Naturally occurring 5,6-dihydro-α-pyrones have up to now not been reviewed per se but have been included in the reviews of α-pyrones (1,2). Since approximately 65 of these compounds are presently known a review devoted entirely to them is now desirable. Moreover, the newest review (2) is not comprehensive, deals only slightly with their stereochemistry and does not discuss the assignment of absolute configuration by techniques such as circular dichroism.


Circular Dichroism Chiral Centre Sorbic Acid Cotton Effect Tetrahedron Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mors, W.B., M.T. Magalhäes, and O.R. Gottlieb: Naturally Occurring Aromatic Derivatives of Monocyclic a-Pyrones. Fortschr. Chem. organ. Naturstoffe 20, 131 (1962).Google Scholar
  2. 2.
    Adityachaudhury, N., and A.K. Das: Recent Advances in the Chemistry of Naturally Occurring 2-Pyrone derivatives. J. Sci. Indust. Res. (India) 38, 265 (1979).Google Scholar
  3. 3.
    Siegel, S.M.: Inhibitory Activity of the Phenolic Glucoside Psilotin and its Reversal by Gibberellic Acid and Thiols. Phytochem. 15, 566 (1976)CrossRefGoogle Scholar
  4. 4.
    Numata, A., K. Hokimoto, T. Takemura, T. Katsuno, and K. Yamamoto: Plant Constituents Biologically Active to Insects. V. Antifeedants for the Larvae of the Yellow Butterfly Eurema hecabe mandarina, in Osmunda japonica. Chem. Pharm. Bull (Japan) 32, 2815 (1984).Google Scholar
  5. 5.
    Brian, P.W., P.J. Curtis, H.G. Hemming, C.H. Unwin, and J.M. Wright: Alter-nark Acid, a Biologically Active Metabolic Product of the Fungus Alternaria solani. Nature 164, 534 (1949).CrossRefGoogle Scholar
  6. 6.
    Stampwala, S.S., R.H. Bunge, T.R. Hurley, N.E. Willmer, A.J. Brankiewicz, C.E. Steinman, T.A. Smitka, and J.C. French: Novel Antitumour agents CI-920, PD 113270 and PD 113271. II. Isolation and Characterization. J. Antibiot. 36, 1601 (1983).Google Scholar
  7. 7.
    Mcgahren, W.J., G.A. Ellestad, G.O. Morton, M.P. Kunstmann, and P. Mullen: New Fungal Lactone, LL-P88013 and a new Pyrone LL-P880Ey from a Penicillium sp. J. Organ. Chem. (USA) 38, 3542 (1973).CrossRefGoogle Scholar
  8. 8.
    Gardener, J.M., Y. Kong, J.H. Tatum, Y. Suzuki, and S. Takeuchi: Plant Pathotoxins from Alternaria citri. The Major Toxin Specific for Rough Lemon Plants. Phytochem. 24, 2861 (1985).CrossRefGoogle Scholar
  9. 9.
    Chmielewska, I., J. Cieslak, K. Gorczynska, B. Kontnik, and K. Pitakowska: Structure of Yangonine. Ultraviolet and Infrared Spectrographic Studies. Tetrahedron 4, 36 (1958).CrossRefGoogle Scholar
  10. 10.
    Rigaudy, J., and S.P. Klesney: IUPAC Nomenclature of Organic Chemistry, Sections A-H, pp. 171 and 203. Pergamon Press, 1979.Google Scholar
  11. 11.
    Hofmann, A.W.: Liebigs Ann. Chem. 110, 129 (1859).CrossRefGoogle Scholar
  12. 12.
    Doebner, O.: Ber. dtsch. chem. Ges. 27, 344 (1894).Google Scholar
  13. 13.
    Kuxx, R., and D. Jerchel: 2-Hexen-4, 1-olide and 2-Hexen-5, 1-olide. Constitution of the Parasorbic Acid from the Volatile Oil of Ripe Rowanberries. Ber. dtsch. chem. Ges. 76B, 413 (1943).CrossRefGoogle Scholar
  14. 14.
    Kuhn, R., and K. Kum: The Absolute Configuration of Sorbin Oil. Chem. Ber. 95, 2009 (1962).Google Scholar
  15. 15.
