Advertisement

Indole Alkaloid Production in Catharanthus roseus Cell Suspension Cultures

  • M. Lounasmaa
  • J. Galambos
Part of the Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products book series (FORTCHEMIE (closed), volume 55)

Abstract

Catharanthus roseus (L.) G. Don, Madagascan periwinkle, is a well-known medicinal herb on which a lot of research has been done, especially on isolation and conversion of its alkaloids. To date more than 100 indole alkaloids have been isolated from the different parts of the plant, many of them with important pharmacological activity (13). The most notable of these therapeutic alkaloids are the antileukemic drugs vinblastine (1) and vincristine (2), the antihypertensive ajmalicine (3) used in combination with reserpine, and serpentine (4) which has a sedative effect. The generally low concentration of these products in a plant which is itself scarce, combined with the difficulty of separating the valuable alkaloids from others co-occurring ones, has encouraged intensive research on their synthesis or semisynthesis (411). So far, however, attempts to produce these alkaloids economically by the normal methods of synthetic organic chemistry have not given satisfactory results.

Keywords

Cell Suspension Culture Indole Alkaloid Alkaloid Production Catharanthus Roseus Plant Cell Report 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Svoboda, G.H., and D.A. Blake: The Phytochemistry and Pharmacology of Catharanthus roseus (L.) G. Don. In: The Catharanthus Alkaloids (Taylor, W.I., and N.R. Farnsworth, Eds.), p. 45. New York: Marcel Dekker, 1975.Google Scholar
  2. 2.
    Deconti, R.C., and W.A. Creasey: Clinical Aspects of the Dimeric Catharanthus Alkaloids. In: The Catharanthus Alkaloids (Taylor, W.I., and N.R. Farnsworth, Eds.), p. 237. New York: Marcel Dekker. 1975.Google Scholar
  3. 3.
    Cordell, G.A.: The Botanical, Chemical, Biosynthetic and Pharmacologic Aspects of Catharanthus roseus (L.) G. Don (Apocynaceae). In: Recent Advances in Natural Product Research (Woo, W.S., and B.H. Han, Eds.), p. 65. Seoul: Seoul National University Press. 1980.Google Scholar
  4. 4.
    Lounasmaa, M., and A. Nemes: The Synthesis of Bis-indole Alkaloids and their Derivatives. Tetrahedron 38, 223 (1982).Google Scholar
  5. 5.
    Potier, P.: Synthesis of Bio-active Substances: Recent Examples. In: Stereoselective Synthesis of Natural Products (Bartmann, W., and E. Winterfeldt, Eds.) p. 19. Amsterdam: Excerpta Medica. 1978.Google Scholar
  6. 6.
    Potier, P.: Synthesis of the Antitumor Dimeric Indole Alkaloids from Catharanthus Species (Vinblastine Group). J. Nat. Prod. 43, 72 (1980).Google Scholar
  7. 7.
    Cordell, G.A., J.E. Saxton: Bisindole Alkaloids. In: The Alkaloids (Rodrigo, R.G.A. Ed.), Vol. 20, p. 1. New York: Academic Press. 1981.Google Scholar
  8. 8.
    Cordell, G.A., The Bisindole Alkaloids. In: Indoles. The Monoterpenoid Indole Alkaloids (Saxton, J.E. Ed.), p. 539. New York: John Wiley. 1983.Google Scholar
  9. 9.
    Raucher, S., B.L. Bray, and R.F. Lawrence: Synthesis of (+)-Catharanthine, (+)-Anhydrovinblastine, and (-)-Anhydrovincovaline. J. Am. Chem. Soc. 109, 442 (1987).Google Scholar
  10. 10.
    Vuxovic, J., A.E. Goodbody, J.P. Kutney, and M. Misawa: Production of 3’,4’Anhydrovinblastine: A Unique Chemical Synthesis. Tetrahedron 44, 325 (1988).Google Scholar
  11. 11.
    Kutney, J.P., L.S.L. Choi, J. Nakano, H. Tsuxamoto, M. Mchugh, and C.A. Boulet: A Highly Efficient and Commercially Important Synthesis of the Antitumor Catharanthus Alkaloids Vinblastine and Leurosidine from Catharanthine and Vindoline. Heterocycles 27, 1845 (1988).Google Scholar
  12. 12.
    Miura, Y., and K. Hirata: An Organ Culture of Catharanthus roseus Capable of Producing Substantial Amount of Indole Alkaloids. Eur. Pat. Appl. EP 0 200 225 A2 (1986).Google Scholar
  13. 13.
    Miura, Y., K. Hirata, and N. Kurano: Isolation of Vinblastine in Callus Culture with Differentiated Roots of Catharanthus roseus (L.) G. Don. Agric. Biol. Chem. 51, 611 (1987).Google Scholar
  14. 14.
