Research LaboratoryWhiteknights, Reading, BerkshireUK

Personalised recommendations