    Lulus, R., J. Jarf, and J. Nemec: Lactones. VII. 4,6-Dideoxy-L-ribo-hexano-1,5lactone and the Absolute Configuration of Parasorbic Acid. Collect. Czech. Chem. Comm. 27, 735 (1962).Google Scholar
  16. 16.
    Lichtenthaler, F.W., F.D. Klingler, and P. Jarglis: Simple Synthesis of (S)Parasorbic Acid and other (5S)-Hydroxy Sixcarbon Synthons from L-Rhamnose Carbohydr. Res. 132, Cl (1984).Google Scholar
  17. 17.
    Tschesche, R., H.J. Hoppe, G. Snatzke, G. Wulff, and H.W. Fehlhaber: Glycosides with Lactone — Forming Aglycons. III. Parasorbiside, the Glycosidic Percursor of Parasorbic Acid, from Mountain Ash Berries. Chem. Ber. 104, 1420 (1971).CrossRefGoogle Scholar
  18. 18.
    Ohloff, G.: Recent Developments in the Field of Naturally Occurring Aroma Components. Fortschr. Chem. organ. Naturstoffe 35, 431 (1978).Google Scholar
  19. 19.
    Fujimori, T., R. Kasuga, H. Matsushita, H. Kaneko, and M. Noguchi: The Aroma of Burley Tobacco. Part I. Neutral Aroma Constituents in Burley Tobacco. Agric. Biol. Chem. 40, 303 (1976).CrossRefGoogle Scholar
  20. 20.
    Meur, T.M.: Essential Oil of Massoy Bark. Rec. tray. chim. Pays-Bas 59, 191 (1940).Google Scholar
  21. 21.
    Abe, S., and K. Sato: The Essential Oil of Massoia. III. Structure of Massoia Lactone. J. Chem. Soc. Japan 75, 952 (1954).Google Scholar
  22. 22.
    Mori, K.: Absolute Configuration of (—)-Massoilactone as Confirmed by a Synthesis of its (S)-(+)-Isomer. Agric. Biol. Chem. 40, 1617 (1976).CrossRefGoogle Scholar
  23. 23.
    Pirkle, W.H., and P.E. Adams: Enantiomerically Pure Lactones. 3. Synthesis of and Stereospecific Conjugate Additions to aß-Unsaturated Lactones. J. Organ. Chem. (USA) 45, 4117 (1980).CrossRefGoogle Scholar
  24. 24.
    Kaiser, R., and D. Lamparsky: Das Lacton der 5-Hydroxy-cis-2, Cis-7-decadiensäure und weitere Lactone aus dem Absud der Blüten von Polianthes tuberosa L. Tetrahedron Letters 1659 (1976).Google Scholar
  25. 25.
    Bayer, E.: Quality and Flavour by Gas Chromatography. J. Gas Chromatogr. 4, 67 (1966).Google Scholar
  26. 26.
    Hashizume, T., N. Kikuchi, Y. Sasaki, and I. Sakata: Constituents of Cane Molas-ses. III. Isolation and Identification of (—)-2-deceno-5-lactone (Massoilactone). Agric. Biol. Chem. 32, 1306 (1968).Google Scholar
  27. 27.
    Cavill, G.W.K., D.V. Clark, and F.B. Whitfield: Insect Venoms, Attractants, and Repellents. XI. Massoilactone from two Species of Formicine Ants, and some Observations on Constituents of the Bark Oil of Cryptocarya massoia. Austral. J. Chem. 21, 2819 (1968).CrossRefGoogle Scholar
  28. 28.
    Bohlmann, F., and A. Suwita: Ein neues Bisabolen-Derivat und ein neues DihydroKaffeesäure-Derivat aus Tarchonanthus trilobus. Phytochem. 18, 677 (1979).CrossRefGoogle Scholar
  29. 29.
    Nakata, T., N. Hata, K. Iida, and T. Oismi: Determination of Stereostructure of Naturally Occurring a,ß-Unsaturated 8-Lactone Derivates Through a Stereoselective Synthesis. Tetrahedron Letters 28, 5661 (1987).CrossRefGoogle Scholar
  30. 30.