    LE Men, J., and W.I. Taylor: A Uniform Numbering System for Indole Alkaloids. Experientia 21, 508 (1965).Google Scholar
  15. 15.
    Harris, A.L. H. Nylund, and D.P. Carew: Tissue Culture Studies of Certain Members of the Apocynaceae. J. Nat. Prod. (Lloydia) 27, 322 (1964).Google Scholar
  16. 16.
    Zenk, M.H., H. EL-Shagi, H. Arens, J. Stöckigt, E. Weiler, and B. Deus: Formation of the Indole Alkaloids Serpentine and Ajmalicine in Cell Suspension Cultures of Catharanthus roseus. In: Plant Tissue Culture and Its Bio-Technological Application (Barz, W., E. Reinhard, and M.H. Zenk, Eds.), p. 27. Berlin-Heidelberg-New York: Springer. 1977.Google Scholar
  17. 17.
    Kurz, W.G.W., K.B. Chatson, F. Constabel, J.P. Kutney, L.S.L. Choi, P. Kolodziejczyk, S.K. Sleigh, K.L. Stuart, and B.R. Worth: Alkaloid Production in Catharanthus roseus Cell Cultures: Initial Studies on Cell Lines and their Alkaloid Content. Phytochemistry 19, 2583 (1980).Google Scholar
  18. 18.
    Kutney, J.P., L.S.L. Choi, P. Kolodziejczyk, S.K. Sleigh, K.L. Stuart, B.R. Worth, W.G.W. Kurz, K.B. Chatson, and F. Constabel: Alkaloid Production in Catharanthus roseus Cell Cultures. V. Alkaloids from the 176G, 299Y, 340Y and 951G Cell Lines. J. Nat. Prod. 44, 536 (1981).Google Scholar
  19. 19.
    Kurz, W.G.W., K.B. Chatson, F. Constabel, J.P. Kutney, L.S.L. Choi, P. Kolodziejczyk, S.K. Sleigh, and K.L. Stuart: The Production of Catharanthine and Other Indole Alkaloids by Cell Suspension Cultures of Catharanthus roseus. Planta Med. 39, 284 (1980).Google Scholar
  20. 20.
    Stöckigt, J., and H.J. Soll: Indole Alkaloids from Cell Suspension Cultures of Catharanthus roseus and C. ovalis. Planta Med. 40, 22 (1980) and references therein.Google Scholar
  21. 21.
    Kohl, W., B. Witte, and G. Höfle: Alkaloide aus Catharanthus roseus-Zellkulturen II. Z. Naturforsch. 36b, 1153 (1981).Google Scholar
  22. 22.
    Kohl, W., B. Witte, and G. Höfle:: Alkaloide aus Catharanthus roseus-Zellkulturen III. Z. Naturforsch. 37b, 1346 (1982).Google Scholar
  23. 23.
    Kohl, W., B. Witte, W.S. Sheldrick, and G. Höfle: Indolalkaloide aus Catharanthus roseus-Zellkulturen IV. 16R-19,20-E-Isositsirikin, 16R-19,20-Z-Isositsirikin und 21-Hydroxycyclolochnerin. Planta Med. 50, 242 (1984).Google Scholar
  24. 24.
    Gueritte, F., N. Langlois, and V. Petiard: Métabolites Secondaires Isolés d’Une Culture de Tissus de Catharanthus roseus. J. Nat. Prod. 46, 144 (1983).Google Scholar
  25. 25.
    Petiard, V., and D. Courtois: Recent Advances in Research for Novel Alkaloids in Apocynaceae Tissue Cultures. Physiol. Vég. 21, 217 (1983).Google Scholar
  26. 26.
    Lapinjoki, S., H. Veräjänkorva, J. Heiskanen, M. Niskanen, A. Huhtikangas, and M. Lounasmaa: Immunoanalytical Methods for Screening Vindoline from Catharanthus roseus Cell Cultures. Planta Med. 53, 565 (1987).Google Scholar
  27. 27.
    Naaranlahti, T., S.P. Lapinjoki, A. Huhtikangas, L. Toivonen, U. Kurten, V. Kauppinen, and M. Lounasmaa: Mass Spectral Evidence on the Existence of Vindoline in Heterothropic Catharanthus roseus Cell Cultures. Planta Med. 55, 155 (1989).Google Scholar
  28. 28.
    Scott, A.I., H. Mizukami, T. Hirata, and S.L. Lee: Formation of Catharanthine, Akuammicine and Vindoline in Catharanthus roseus Suspension Cells. Phytochemistry 19, 488 (1980).Google Scholar
  29. 29.
