Advertisement

Abstract

The living ferns constitute a large group in the plant kingdom, including as they do about 12,000 species (Pichi Sermolli 1960) (1). They are usually divided into three orders, Ophioglossales, Marattiales and Filicales. The Ophioglossales are sometimes regarded as a distinct class. Both the Ophioglossales and the Marattiales have sporangia which have developed from a group of initial cells (eusporangiate ferns), with the Marattiales being usually regarded as being more primitive than the Filicales whose sporangia originate from a single cell (leptosporangiate ferns). The Osmundaceae are considered to be a primitive member of the Filicales by some authorities and to belong to a separate order by others (2). Indeed, many different systems for classifying the ferns have been proposed, for example, by Christensen 1938 (3); Ching 1940 (4); Copeland) 1947 (5); Holttum 1947 (6); Reimers) 1954 (7); Alston) 1956 (8) and Picni Sermolli) 1958 (9) Even today, pteridologists appear to be of different opinions as regard the grouping of fern taxa, particularly the polypodiaceous ferns, and their phylogenetic relationships. Even the number of the families to be included in the Filicopsida which are recognized by different pteridologists varies from twelve to more than fifty (10). Table 1 shows the relations between the three representative systems of classification of the polypodiaceous ferns (sensu lato) proposed by Copeland (1947), Picm Sermolli (1970) (9b, 11) and Holttum (1947). The tentative classification system which is refered to throughout this review is also shown in Table 1.

Keywords

Dimethyl Ether Methyl Ether Pteridium Aquilinum Structure Number Tetrahedron Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Pichi Sermolli, R.E.G.: Filicopsida. In: Encyclopedia Agraria Italiana 4, p. 649. Rome: Ramo Editoriale degli Agricoltori. 1960.Google Scholar
  2. 2.
    Bierhorst, D.W.: Morphology of Vascular Plants. New York: Mac Milian. 1971.Google Scholar
  3. 3.
    Christensen, C.: Filicinae. In: Manual of Pteridology (Vernooan, F. ed.), p. 522. Nijhoff: The Hague. 1938.Google Scholar
  4. 4.
    Ching, R.C.: On Natural Classification of the Family “Polypodiaceae”. Sunyatsenia 5, 201 (1940).Google Scholar
  5. 5.
    Copeland, E.B.: Genera Filicum, the Genera of Ferns. Waltham, Mass: Chronica Botanica Inc. 1947.Google Scholar
  6. 6.
    Holttum, R.E.: A Revised Classification of Leptosporangiate Ferns. J. Linn. Soc. (Bot.) 53, 123 (1947).Google Scholar
  7. 7.
    Reimers, H.: Pteridophyta. In: Engler’s Syllabus der Pflanzenfamilien (Mecrior, H., and E. Werdermann, eds.), 12th ed., 1, p. 269. Berlin: Borntraeger. 1954.Google Scholar
  8. 8.
    Alston, A.H.G.: The Subdivision of the Polypodiaceae Taxons 5, 23 (1956).Google Scholar
  9. 9.
    Pichi Sermolli, R.E.G.: a) The Higher Taxa of the Pteridophyta and Their Classification. In: Systematics of Today. Proceeding of a Symposium held at the University of Uppsala in Commemoration of the 250th Aniversary of the Birth of Carolus Linnaeus, 1958 (6), 70, Uppsala Univ. Arsskrift, 1958. b) A Provisional Catalogue of the Family Names of Living Pteridophytes. Webbia, 25, 219 (1970).Google Scholar
  10. 10.
    Pichi Sermolli, R.E.G.: Historical Review of the Higher Classification of the Filicopsida. In: The Phylogeny and Classification of the Ferns (Jermy, A.C., J.A. Grabbe, and B.A. Thomas, eds.), Supplement No. 1 to the Bot. J. Linn Soc. 67, 11, The Linnean Society of London, Acad. Press. 1973.Google Scholar
  11. 11.
    Love, A., D. Love, and R.E.G. Pion Sermolli: Cytotaxonomical Atlas of the Pteridophyta. Vaduz: J. Cramer. 1977.Google Scholar
  12. 12.
    Hegnauer, R.: Pterophyta. In: Chemotaxonomie der Pflanzen, I, p. 254. Basel: Birkhäuser Verlag. 1962.Google Scholar
  13. 13.