    Franca, N.C., and J. Polonsky: Sur la Structure du Boronolide, Isolé du Tetradenia fruiticosa Benth. C.R. hebd. seances Acad. Sci. 273C, 439 (1971).Google Scholar
  31. 31.
    Kjaer, A., R. Norrestam, and J. Polonsky: Boronolide. Structure and Stereochemistry (X-ray Analysis). Acta Chem. Scand. B39, 745 (1985)CrossRefGoogle Scholar
  32. 32.
    Davies-Coleman, M.T., and D.E.A. Riverr: Stereochemical Studies on Boronolide, an a-Pyrone from Tetradenia barberae. Phytochem. 26, 3047 (1987).CrossRefGoogle Scholar
  33. 33.
    Van Puyvelde, L., S. Dubé, E. Uwimana, C. Uwera, R.A. Domisse, E.L. Esmans, O. Van Schoor, and A.J. Vlletinck: New a-Pyrones from Iboza riparia. Phytochem. 18, 1215 (1979).CrossRefGoogle Scholar
  34. 34.
    Van Puyvelde, L., N. De Kimpe, S. Dubé, M. Chagnon-Dubé, Y. Boily, F. Borremans, N. Schamp, and M.J.O. Anteunis: 1,2-Dideacetylboronolide, an a-Pyrone from Iboza riparia. Phytochem. 20, 2753 (1981).CrossRefGoogle Scholar
  35. 35.
    Herz, W., and G. Ramakrishnan: S-Lactones of Polyhydroxy-C26 acids in Eupatorium pilosum. Phytochem. 17, 1327 (1978).CrossRefGoogle Scholar
  36. 36.
    Private communication from Professor W. Herz.Google Scholar
  37. 37.
    Kimura, Y., K. Katagiri, and S. Tamuro: Structure of Pestalotin, a New Metabolite from Pestalotia cryptomeriaecola. Tetrahedron Letters 3137 (1971).Google Scholar
  38. 38.
    Ellestad, G.A., W.J. Mcgahren, and M.P. Kuntsmann: Structure of a New Fungal Lactone, LL-P880a, from an Unidentified Penicillium sp. J. Organ. Chem. (USA) 37, 2045 (1972).CrossRefGoogle Scholar
  39. 39.
    Seebach, D., and H. Meyer: Synthesis of (±)-Pestalotin and of Optically Pure (—)-Pestalotin by Asymmetric Synthesis. Angew. Chem. Internat. Edit. 13, 77 (1974).CrossRefGoogle Scholar
  40. 40.
    Kirihata, M., K. Ohta, S. Yamamoto, I. Ichimoto, and H. Ueda: Abstract of Papers Annual Meeting of the Agric. Chem. Socienty of Japan 1980, p. 211, Fukoka.Google Scholar
  41. 41.
    Masaki, Y., K. Nagata, Y. Serizawa, and K. K.ji: Facile and Rapid Entry to Functionalized and Optically Active Pyrans from Tartaric Acid by way of 6,8-Dioxabicyclo [3.2.1]octanes. Application to the Synthesis of (—)-(6S,1’S)-Pestalotin. Tetrahedron Letters 25, 95 (1984).Google Scholar
  42. 42.
    Mori, K., T. Otsuka, and M. Oda: Synthesis of all the Four Possible Stereoisomers of Pestalotin, a Gibberellin Synergist Isolated from Pestalotia cryptomeriaecolia Swada. Tetrahedron 40, 2929 (1984).CrossRefGoogle Scholar
  43. 43.
    Strunz, G.M., C.J. Heissner, M. Kakushima, and M.A. Stillwell: Metabolites of an Unidentified Fungus. A New 5,6-Dihydro-2-pyrone Related to Pestalotin. Canad J Chem. 52, 825 (1974).CrossRefGoogle Scholar
  44. 44.
    Hollenbeak, K.H., and M.E. Kuehne: Isolation and Structure Determination of the Fern Glycoside Osmundalin and the Synthesis of its Aglycon Osmundalactone. Tetrahedron 30, 2307 (1974).CrossRefGoogle Scholar
  45. 45.
    Argoudelis, A.D., and J.F. Zieserl: The Structure of U-13, 933, a New Antibiotic. Tetrahedron Letters 1969 (1966).Google Scholar
  46. 46.