    Gröger, D.: Alkaloids Derived from Tryptophan. In: Biochemistry of Alkaloids (Mothes, K., H.R. Schutte, and M. Luckner, Eds.), p. 272. Weinheim: VCH Verlagsgesellschaft, 1985.Google Scholar
  30. 30.
    ATTA-UR-RAHMAN and A. Basha: Biosynthesis of Indole Alkaloids. Oxford: Clarendon Press. 1983.Google Scholar
  31. 31.
    Stöckigt, J., and M.H. Zenk: Strictosidine (Isovincoside): the Key Intermediate in the Biosynthesis of Monoterpenoid Indole Alkaloids. J.C.S. Chem. Commun. 1977, 646.Google Scholar
  32. 32.
    Treimer, J.F., and M.H. Zenk: Enzymic Synthesis of Corynanthe-type Alkaloids in Cell Cultures of Catharanthus roseus: Quantitation by Radioimmunoassay. Phytochemistry 17, 227 (1978).Google Scholar
  33. 33.
    Scott, A.I., S.L. Lee, M. G., Culver, W. Wan, T. Hirata, F. Gueritte, R.L. Baxter, H. Nordlöv, C.A. Dorschel, H. M.zukami, and N.E. Mackenzie: Indole Alkaloid Biosynthesis. Heterocycles 15, 1257 (1981).Google Scholar
  34. 34.
    Scott, A.I., S.L. Lee, P. De Capité, M.G. Culver, and C.R. Hutchinson: The Role of Isovincoside (Strictosidine) in the Biosynthesis of the Indole Alkaloids. Heterocycles 7, 979 (1977).Google Scholar
  35. 35.
    Zenk, M.H.: Enzymatic Synthesis of Ajmalicine and Related Indole Alkaloids. J. Nat. Prod. 43, 438 (1980).Google Scholar
  36. 36.
    Treimer, J.F., and M.H. Zenk: Strictosidine Synthase from Cell Cultures of Apocynaceae Plants. FEBS Lett. 97, 159 (1979).Google Scholar
  37. 37.
    Mizukami, H., H. Nordlöv, S.L. Lee, and A.I. Scott: Purification and Properties of Strictosidine Synthetase (an Enzyme Condensing Tryptamine and Secologanin) from Catharanthus roseus Cultured Cells. Biochemistry 18, 3760 (1979).Google Scholar
  38. 38.
    Deluca, V., J. Balsevich, R.T. Tyler, and W.G.W. Kurz: Characterization of a Novel N-Methyltransferase (NMT) from Catharanthus roseus Plants. Plant Cell Reports 6, 458 (1987).Google Scholar
  39. 39.
    Fahn, W., H. Gundlach, B. Deus-Neumann, and J. Stöckigt: Late Enzyme of Vindoline Biosynthesis. Acetyl-CoA: 17-O-Deacetylvindoline 17-O-Acetal-transferase. Plant Cell Reports 4, 333 (1985).Google Scholar
  40. 40.
    Fahn, W., E. Laussermair, B. Deus-Neumann, and J. Stöckigt: Late Enzyme of Vindoline Biosynthesis. S-Adenosyl-L-methionine: 11-O-Demethyl-17-O-deacetylvindoline 11-O-Methyltransferase and Unspecific Acetylesterase. Plant Cell Reports 4, 337 (1985).Google Scholar
  41. 41.
    Scott, A.I., P.C. Cherry, and A.A. Qureshi: Mechanisms of Indole Alkaloid Biosynthesis. The Corynanthe-Strychnos Relationship. J. Am. Chem. Soc. 91, 4932 (1969).Google Scholar
  42. 42.
    Farnsworth, N.R., R.N. Blomster, D. Damratoski, W.A. Meer, and L.V. Cammarato: Catharanthus Alkaloids. VI. Evaluation by Means of Thin-layer Chromatography and Ceric Ammonium Sulfate Spray Reagent. J. Nat. Prod. (Lloydia) 27, 302 (1964).Google Scholar
  43. 43.
    Deus-Neumann, B., J. Stöckigt, and M.H. Zenk: Radioimmunoassay for the Quantitative Determination of Catharanthine. Planta Med. 53, 184 (1987).Google Scholar
  44. 44.
    Kohl, W., B. Witte, and G. Höfle: Quantitative und Qualitative HPLC-Analytik von Indolalkaloiden aus Catharanthus roseus-Zellkulturen. Planta Med. 47, 177 (1983).Google Scholar
  45. 45.
    Kutney, J.P., L.S.L. Choi, P. Kolodziejczyk, S.K. Sleigh, K.L. Stuart, B.R. Worth, W.G.W. Kurz, K.B. Chatson, and F. Constabel: Alkaloid Production in Catharanthus roseus Cell Cultures: Isolation and Characterization of Alkaloids from One Cell Line. Phytochemistry 19, 2589 (1980).Google Scholar
  46. 46.