    Berti, G., and F. Bottari: Constituents of Ferns. In: Progress in Phytochemistry (Rheinhold, L., and Y. Liwschitz, eds.), I, p. 589. London: Interscience. 1968.Google Scholar
  14. 14.
    Swain, T., and G. Cooper-Driver: Biochemical Systematics in the Filicopsida. In: The Phylogeny and Classification of the Ferns (Jermy, A.C., J.A. Crabbe, and B.A. Thomas, eds.), p. 111. London: Academic Press. 1973.Google Scholar
  15. 15.
    Penttilä, A., and J. Sundman: The Chemistry of Dryopteris Acylphloroglucinols. J. Pharm. Pharmac. 22, 393 (1970).CrossRefGoogle Scholar
  16. 16.
    Widen, C.-J., G. Vida, J. Euw, and T. Reichstein: Die Phloroglucide von Dryopteris villarii (Bell.) Woynar und anderer Farne der Gattung Dryopteris sowie die mögliche Abstammung von D. filix-mas (L.) Schott. Heiv. Chim. Acta 54, 2824 (1971).CrossRefGoogle Scholar
  17. 17.
    Widen, C.-J., J. Sarvela, and D.M. Britton: On the Location and Distribution of Phloroglucinols (Filicin) in Ferns. Ann. Bot. Fennici 20, 407 (1983).Google Scholar
  18. 18.
    Euw, J., M. Lounasmaa, T. Reichstein, and C.-J. Widen: ChemOtaXOnomy in Dryopteris and Related Genera. Review and Evaluation of Analytical Methods. Studia Geobotanica (Trieste) 1, 275 (1980).Google Scholar
  19. 19.
    Hegnauer, R.: Pterophyta. In: Chemotaxonomie der Pflanzen, VII, p. 437. Basel: Birkhäuser Verlag. 1986.Google Scholar
  20. 20.
    Luck, E.: Isolation of Filixic Acid from Dryopteris filix-mas. Liebigs Ann. Chem. 54, 119 (1845).CrossRefGoogle Scholar
  21. 21.
    Lounasmaa, M., C.-J. Widen, and T. Reichstein: Massenspektren neuer Phloroglucide, insbesondere solcher mit Valerylseitenketten. Heiv. Chim. Acta 56, 1133 (1973).CrossRefGoogle Scholar
  22. 22.
    Widen, C.-J., R.B. Faden, M. Lounasmaa, G. Vida, J. Euw, and T. Reichstein: Die Phloroglucide von neun Dryopteris-Arten aus Kenya sowie der D. oligodonta Pic.-Serm. von den Canarischen Inseln. Helv. Chim. Acta 56, 2125 (1973).CrossRefGoogle Scholar
  23. 23.
    Widen, C.-J., M. Lounasmaa, and J. Sarvela: Phloroglucinol Derivatives of Eleven Dryopteris Species from Japan. Planta Medica 28, 144 (1975).CrossRefGoogle Scholar
  24. 24.
    Euw, J., T. Reichstein, and C.-J. Widen: The Phloroglucinols of Dryopteris aitoniana Pichi Serm. (Dryopteridaceae, Pteridophyta). Helv. Chim. Acta 68, 1251 (1985).CrossRefGoogle Scholar
  25. 25.
    Widen, C.-J., and H.S. Puri: Phloroglucinol Derivatives in Ctenitis apiciflora and C. nidus. Planta Medica 36, 343 (1979).CrossRefGoogle Scholar
  26. 26.
    Widen, C.-J., J. Sarvela, and K. Iwatsuki: Chemotaxonomic Studies on Arachniodes (Dryopteridaceae). I. Phloroglucinol Derivatives of Japanese Species. Bot. Mag. Tokyo 89, 277 (1976).Google Scholar
  27. 27.
    Widen, C.-J., A. Huure, J. Sarvela, and K. Iwatsukt: Chemotaxonomic Studies on Arachniodes (Dryopteridaceae) II. Phloroglucinol Derivatives and Taxonomic Evaluation. Bot. Mag. Tokyo 91, 247 (1978).CrossRefGoogle Scholar
  28. 28.