    Mizuba, S., K. Lm, and J. Jiu: Three Antimicrobial Metabolites from Aspergillus caespitosus. Canad. J. Microbiol. 21, 1781 (1975).CrossRefGoogle Scholar
  47. 47.
    Yamamoto, I., H. Suide, T. Hemmi, and T. Yamano: Antimicrobial aß-UnsaturatedS-lactones from Fungi. Takeda Kenkyusho Ho 29, 1 (1970).Google Scholar
  48. 48.
    Jiu, J., S. Krayciiy, and S.S. Mizuba: Microbial Production of Antimicrobial 2HPyran-2-ones. U.S. Patent 3, 909, 362 (1975).Google Scholar
  49. 49.
    Evans, R.H., G.A. Ellestad, and M.P. Kunstmann: Two New Metabolites from an Unidentified Nigrospora Species. Tetrahedron Letters 1791 (1969).Google Scholar
  50. 50.
    Yamano, T., S. Hemmi, I. Yamamoto, and K. Tsubaki: Fermentative Production of the Antibiotic Phomalactone. Japanese Patent 7, 132, 800 (1971).Google Scholar
  51. 51.
    Evans, R.H., and C.E. Holmlund: Fermentative Preparation of Antimicrobial 5,6-Dihydro-5-hydroxy-6-propenyl-2-pyrone and its Derivatives. U.S. Patent 3, 701, 787 (1972).Google Scholar
  52. 52.
    Moore, J.H., T.P. Murray, and M.E. Marks: Production of 3-(1,2-epoxypropyl)5,6-dihydro-5-hydroxy-6-methylpyran-2-one by Aspergillus ochraceus. J. Agric. Food Chem. 22, 697 (1974).CrossRefGoogle Scholar
  53. 53.
    Garson, M.J., J. Staunton, and P.G. Jones: New Polyketide Metabolites from Aspergillus melleus. Structural and Stereochemical studies. J. Chem. Soc. Perkin Trans. 1 1021 (1984)Google Scholar
  54. 53.
    Garson, M.J., J. Staunton, and P.G. Jones: New Polyketide Metabolites from Aspergillus melleus. Structural and Stereochemical studies. J. Chem. Soc. Perkin Trans. 1 1021 (1984).Google Scholar
  55. 54.
    Rosenbrook, W., and R.E. Carney: New Metabolite from an Unidentified Aspergillus species. Tetrahedron Letters 1867 (1970).Google Scholar
  56. 55.
    Grove, J.F.: Alternaric Acid. Part 1. Purification and Characterisation. J. Chem. Soc. 4056 (1952).Google Scholar
  57. 56.
    Bartels-Keith, J.R.: Alternaric Acid. Part III. Structure. J. Chem. Soc. 1662 (1960).Google Scholar
  58. 57.
    Ayer, W.A., and J.D.F. Villar: Metabolites of Lachnellula fuscosanguinea (Rehm). Part 1. The Isolation, Structure Determination, and Synthesis of Lachnelluloic Acid. Canad. J. Chem. 63, 1161 (1985).CrossRefGoogle Scholar
  59. 58.
    Miyakado, M., S. Inoue, Y. Tanabe, K. Watanabe, N. Ohno, H. Yoshioka, and T.J. Mabry: Podoblastin A, B and C. New Antifungal 3-Acyl-4-hydroxy-5,6-dihy-dro-2-pyrones obtained from Podophyllum peltatum L. C.em. Lett. 1539 (1982).Google Scholar
  60. 59.
    Pirkle, W.H., and J.R. Hauske: Broad Spectrum Methods for the Resolution of Optical Isomers. A Discussion of the Reasons Underlying the Chromatographic Separability of Some Diastereomeric Carbamates. J. Organ. Chem. (USA) 42, 1839 (1977).CrossRefGoogle Scholar
  61. 60.
    Korver, O.: Optical Rotary Dispersion and Circular Dichroism of S-Lactones. Determination of the Absolute Configuration of (+)5-Decanolide and (+)5-Dodecanolide. Tetrahedron 26, 2391 (1970).CrossRefGoogle Scholar
  62. 61.