    Deus, B., and M.H. Zenk: Exploitation of Plant Cells for the Production of Natural Compounds. Biotechnol. Bioeng. 24, 1965 (1982).Google Scholar
  47. 47.
    Kurz, W.G.W., and F. Constabel: Aspects Affecting Biosynthesis and Biotransformation of Secondary Metabolites in Plant Cell Cultures. CRC Critical Revievs in Biotechnology 2, 105 (1985).Google Scholar
  48. 48.
    Sasse, F., U. Heckenberg, and J. Berlin: Accumulation of /3-Carboline Alkaloids and Serotonin by Cell Cultures of Peganum harmala L.I. Correlation between Plants and Cell Cultures and Influence of Medium Constituents. Plant Physiol. 69, 400 (1982).Google Scholar
  49. 49.
    Huhtikangas, A., T.Lehtola, S. Lapinjoki, and M. Lounasmaa: Specific Radioim-munoassay for Vincristine. Planta Med. 53, 85 (1987), and references therein.Google Scholar
  50. 50.
    Deus-Neumann, B., and M.H. Zenk: Instability of Indole Alkaloid Production in Catharanthus roseus Cell Suspension Cultures. Planta Med. 50, 427 (1984).Google Scholar
  51. 51.
    Chen, T.H.H., K.K. Kartha, N.L. Leung, W.G.W. Kurz, K.B. Chatson, and F. Constabel: Freezing Characteristics of Cultured Catharanthus roseus (L.) G. Don Cells Treated with Dimethylsulfoxide and Sorbitol in Relation to Cryopreservation. Plant Physiol 75, 720 (1984).Google Scholar
  52. 52.
    Chen, T.H.H., K.K. Kartha, N.L. Leung, W.G.W. Kurz, K.B. Chatson, and F. Constabel: Cryopreservation of Alkaloid-producing Cell Cultures of Periwinkle (Catharanthus roseus). Plant Physiol. 75, 726 (1984).Google Scholar
  53. 53.
    Schiel, O., and J. Berlin: Large Scale Fermentation and Alkaloid Production of Cell Suspension Cultures of Catharanthus roseus. Plant Cell Tissue Org. Cult. 8, 153 (1987).Google Scholar
  54. 54.
    Neumann, D., G. Krauss, M. Hieke, and D. Gröger: Indole Alkaloid Formation and Storage in Cell Suspension Cultures of Catharanthus roseus. Planta Med. 48, 20 (1983).Google Scholar
  55. 55.
    Bouyssou, H., A. Pareilleux, and G. Marigo: The Role of pH Gradients Across the Plasmalemma of Catharanthus roseus and Its Involvement in the Release of Alkaloids. Plant Cell Tissue Org. Cult. 10, 91 (1987).Google Scholar
  56. 56.
    Brodelius, P., and K. Nilsson: Permeabilization of Immobilized Plant Cells, Resulting in Release of Intracellularly Stored Products with Preserved Cell Viability. Eur. J. Appl. Microbiol. Biotechnol. 17, 275 (1983).Google Scholar
  57. 57.
    Payne, G.F., and M.L. Shuler: Alkaloid Recovery for Plant Cell Systems. Biotechnol. Bioeng. Symp. 15, 633 (1986).Google Scholar
  58. 58.
    Kutney, J.P.: Studies in Plant Culture. The Synthesis and Biosynthesis of Indole Alkaloids. Heterocycles 25, 617 (1987).Google Scholar
  59. 59.
    Kurz, W.G.W., K.B. Chatson, F. Constabel, J.P. Kutney, L.S.L. Choi, P. Kolodziejczyk, S.K. Sleigh, K.L. Stuart, and B.R. Worth: Alkaloid Production in Catharanthus roseus Cell Cultures VIII. Characterisation of the PRL/200 Cell Line. Planta Med. 42, 22 (1981).Google Scholar
  60. 60.
    Kurz, W.G.W., K.B. Chatson, F. Constabel, J.P. Kutney, L.S.L. Choi, P. Kolodziejczyk, S.K. Sleigh, K.L. Stuart, and B.R. Worth: Alkaloid Production in Catharanthus roseus Cell Cultures. IV. Characterization of the 953 Cell Line. Helv. Chim. Acta 63, 1891 (1980).Google Scholar
  61. 61.
    Drapeau, D., H.W. Blanch, and C.R. Wilke: Growth Kinetics of Dioscorea deltoidea and Catharanthus roseus in Batch Culture. Biotechnol. Bioeng. 28, 1555 (1986).Google Scholar
  62. 62.
    Stafford, A., L. Smith, and M.W. Fowler: Regulation of Product Synthesis in Cell Cultures of Catharanthus roseus (L.) G. Don. Plant Cell Tissue Org. Cult. 4, 83 (1985).Google Scholar
  63. 63.