    Widen, C.-J., S. Mitsuta, and K. Iwatsuki: Chemotaxonomic studies on Arachniodes (Dryopteridaceae) III. Phloroglucinol Derivatives of Putative Hybrids. Bot. Mag. Tokyo 94, 127 (1981).CrossRefGoogle Scholar
  29. 29.
    Tanaka, N., H. Maehashi, S. Saito, T. Murakami, Y. Saiki, C.-M. Chen, and Y. Iitaka: Chemical and Chemotaxonomical Studies of Ferns. XXXI. Chemical Studies on the Constituents of Arachniodes standishii Ohwi. Chem. Pharm. Bull. (Japan) 28, 3070 (1980).CrossRefGoogle Scholar
  30. 30.
    Tanaka, N., N. Yamazaki, K. Hori, T. Murakami, Y. Saiki, and C.-M. Chen: Chemical and Chemotaxonomical Studies of Filices. XLVII. Chemical Studies on the Constituents of Arachniodes nigrospinosa (Ching) Ching, A. festina (Hance) Ching and A. mutica Ohwi. Chem. Pharm. Bull. (Japan) 32, 1335 (1984).Google Scholar
  31. 31.
    Britton, D.M., and C.-J. Widen: Chemotaxonomic Studies on Dryopteris from Quebec and Eastern North America. Canad. J. Bot. 52, 627 (1974).CrossRefGoogle Scholar
  32. 32.
    Widen, C.-J., C.R. Fraser-Jenkins, M. Lounasmaa, J. Euw, and T. Reichstein: Die Phloroglucide von Dryopteris caucasica (A. Br.) Fraser-Jenkins et Corley. Helv. Chim. Acta 56, 831 (1973).CrossRefGoogle Scholar
  33. 33.
    Hiking, H., C. Konno, and T. Takemoto: Structure of Pleoside from Pleopeltis thunbergiana. J. Pharmac. Soc. Japan 89, 372 (1969).Google Scholar
  34. 34.
    Numata, A., T. Katsuno, K. Yamamoto, T. Nishida, T. Takemura, and K. Seto: Plant Constituents Biologically Active to Insects. IV. Antifeedants for the Larvae of the Yellow Butterfly, Eurema hecabe mandarina, in Arachniodes standishii. Chem. Pharm. Bull. (Japan) 32, 325 (1984).Google Scholar
  35. 35.
    Cokun, M., A. Sakushima, S. Nishibe, and S. Hisada: Phloroglucinol Derivatives of Dryopteris abbreviata. Chem. Pharm. Bull. (Japan) 30, 4102 (1982).CrossRefGoogle Scholar
  36. 36.
    Cokun, M., A. Sakushima, S. Nishibe, S. Hisada, and N. Tanker: A Phloroglucinol Derivative of Dryopteris abbreviata. Phytochem. 21, 1453 (1982).CrossRefGoogle Scholar
  37. 37.
    Widen, C.-J., M. Lounasmaa, G. Vida, and T. Reichstein: Die Phloroglucide von drei Dryopteris-Arten von den Azoren sowie zwei Arten von Madeira und den Kanarischen Inseln zum Vergleich. Helv. Chim. Acta 58, 880 (1975).CrossRefGoogle Scholar
  38. 38.
    Widen, C.-J., and D.M. Britton: A Chromatographic and Cytological Study of Dryopteris filix-mas and Related Taxa in North America. Canad. J. Botany 49, 1589 (1971).CrossRefGoogle Scholar
  39. 39.
    Hisada, S., K. Shiraishi, and I. Inagaki: Phloroglucinol Derivatives of Dryopteris dickinsii and some Related Ferns. Phytochem. 11, 2881 (1972).CrossRefGoogle Scholar
  40. 40.
    Hisada, S., O. Indue, and I. Inagaki: A New Acylphloroglucinol of Dryopteris gymnosora. Phytochem. 13, 655 (1974).CrossRefGoogle Scholar
  41. 41.
    Tryon, R., C.-J. Widen, and A. Huhtikangas: Phloroglucinol Derivatives in Dryopteris parallelogramma and D. patula. Phytochem. 12, 683 (1973).CrossRefGoogle Scholar
  42. 42.