    Priestap, H.A., J.D. Bonafede, and E.A. Ruveda: Argentilactone, a Novel 5-Hydroxyacid Lactone from Aristolochia argentina. Phytochem. 16, 1579 (1977).CrossRefGoogle Scholar
  63. 62.
    O’connor, B., and G. Just: Synthesis of Argentilactone and Goniothalamin Tetrahedron Letters 27, 5201 (1986).Google Scholar
  64. 63.
    Achenbach, H., and J. Witzke: Studies on Naturally Occurring y-and S-Lactones. X. Synthesis of Umuravumbolide and Epiumuravumbolide. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 35, 1459 (1980).Google Scholar
  65. 64.
    Gorter, K.: Hyptolide a Bitter Principle of Hyptis pectinata Poit. Bull. Jard. bot. Buitenzorg 327 (1920).Google Scholar
  66. 65.
    Birch, A.J., and D.N. Butler: The Structure of Hyptolide. J. Chem. Soc. 4167 (1964).Google Scholar
  67. 66.
    Achmed, S., T. Hoyer, A. Kjaer, L. Makmur, and R. Norrestam: Molecular and Crystal Structure of Hyptolide, a Naturally Occurring aß-Unsaturated-S-Lactone. Acta Chem. Scand. B41, 599 (1987).CrossRefGoogle Scholar
  68. 67.
    Alemany, A., C. Marquez, C. Pascual, S. Valverde, M. Martinez-Ripoll, J. Fayos, and A. Perales: New Compounds from Hyptis. X-ray Crystal and Molecular Structures of Anamarine. Tetrahedron Letters 3583 (1979).Google Scholar
  69. 68.
    Alemany, A., C. Marques, C. Pascual, S. Valverde, A. Perales, J. Fayos, and M. Martinez-Ripoll: New Compounds from Hyptis. X-ray Crystal and Molecular Structures of Olguine. Tetrahedron Letters 3579 (1979).Google Scholar
  70. 69.
    Delgado, G., R. Pereda-Miranda, and A. Rollo De Vivar: Structure and Stereo-chemistry of 4-Deacetoxy-l0-epi-olguine, a New 8-Lactone from Hyptis oblongifolia. Heterocycles 23, 1869 (1985).CrossRefGoogle Scholar
  71. 70.
    Gillard, F., and J.J. Riehl: A Synthetic Approach to (+)-Anamarine. Synthesis of the Precursor of the Side-Chain. Tetrahedron Letters 24, 587 (1983).CrossRefGoogle Scholar
  72. 71.
    Valverde, S., A. Hernandez, B. Herradon, R.M. Rabanal, and M. Martinlomas: The Synthesis of (-)-Anamarine. Tetrahedron 43, 3499 (1987).CrossRefGoogle Scholar
  73. 72.
    Davies-Coleman, M.T., R.B. English, and D.E.A. Rivett: Synrotolide, a New a-Pyrone from Syncolostemon rotundifolius. Phytochem. 26, 1497 (1987).CrossRefGoogle Scholar
  74. 73.
    Kazlauskas, R., P.T. Murphy, R.J. Wells, and A.J. Blackman: MaCrOCyCliC EnolEthers Containing an Acetylenic Group from the Red Alga Phacelocarpus labillardieri. Austral. J. Chem. 35, 113 (1982).CrossRefGoogle Scholar
  75. 74.
    Hokanson, G.C., and J.C. French: Novel Antitumour Agents CI-920, PD 113270 and PD 113271, 3. Structure Determination. J. Organ. Chem. (USA) 50, 462 (1985).CrossRefGoogle Scholar
  76. 75.
    Funaishi, K., K. Kawamura, Y. Sugiura, N. Nakahori, E. Yoshida, M. Okanishi, I. Umezawa, S. Funayama, and K. Komiyama: Kazusamycin B, a Novel Antitumour Antibiotic. J. Antibiot. 40, 778 (1987).Google Scholar
  77. 76.
    Bohlmann, F., J. Jakupovic, A. Schuster, R.M. King, and H. Robinson: New Melampolides, Kaurene Derivatives and Other Constituents from Ichthyothere Species. Phytochem. 21, 2317 (1982).CrossRefGoogle Scholar
  78. 77.