    Morris, P., and M.W. Fowler: Sucrose Utilization by Cell Suspension Cultures of Catharanthus roseus G. Don. Biochem. Soc. Trans. 8, 630 (1980).Google Scholar
  64. 64.
    Stafford, A., and M.W. Fowler: Effect of Carbon and Nitrogen Growth Limitation upon Nutrient Uptake and Metabolism in Batch Cultures of Catharanthus roseus (L.) G. Don. Plant Cell Tissue Org. Cult. 2, 239 (1983).Google Scholar
  65. 65.
    Merillon, J.M., M. Rideau, and J.C. Chenieux: Influence of Sucrose on Levels of Ajmalicine, Serpentine, and Tryptamine in Catharanthus roseus Cells in vitro. Planta Med. 50, 497 (1984).Google Scholar
  66. 66.
    Knobloch, K.H., and J. Berlin: Influence of Medium Composition on the Formation of Secondary Compounds in Cell Suspension Cultures of Catharanthus roseus (L.). G. Don. Z. Naturforsch. 35c, 551 (1980).Google Scholar
  67. 67.
    Schallenberg, J., and J. Berlin: 5-Methyltryptophan Resistant Cells of Catharanthus roseus. Z. Naturforsch. 34c, 541 (1979).Google Scholar
  68. 68.
    Knobloch, K.H., G. Bast, and J. Berlin: Medium-and Light-induced Formation of Serpentine and Anthocyanins in Cell Suspension Cultures of Catharanthus roseus. Phytochemistry 21, 591 (1982).Google Scholar
  69. 69.
    Drapeau, D., H.W. Blanch, and C.R. Wilke: Ajmalicine, Serpentine, and Catharanthine Accumulation in Catharanthus roseus Bioreactor Cultures. Planta Med. 53, 373 (1987).Google Scholar
  70. 70.
    Knobloch, K.H., and J. Berlin: Effects of Media Constituents on the Formation of Secondary Products in Cell Suspension Cultures of Catharanthus roseus. In: Advances in Biotechnology (Moo-Young, M., and C.W. Robinson, Eds.), Vol. 1, p. 129. Toronto, Oxford, New York, Sydney, Paris, Frankfurt: Pergamon Press. 1981.Google Scholar
  71. 71.
    Knobloch, K.H., and J. Berlin: Influence of Phosphate on the Formation of the Indole Alkaloids and Phenolic Compounds in Cell Suspension Cultures of Catharanthus roseus. I. Comparison on Enzyme Activities and Product Accumulation. Plant Cell Tissue Org. Cult. 2, 333 (1983).Google Scholar
  72. 72.
    Maccarthy, J.J., and D. Ratcliffe: The Effect of Nutrient Medium Composition on the Growth Cycle of Catharanthus roseus G. Don Cells Grown in Batch Culture. J. Exp. Bot. 31, 1315 (1980).Google Scholar
  73. 73.
    Morris, P.: Regulation of Product Sythesis in Cell Cultures of Catharanthus roseus. II: Comparison of Production Media. Planta Med. 52, 121 (1986).Google Scholar
  74. 74.
    Yokoyama, H., E.P. Hayman, W.J. Hsu, and S.M. Poling: Chemical Bioinduction of Rubber in Guayule Plant. Science 197, 1076 (1977).Google Scholar
  75. 75.
    Lee, S.L., K.D. Cheng, and A.I. Scott: Effects of Bioregulators on Indole Alkaloid Biosynthesis in Catharanthus roseus Cell Culture. Phytochemistry 20, 1841 (1981).Google Scholar
  76. 76.
    Kutney, J.P., B. Aweryn, K.B. Chatson, L.S.L. Choi, and W.G.W. Kurz: Alkaloid Production in Catharanthus roseus (L.). G. Don Cell Cultures. XIII. Effects of Bioregulators on Indole Alkaloid Biosynthesis. Plant Cell Reports 4, 259 (1985).Google Scholar
  77. 77.
    Kutney, J.P., L.S.L. Choi, P. Kolodziejczyk, S.K. Sleigh, K.L. Stuart, B.R. Worth, W.G.W. Kurz, K.B. Chatson, and F. Constabel: Alkaloid Production in Catharanthus roseus Cell Cultures. VII. Effect of Parameter Changes and Catabolism Studies on Cell Line PRL No 953. Helv. Chim. Acta 64, 1837 (1981).Google Scholar
  78. 78.
    Döller, G.: Influence of the Medium on the Production of Serpentine by Suspension Cultures of Catharanthus roseus (L.) G. Don. In: Production of Natural Compounds by Cell Culture Methods (Alfermann, A.W., and E. Reinhard, Eds.), p. 109. Munich: G.f.S.U. 1978.Google Scholar
  79. 79.