    Widen, C.-J., J. Euw, and T. Reichstein: Trispara-aspidin, ein nues Phloroglucid aus dem Farn Dryopteris remota (A. Br.) Hayek. Helv. Chim. Acta 53, 2176 (1970).CrossRefGoogle Scholar
  43. 43.
    Hisada, S., K. Shiraishi, and I. Inagaki: Pharmaceutical Studies on Japanese Ferns Containing Phloroglucinol Derivative. (9). On the Constituents of Dryopteris dickinsii(1). J. Pharmac. Soc. Japan 92, 1124 (1972).Google Scholar
  44. 44.
    Hisada, S., S. Nishibe, O. Indue, I. Inagaki, and Y. Ogihara: Acylphloroglucinols from the Rhizomes of Dryopteris sieboldii. Japanese J. Pharmacognosy 34, 8 (1980).Google Scholar
  45. 45.
    Noxo Y., K. Okuda, and H. Shimada: Dryocrassin, a New Acylphloroglucinol from Dryopteris crassirhizoma. Phytochem. 12, 1491 (1973).Google Scholar
  46. 46.
    Herrmann, K.: Hydroxyzimtsäuren und Hydroxybenzoesäuren enthaltende Naturstoffe in Pflanzen. In: Fortschr. Chem. organ. Naturstoffe (Herz, W., H. Grisebach, and G.W. Kirby, eds.), 35, p. 73. Wien-New York: Springer-Verlag. 1978.Google Scholar
  47. 47.
    a) Bohm, B.A., and R.M. Tryon: Phenolic Compounds in Ferns. I. A Survey of some Ferns for Cinnamic Acid and Benzoic Acid Derivatives. Canad. J. B.tany 45, 585 (1967). b) Venkataramaiah, C., V. Venkataramaiah, K.V. Ramana Rao, and S.V. Prasad: Studies on Phenolic Acid Pattern in Marsella quadrifolia L. Comp. Physiol. Ecol. 6, 302 (1981).Google Scholar
  48. 48.
    Bohm, B.A.: Phenolic Compounds in Ferns. III. An Examination of some Ferns for Caffeic Acid Derivatives. Phytochem. 7, 1825 (1968).CrossRefGoogle Scholar
  49. 49.
    Glass, A.D.M., and B.A. Boxm: A Further Survey of Ferns for Cinnamic and Benzoic Acids. Phytochem. 8, 629 (1969).CrossRefGoogle Scholar
  50. 50.
    San Francisco, M., and G. Cooper-Driver: Anti-microbial Activity of Phenolic Acids in Pteridium aquilinum. Amer. Fern J. 74, 87 (1984).CrossRefGoogle Scholar
  51. 51.
    Hori, K., T. Satake, H. Yamaguchi, Y. Saiki, T. Murakami, and C.-M. Chen: Chemical and Chemotaxonomical Studies of Filices. LXXII. Chemical Studies on the Constituents of Odontosoria gymnogrammoides Christ. J. Pharmac. Soc. Japan 107, 774 (1987).Google Scholar
  52. 52.
    Murakami, T., N. Tanaka, T. Kimura, T. Noguchi, Y. Saiki, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen der Pterophyten. IL. Chemische Untersuchungen der Inhaltsstoffe von Plagiogyria euphlebia (Kunze) Mett. Chem. Pharm. Bull. (Japan) 32, 1808 (1984).CrossRefGoogle Scholar
  53. 53.
    Murakami, T., N. Tanaka, T. Noguchi, Y. Saiki, and C.-M. Chen: Chemischeund chemotaxonomische Untersuchungen der Pterophyten. L. Chemische Untersuchungen der Inhaltsstoffe von Plagiogyria matsumureana Makino. Chem. Pharm. Bull. (Japan) 32, 1815 (1984).Google Scholar
  54. 54.
    Hasegawa, M., and M. Taneyama: Chicoric Acid from Onychium japonicum and Its Distribution in the Ferns. Bot. Mag. Tokyo 86, 315 (1973).CrossRefGoogle Scholar
  55. 55.
    Murakami, T., N. Tanaka, T. Satake, H. Wada, T. Kimura, T. Shimada, Y. Saiki, and C.-M. Chen: Several Simple Glycosides in Ferns. J. Pharmac. Soc. Japan. In preparation.Google Scholar
  56. 56.