    Bohlmann, F., J. Jakupovic, A.K. Dhar, R.M. King, and H. Robinson: Two Sesquiterpene and Three Diterpene Lactones from Acanthospermum australe. Phytochem. 20, 1081 (1981).CrossRefGoogle Scholar
  79. 78.
    Kong, Y., J.M. Gardner, K. K.Bayanshi, Y. Suzuki, S. Takeuchi, and T. Sakurai: Plant Pathotoxins from Alternaria citri. Stereochemistry of the Major and Minor Toxins. Phytochem. 25, 69 (1986).Google Scholar
  80. 79.
    Kong, Y., J.M. Gardner, Y. Suzuki, and S. Takeuchi: Plant Pathotoxins from Alternaria cirri. The Minor ACRL Toxins. Phytochem. 24, 2869 (1985).CrossRefGoogle Scholar
  81. 80.
    Mcinnes, A.G., S. Yoshida, and G.H.N. Towers: A Phenolic Glycoside from Psilotum nudum (L) Griseb. Tetrahedron 21, 2939 (1965).CrossRefGoogle Scholar
  82. 81.
    Tse, A., and G.H.N. Towers: The Occurence of Psilotin in Tmesipteris. Phytochem. 6, 149 (1967).CrossRefGoogle Scholar
  83. 82.
    Balza, F., A.D. Muir, and G.H.N. Towers: 3’-Hydroxypsilotin, A Minor Phenolic Glycoside from Psilotum nudum. Phytochem. 24, 529 (1985).CrossRefGoogle Scholar
  84. 83.
    Achenbach, H., and J. Witzke: Synthese von Psilotin and 6-Epipsilotin. Liebigs Ann. Chem. 2384 (1981).Google Scholar
  85. 84.
    Hlubucek, J.R., and A.V. Robertson: (+)-(5)-8-Lactone of 5-Hydroxy-7-phenylhepta-2,6-dienoic Acid, a Natural Product from Cryptocarya caloneura (Scheff.) Kostermans. Austral. J. Chem. 20, 2199 (1967).CrossRefGoogle Scholar
  86. 85.
    Snatzke, G.: Circular Dichroism and Optical Rotary Dispersion — Principles and Application to the Investigation of the Stereochemistry of Natural Products. Angew. Chem. Internat. Edit. 7, 14 (1968).CrossRefGoogle Scholar
  87. 86.
    Beecham, A.F.: The CD of aß-Unsaturated Lactones. Tetrahedron 28, 5543 (1972).CrossRefGoogle Scholar
  88. 87.
    Meyer, H.H.: Synthesen von (—)-(S)- und (+)-(R)-Goniothalamin; Absolute Konfiguration des natürlichen (+)-Goniothalamins. Liebigs Ann. Chem. 484 (1984).Google Scholar
  89. 88.
    Jewers, K., J.B. Davis, J. Dougan, A.H. Manchanda, G. Blunden, A. Kyi, and S. Wetchapinan: Goniothalamin and its Distribution in Four Goniothalamus Species. Phytochem. 11, 2025 (1972).CrossRefGoogle Scholar
  90. 89.
    Talapatra, S.K., D. Basu, T. Deb, S. Goswami, and B. Talapatra: Structure and Stereochemistry of Four New 5,6-Dihydro-2-Pyrones from Goniothalamus sesquipedalis and Goniothalamus grifithii. Indian. J. Chem. 24B, 29 (1985).Google Scholar
  91. 90.
    Sam, T.W., C. Sew-Yeu, S. Matsjeh, E.K. Gan, D. Razak, and A.L. Mohamed: Goniothalamin Oxide. An Embryotoxic Compound from Goniothalamus macrophyllus (Annonaceae). Tetrahedron Letters 28, 2541 (1987).CrossRefGoogle Scholar
  92. 91.
    Govindachari, T.R., and P.C. Parthasarathy: CryptOCaryalactOne, A Novel 5,6-Dihydro-2H-pyran-2-one from Cryptocarya bourdilloni. Tetrahedron Letters 3401 (1971).Google Scholar
  93. 92.
    Spencer, G.F., R.E. England, and R.B. Wolf: (—)-Cryptocarylalactone and (—)Deacetylcryptocaryalactone-Germination Inhibitors from Cryptocarya moschata seeds. Phytochem. 23, 2499 (1984).CrossRefGoogle Scholar
  94. 93.