    Doller, G, A.W. Alfermann, and E. Reinhard: Production of Indole Alkaloids in Tissue Cultures of Catharanthus roseus. Planta Med. 30, 14 (1976).Google Scholar
  80. 80.
    Merillon, J.M., P. Doireau, A. Guillot, J.C. Chenieux, and M. Rideau: Indole Alkaloid Accumulation and Tryptophan Decarboxylase Activity in Catharanthus roseus Cells Cultured in Three Different Media. Plant Cell Reports 5, 23 (1986).Google Scholar
  81. 81.
    Scott, A.I., H. Mizukami, and S.L. Lee: Characterization of a 5-Methyltryptophan Resistant Strain of Catharanthus roseus Cultured Cells. Phytochemistry 18, 795 (1979).Google Scholar
  82. 82.
    Sasse, F., M. Buchholz, and J. Berlin: Selection of Cell Lines of Catharanthus roseus with Increased Tryptophan Decarboxylase Activity. Z. Naturforsch. 38c, 916 (1983).Google Scholar
  83. 83.
    Krueger, R.J., and D.P. Carew: Catharanthus roseus Tissue Culture: The Effects of Precursors on Growth and Alkaloid Production. J. Nat. Prod. (Lloydia) 41, 327 (1978).Google Scholar
  84. 84.
    Carew, D.P., R.J. Krueger: Anthocyanidins of Catharanthus roseus Callus Cultures. Phytochemistry 15, 442 (1976).Google Scholar
  85. 85.
    Tyler, R.T., W.G.W. Kurz, and B.D. Panchuk: Photoautotrophic Cell Suspension Cultures of Periwinkle (Catharanthus roseus (L.) G. Don): Transition from Heterotrophic to Photoautotrophic Growth. Plant Cell Reports 3, 195 (1986).Google Scholar
  86. 86.
    Morris, P.: Regulation of Product Synthesis in Cell Cultures of Catharanthus roseus. Effect of Culture Temperature. Plant Cell Reports 5, 427 (1986).Google Scholar
  87. 87.
    Courtois, D., and J. Guern: Temperature Response of Catharanthus roseus Cells Cultivated in Liquid Medium. Plant Science Lett. 17, 473 (1980).Google Scholar
  88. 88.
    Pareilleux, A., and R. Vinas: Influence of the Aeration Rate on the Growth Yield in SUSPENSION Cultures of Catharanthus roseus (L.) G. Don. J. Ferment. Technol. 61, 429 (1983).Google Scholar
  89. 89.
    Maurel, B., and A. Pareilleux: Effect of Carbon Dioxide on the Growth of Cell Suspension of Catharanthus roseus. Biotechnol. Lett. 7, 313 (1985).Google Scholar
  90. 90.
    Ducos, J.P., and A. Pareilleux: Effect of Aeration Rate and Influence of pCO2 in Large-scale Cultures of Catharanthus roseus Cells. Appl. Microbiol. Biotechnol. 25, 101 (1986).Google Scholar
  91. 91.
    Smith, J.I., A.A. Quesnel, N.J. Smart, M. Misawa, and W.G.W. Kurz: The Development of a Single-stage Growth and Indole Alkaloid Production Medium for Catharanthus roseus (L.). G. Don Suspension Cultures. Enzyme Microb. Technol. 9, 466 (1987).Google Scholar
  92. 92.
    Eilert, U., V. Deluca, F. Constabel, and W.G.W. Kurz: Elicitor-mediated Induction of Tryptophan Decarboxylase and Strictosidine Synthase Activities in Cell Suspension Cultures of Catharanthus roseus. Arch. Biochem. Biophys. 254, 491 (1987).Google Scholar
  93. 93.
    Eilert, U., F. Constabel, and W.G.W. Kurz: Elicitor-stimulation of Monoterpene Indole Alkaloid Formation in Suspension Cultures of Catharanthus roseus. J. Plant Physiol. 126, 11 (1986).Google Scholar
  94. 94.
    Smith, J.I., N.J. Smart, M. Misawa, W.G.W. Kurz, S.G. Tallevi, and F. Dicosmo: Increased Accumulation of Indole Alkaloids by Some Cell Lines of Catharanthus roseus in Response to Addition of Vanadyl Sulphate. Plant Cell Reports 6, 142 (1987).Google Scholar
  95. 95.
    Smith, J.I., N.J. Smart, W.G.W. Kurz, and M. Misawa: The, Use of Organic and Inorganic Compounds to Increase the Accumulation of Indole Alkaloids in Catharanthus roseus (L.) G. Don Cell Suspension Cultures. J. Exp. Bot. 38, 1501 (1987).Google Scholar
  96. 96.