    Ueno, A., N. Oguri, K. Hori, Y. Saiki, and T. Harada: Pharmaceutical Studies on Ferns. XVIII. Chemical Components in Leaves of Sphenomeris chusana Copel. and Cyathea fauriei Copel. J. Pharmac. Soc. Japan 83, 420 (1963).Google Scholar
  57. 57.
    Satake, T., T. Murakami, Y. Saiki, and C.-M. Chen: Chemical and Chemotaxonomical Studies on Filices. XLIII. Chemical Studies on the Constituents of Lindsaea javanensis Bl., L. japonica (Bak.) Diels and Tapeinidium pinnatum (Cay.) C. Chr. Chem. Pharm. Bull. (Japan) 31, 3865 (1983).CrossRefGoogle Scholar
  58. 58.
    Jizba, J., and V. Herout: Plant Substances. XXVI. Isolation of Constituents of Common Polypody Rhizomes (Polypodium vulgare L.). Collection Czechoslov. Chem. Commun. 32, 2867 (1967).Google Scholar
  59. 59.
    Imperato, F.: New Phenolic Glycosides in the Fern Adiantum capillus-veneris L. Chem. and Ind. 1982, 957.Google Scholar
  60. 60.
    Imperato, F.:1-Caffeyllaminaribiose, a New Hydroxycinnamic Acid-Sugar Derivative from Asplenium adiantum-nigrum L. Chem. and Ind. 1979, 553.Google Scholar
  61. 61.
    Kuraishi, T., T. Kimura, T. Murakami, Y. Saiki and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen der Pterophyten. XLVIII. Über die Zuckerester aus Plagiogyria euphlebia (Kunze) Mett. und Microlepia speluncae L. Chem. Pharm. Bull. (Japan) 32, 1998 (1984).Google Scholar
  62. 62.
    Tanaka, N., S. Nagase, K. Wachi, T. Murakami, Y. Saiki, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen von Filices. XXX. Chemische Untersuchungen der Inhaltsstoffe von Dennstaedtia scandens (Blume) Moore. Chem. Pharm. Bull. (Japan) 28, 2843 (1980).CrossRefGoogle Scholar
  63. 63.
    Imperato, F.: New Sulphate Esters of Hydroxycinnamic Acid-Sugar Derivatives in Ferns. Chem. and Ind. 1981, 691.Google Scholar
  64. 64.
    Imperato, F.: Sulphate Esters of Hydroxycinnamic Acid-Sugar Derivateives from Adiantum capillus-veneris. Phytochem. 21, 2717 (1982).CrossRefGoogle Scholar
  65. 65.
    Cooper-Driver, G., and T. Swain: Sulphate Esters of Caffeyl-and p-Coumarylglucose in Ferns. Phytochem. 14, 2506 (1975).CrossRefGoogle Scholar
  66. 66.
    Imperato, F.: Two New Phenolic Glycosides in Asplenium septentrionale. Amer. Fern J. 74, 14 (1984).CrossRefGoogle Scholar
  67. 67.
    Tanaka, N., T. Noguchi, K. Kawashima, K. Kurihara, T. Matsudo, T. Mura-Kami, Y. Saiki, and C.-M. Chen: Chemical and Chemotaxonomical Studies of Fi-lices. LXX. Chemical Studies on the Constituents of Plagiogyria formosana, P. ad-nata, P. dunnii, and P. stenoptera. J. Pharmac. Soc. Japan 107, 586 (1987).Google Scholar
  68. 68.
    Tanaka, N., T. Kido, T. Murakami, Y. Saiki, and C.-M. Chen: Novel Lignans from the Blechnaceae. 107th Annual Meeting of the Pharmaceutical Society of Japan, Kyoto, Apr. 1987, Abstracts of Papers, p. 351.Google Scholar
  69. 69.
    Fukuoka, M.: Chemical and Toxicological Studies on Bracken Fern, Pteridium aquilinum var. latiusculum. VI. Isolation of 5-O-Caffeoylshikimic Acid as an Antithiamine Factor. Chem. Pharm. Bull. (Japan) 30, 3219 (1982).CrossRefGoogle Scholar
  70. 70.