    Meyer, H.H.: Synthesen und absolute Konfigurationen von (+)-(6R,2’S)-Cryptocaryalacton und (—)-(6S,2’S)-Epicryptocaryalacton. Liebigs Ann. Chem. 977 (1984).Google Scholar
  95. 94.
    Snatzke, G., and R. Hansel: Die Absolutkonfiguration der Kawa-Lactone. Tetrahedron Letters 1797 (1968).Google Scholar
  96. 95.
    Achenbach, H., and W. Regel: Kernresonanzspektroskopische Untersuchungen an Kawa-Lactonen. Chem. Ber. 106, 2648 (1973).CrossRefGoogle Scholar
  97. 96.
    Achenbach, H., and N. Theobald: Notiz zur absoluten Konfiguration der KawaLactone. Chem. Ber. 107, 735 (1974).CrossRefGoogle Scholar
  98. 97.
    Achenbach, H., und G. Wittmann: Dihydrokawain-5-ol, ein neuer Alkohol aus Rauschpfeffer (Piper methysticum Forst.). Tetrahedron Letters 3259 (1970).Google Scholar
  99. 98.
    Achenbach, H., and H. Hum: Synthese von Dihydrokawain-5-ol. Tetrahedron Letters 119 (1974).Google Scholar
  100. 99.
    Achenbach, H., W. Karl, and S. Smith: Zur gaschromatographischen Trennung der Kawa-Lactone - (+)-5,6,7,8-Tetrahydro - Yangonin, ein neues Kawa-Lacton aus Rauschpfeffer. Chem. Ber. 104, 2688 (1971).CrossRefGoogle Scholar
  101. 100.
    Achenbach, H., W. Karl, and W. Regel: 11-Hydroxy-12-methoxy-dihydrokawain und 11,12-Dimethoxydihydrokawain, zwei neue Kawa-Lactone aus Rauschpfeffer (Piper methysticum Forst.). Chem. Ber. 105, 2182 (1972).CrossRefGoogle Scholar
  102. 101.
    Franca, N.C., O.R. Gottlieb, and A.M. Puentes Saurez: 6-Phenylethyl-5,6-dihydro-2-pyrones from Aniba gigantifolia. Phytochem. 12, 1182 (1973).CrossRefGoogle Scholar
  103. 102.
    Matter, U.E., C. Pascual, E. Pretsch, A. Pross, and W. Simon: Estimation of the Chemical Shifts of Olefinic Protons Using Additive Increments. III. Examples of Utility in NMR Studies and the Identification of Some Structural Features Responsible for Deviations from Additivity. Tetrahedron 25, 2023 (1969).CrossRefGoogle Scholar
  104. 103.
    Elvidge, J.A., and P.D. Ralph: Polyene Acids. Part X. The Conformation of Hexenolactone and the Configuration of the Derived Sorbic Acid as Indicated by Proton Magnetic Resonance Spectroscopy. J. Chem. Soc. (B) 243 (1966).Google Scholar
  105. 104.
    Pelter, A., and M.T. Miqdad: The Carbon-13 Nuclear Magnetic Resonance Spectra of Tetronate and 2-Pyrone Derivatives. J. Chem. Soc. Perkin Trans. 1 1173 (1981).CrossRefGoogle Scholar
  106. 105.
    Urbach, G., W. Stark, and A. Nobuhara: Low Resolution Mass Spectra of Some Unsaturated S-Lactones. Agr. Biol. Chem. 36, 1217 (1972).CrossRefGoogle Scholar
  107. 106.
    Cardellina, J.H., and J. Meinwald: Isolation of Parasorbic Acid from the Cranberry Plant, Vaccinium Macrocarpon. Phytochem. 19, 2199 (1980).CrossRefGoogle Scholar
  108. 107.
    Budzikiewicz, H., C. Djerassi, and D.H. Williams: Mass Spectrometry of Organic Compounds, p. 208. Holden-Day, 1967.Google Scholar
  109. 108.
    Kirk, D.N.: The Chiroptical Properties of Carbonyl Compounds. Tetrahedron 42, 777 (1986).CrossRefGoogle Scholar
  110. 109.