    Constabel, F., W.G.W. Kurz, and U. Eilert: Semi-continuous Production and Secretion of Phytochemicals by Plant Cell Culture with Successive Elicitation. Eur. Pat. Appl. EP 226, 354.Google Scholar
  97. 97.
    Smart, N.J., and M.W. Fowler: Mass Cultivation of Catharanthus roseus Cells Using a Nonmechanically Agitated Bioreactor. Appl. Biochem. Biotechnol. 9, 209 (1984).Google Scholar
  98. 98.
    Hegarty, P.K., N.J. Smart, A.H. Scragg, and M.W. Fowler: The Aeration of Catharanthus roseus L. G. Don Suspension Cultures in Airlift Bioreactors: the Inhibitory Effect at High Aeration Rates on Culture Growth. J. Exp. Bot. 37, 1911 (1986).Google Scholar
  99. 99.
    Smart, N.J., and M.W. Fowler: Effect of Aeration on Large-scale Cultures of Plant Cells. Biotechnol. Lett. 3, 171 (1981).Google Scholar
  100. 100.
    Pareilleux, A., and R. Vinas: A Study on the Alkaloid Production by Resting Cell Suspension of Catharanthus roseus in a Continuous Flow Reactor. Appl. Microbiol. Biotechnol. 19, 316 (1984).Google Scholar
  101. 101.
    Rosevear, A., and S.D. Roe: Secondary Metabolite Manufacture Using Immobilized Cells and Affinity Chromatography in a Continuous Flow Process. Ger. Offen. De 3, 616, 357.Google Scholar
  102. 102.
    Felix, H., P. Brodelius, and K. Mosbach: Enzyme Activities of the Primary and Secondary Metabolism of Simultaneously Permeabilized and Immobilized Plant Cells. Anal. Biochem. 116, 462 (1981).Google Scholar
  103. 103.
    Majerus, F., and A. Pareilleux: Alkaloid Accumulation in Ca-alginate Entrapped Cells of Catharanthus roseus: Using Limiting Growth Medium. Plant Cell Reports 5, 302 (1986).Google Scholar
  104. 104.
    Majerus, F., and A. Pareilleux: Production of Indole Alkaloids by Gel-trapped Cells of Catharanthus roseus in a Continuous Flow Reactor. Biotechnol. Lett. 8, 863 (1986).Google Scholar
  105. 105.
    Brodelius, P., B. Deus, K. Mosnach, and M.H. Zenk: Immobilized Plant Cells for the Production and Transformation of Natural Products. FEBS Lett. 103, 93 (1979).Google Scholar
  106. 106.
    Kutney, J.P., C.A. Boulet, L.S.L. Choi, W. Gustowski, M. Mchugh, J. Nakano, T. Nikaido, H. Tsukamoto, G.M. Hewitt, and R. Suen: Alkaloid Production in Catharanthus roseus (L.) G. Don Cell Cultures. XV. Synthesis of Bisindole Alkaloids by Use of Immobilized Enzyme Systems. Heterocycles 27, 621 (1988).Google Scholar
  107. 107.
    Stuart, K.L., J.P. Kutney, T. Honda, and B.R. Worth: Intermediacy of 3’,4’Dehydrovinblastine in the Biosynthesis of Vinblastine-type Alkaloids. Heterocycles 9, 1419 (1978).Google Scholar
  108. 108.
    Stuart, K.L., J.P. Kutney, and B.R. Worth: Studies on the Synthesis of Bisindole Alkaloids. XIV. Enzyme Catalysed Formation of Leurosine. Heterocycles 9, 1015 (1978).Google Scholar
  109. 109.
    Mclauchlan, W.R., M. Hasan, R.L. Baxter, and A.I. Scary: Conversion of Anhydrovinblastine to Vinblastine by Cell-free Homogenates of Catharanthus roseus Cell Suspension Cultures. Tetrahedron 39, 3777 (1983)Google Scholar
  110. 110.
    Kutney, J.P., B. Aweryn, L.S.L. Choi, P. Kolodzie.Jczyk, W.G.W. Kurz, K.B. Chatson, and F. Constabel: Alkaloid Production in Catharanthus roseus Cell Cultures. XI. Biotransformation of 3’,4’-Anhydrovinblastine to Other Bisindole Alkaloids. Helv. Chim. Acta 65, 1271 (1982).Google Scholar
  111. 111.
    Kutney, J.P., L.S.L. Choi, T. Honda, N.G. Lewis, T. Sato, K.L. Stuart, and B.R. Worth: Biosynthesis of the Indole Alkaloids. Cell-free Systems from Catharanthus roseus Plants. Helv. Chim. Acta 65, 2088 (1982).Google Scholar
  112. 112.