    Lavie, D., I. Kirson, E. Glotter, and G. Snatzke: Conformational Studies on Certain 6-Membered Ring Lactones. Tetrahedron 26, 2221 (1970).CrossRefGoogle Scholar
  111. 110.
    Thomas, S.A.: Conformations of Saturated and Unsaturated S-Lactone Rings. J. Crystallogr. Spectrosc. Res. 15, 115 (1985).CrossRefGoogle Scholar
  112. 111.
    Clarice, P.J., and P.J. Pauling: Crystal and Molecular Structure of Goniothalamin (+)-(6S)-5,6-Dihydro-6-Styryl-2-Pyrone. J. Chem. Soc. Perkin Trans 2 368 (1975).Google Scholar
  113. 112.
    Crombie, L., and P.A. Firth: Biosynthesis of Parasorbic Acid (Hex-2-en-5-olide) by the Rowan Berry (Sorbus aucuparia L.). J. Chem. Soc. (C) 2852 (1968)Google Scholar
  114. 113.
    Brereton, R.G., M.J. Garson, and J. Staunton: Biosynthesis of Fungal Metabolites. Asperlactone and its Relationship to Other Metabolites of Aspergillus melleus. J. Chem. Soc. Perkin Trans. 1 1027 (1984).CrossRefGoogle Scholar
  115. 114.
    Leete, E., A. Muir, and G.H.N. Towers: Biosynthesis of Psilotin from [2′,3′−13C2, 1′−14C, 4−3H] Phenylalanine Studied with 13C-NMR. Tetrahedron Letters 23, 2635 (1982).Google Scholar
  116. 115.
    Haynes, L.J., and E.R.H. Jones: Unsaturated Lactones. Part 1. (Researches on Acetylenic Compounds. Part X.) A New Route to Growth-inhibitory αβ-Ethylenic γ-and δ-Lactones. J. Chem. Soc. 954 (1946).Google Scholar
  117. 116.
    Israili, Z.H., and E.E. Smissman: Synthesis of Kavain, dihydrokavain, and Analogues. J. Organ. Chem. (USA) 42, 4070 (1976).CrossRefGoogle Scholar


  1. Russell, A T, and G. Procter: Allylsilanes in organic synthesis; stereoselective hydroxylactonization of chiral amide-allylsilanes (synthesis of parasorbic acid). Tetrahedron Letters 28, 2041 (1987).CrossRefGoogle Scholar
  2. Murayama, T., T. Sugiyama, and K. Yamashita: Synthesis of natural (—)-osmundalactone and its epimer. Agric. Biol. Chem. 50, 2347 (1986).CrossRefGoogle Scholar
  3. Murayama, T., T. Sugiyama, and K. Yamashita: Synthesis of biologically active 6-substituted 5–6-dihydro-5-hydroxy (or acyloxy)-2H-pyran-2-ones. Tennen Yuki Kagobutsu Toronkai Koen Yoshihu 331 (1986).Google Scholar
  4. Murayama, T., T. Sugiyama, and K. Yamashita: Syntheses of natural (+)-phomalac-tone, (+)-asperlin and their isomers. Agric. Biol. Chem. 51, 2055 (1987).CrossRefGoogle Scholar
  5. Lichtenthaler, F.W., K. Lorenz, and W.Y. Ma: A convergent total synthesis of (—)-an-amarine from D-glucose. Tetrahedron Letters 28, 47 (1987).CrossRefGoogle Scholar
  6. Lorenz, K., and F.W. Lichtenthaler: A convergent total synthesis of (+)-anamarine from (R,R)-tartrate and D-gulonolactone. Tetrahedron Letters 28, 6437 (1987).CrossRefGoogle Scholar
  7. Valverdi, S., B. Herradon, R.M. Rabanal, and M. Martin-Lomas: A synthetic ap-proach to olguine. Can. J. Chem. 65, 332 (1987).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1989

Authors and Affiliations

  • M. T. Davies-Coleman
    • 1
  • D. E. A. Rivett
    • 1
  1. 1.Department of Chemistry and BiochemistryRhodes UniversityGrahamstownRepublic of South Africa

Personalised recommendations