    Endo, T., A. Goodbody, J. Vuxovic, and M. Misawa: Biotransformation of Anhydrovinblastine to Vinblastine by a Cell-Free Extract of Catharanthus roseus Cell Suspension Cultures. Phytochemistry 26, 3233 (1987).Google Scholar
  113. 113.
    Misawa, M., T. Endo, A. Goodbody, J. Vukovic, C. Chapple, L. Choi, and J.P. Kutney: Synthesis of Dimeric Indole Alkaloids by Cell Free Extracts from Cell Suspension Cultures of Catharanthus roseus. Phytochemistry 27, 1355 (1988).Google Scholar
  114. 114.
    Endo, T., A. Goodbody, J. Vuxovic, and M. Misawa: Enzymes from Catharanthus roseus Cell Suspension Cultures that Couple Vindoline and Catharanthine to Form 3’,4’-Anhydrovinblastine. Phytochemistry 27, 2147 (1988).Google Scholar
  115. 115.
    Goodbody, A.E., T. Endo, J. Vukovic, J.P. Kutney, L.S.L. Choi, and M. Misawa: Enzymic Coupling of Catharanthine and Vindoline to Form 3’,4’-Anhydrovinblastine by Horseradish Peroxidase. Planta Med. 54, 136 (1988).Google Scholar
  116. 116.
    Kutney, J.P., B. Botta, C.A. Boulet, C.A. Buschi, L.S.L. Choi, J. Golinski, M. Gumulka, G.M. Hewitt, G. Lee, M. Mchugh, J. Nakano, T. Nikaido, J. Onodera, I. Perez, P. Salisbury, M. Singh, R. Suen, and H. Tsukamoto: Alkaloid Production in Catharanthus roseus (L.) G. Don Cell Cultures. XVI. Biotransformation of 3’,4’-Anhydrovinblastine with Catharanthus roseus Cell Cultures and Enzyme Systems. Heterocycles 27, 629 (1988).Google Scholar
  117. 117.
    Kutney, J.P., L.S.L. Choi, J. Nakano, and H. Tsukamoto: Flavine Coenzyme Mediated Photooxidation of 3’,4’-Anhydrovinblastine. Further Information on the Later Stages of Bisindole Alkaloid Biosynthesis. Heterocycles 27, 1927 (1988).Google Scholar
  118. 118.
    Kutney, J.P., L.S.L. Choi, J. Nakano, and H. Tsukamoto: Biomimetic Chemical Transformation of 3’,4’-Anhydrovinblastine to Vinblastine and Related Bisindole Alkaloids. Heterocycles 27, 1937 (1988).Google Scholar
  119. Kutney, J.P., C.A. Boulet, L.S.L. Choi, W. Gustowski, M. Mchugh, J. Nakano, T. Nakaidi, H. Tsukamoto, G.M. Hewitt, and R. Suen: Alkaloid Production in Catharanthus roseus (L.) G. Don Cell Cultures. XIV. The Role of Unstable Dihydropyridinium Intermediates in the Biosynthesis of Bisindole Alkaloids. Heterocycles 27, 613 (1988).Google Scholar
  120. 119.
    Stuart, K.L., J.P. Kutney, T. Honda, N.G. Lewis, and B.R. Worth: The Biosynthesis of Vindoline Using Cell Free Extracts from Mature Catharanthus roseus Plants. Heterocycles 9, 647 (1978).Google Scholar
  121. 120.
    Stöcsugt, J., H. Gundlach, and B. Deus-Neumann: Disproof of the Overall Enzymatic Biosynthesis of Vindoline from Tryptamine and Secologanin by Cell-Free Extracts from the Leaves of Catharanthus roseus (L.) G. Don. Helv. Chim. Acta 68, 315 (1985).Google Scholar
  122. 121.
    Noe, W., C. Mollenschott, and J. Berlin: Tryptophan Decarboxylase from Catharanthus roseus Cell Suspension Cultures: Purification, Molecular and Kinetic Data of the Homogeneous Protein. Plant Mol. Biol. 3, 281 (1984).Google Scholar
  123. 122.
    Pfitzner, U., and M.H. Zenk: Bound, Stabilized, Highly Pure Strictosidine Synthase and Its Use in the Synthesis of 3a(S)-Strictosidine. Ger. Offen. DE 3, 234, 332.Google Scholar
  124. 123.
    Pfitzner, U., and M.H. Zenk • Immobilization of Strictosidine. Synthase from Catharanthus Cell Cultures and Preparative Synthesis of Strictosidine. Planta Med. 46, 10 (1982).Google Scholar

Copyright information

© Springer-Verlag/Wien 1989

Authors and Affiliations

  • M. Lounasmaa
    • 1
  • J. Galambos
    • 1
  1. 1.Laboratory for Organic and Bioorganic ChemistryTechnical University of HelsinkiFinland

Personalised recommendations