    Schmid, H., and P. Karrer: Über wasserlösliche Inhaltsstoffe von Papaver somniferum L. Helv. Chim. Acta 28, 722 (1945).CrossRefGoogle Scholar
  71. 71.
    Murakami, T., T. Kimura, N. Tanaka, Y. Saiki, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen der Gattung Pteris und der verwandten Gattungen (Pteridaceae). XXIII. Ein nues Styrol-Glykosid aus Cheilanthes kuhnii. Phytochem. 19, 471 (1980).Google Scholar
  72. 72.
    Kuraishi, T., Y. Mitadera, T. Murakami, N. Tanaka, Y. Saiki, and C.-M. Chen: Chemical and Chemotaxonomical Studies on Filices. XLII. Chemical Studies on the Constituents of Dicranopteris dichotoma (Thunb.) Bernh. and Microlepia obutusiloba Hayata. J. Pharmac. Soc. Japan 103, 679 (1983).Google Scholar
  73. 73.
    Onka, M., K. Wakamatsu, H. Niwa, K. Yamada and I. Hirono: Isolation and Structures of Two New p-Hydroxystyrene Glycosides, Ptelatoside-A and PtelatosideB from Bracken, Pteridium aquilinum var. latiusculum, and Synthesis of PtelatosideA. Chemistry Letters 1984, 397.Google Scholar
  74. 74.
    Pryce, R.J.: Lunularic Acid, a Common Endogenous Growth Inhibitor of Liverworts. Planta 97, 354 (1971).CrossRefGoogle Scholar
  75. 75.
    Pryce, R.J.: The Occurrence of Lunularic and Abscisic Acids in Plants. Phytochem. 11, 1759 (1972).CrossRefGoogle Scholar
  76. 76.
    Wollenweber, E., and J. Favre-Bonvin: Novel Dihydrostilbene from Fronds of Notholaena dealbata and Notholaena limitanea. Phytochem. 18, 1243 (1979).CrossRefGoogle Scholar
  77. 77.
    Gorham, J., and S.J. Coughlan: Inhibition of Photosynthesis by Stilbenoids. Phytochem. 19, 2059 (1980).CrossRefGoogle Scholar
  78. 78.
    El-Feraly, F.S., S.F. Cheatham, and J.D. Mcchesney: Total Synthesis of Notholaenic Acid. J. Natural Products 48, 293 (1985).CrossRefGoogle Scholar
  79. 79.
    Tanaka, N., H. Wada, T. Murakami, N. Sahashi, and T. Ohmoto: Chemische und chemotaxonomische Untersuchungen der Pterophyten. LXIV. Chemische Untersuchungen der Inhaltsstoffe von Sceptridium ternatum var. ternatum. Chem. Pharm. Bull. (Japan) 34, 3727 (1986).CrossRefGoogle Scholar
  80. 80.
    Murakami, T., N. Tanaka, H. Wada, K. Hori, T. Satake, Y. Saiki, and C.-M. Chen: Unpublished Results.Google Scholar
  81. 81.
    Wollenweber, E.: Flavonoid Aglycones as Constituents of Epicuticular Layers on Ferns. In: The Plant Cuticle (Linn Soc. Symp. Series No. 10) (Cutler, D.F., K.F. Alvin, and C.E. Price, eds.), p. 215. London: Academic Press. 1982.Google Scholar
  82. 82.
    Satake, T., T. Murakami, Y. Saiki, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen der Gattung Pteris und der verwandten Gattungen (Pteri-daceae) XIX. Chemische Untersuchungen der Inhaltsstoffe von Pteris vittata L. Chem. Pharm. Bull. (Japan) 26, 1619 (1978).CrossRefGoogle Scholar
  83. 83.
    Gottlieb, O.R.: Neolignans. In: Fortschr. Chem. organ. Naturstoffe (Herz, W., H. Grisebach, and G.W. Kirby, eds.), 35, p. 1. Wien-New York: Springer-Verlag. 1978.Google Scholar
  84. 84.
    Gupta, R.B., R.N. Khanna, and N.N. Sharma: Chemical Components of Asplenium laciniatum. Current Sci. (India) 45, 44 (1976).Google Scholar
  85. 85.
    a)Gupta, R.B., R.N. Khanna, and N.N. Sharma: A New Binaphthoquinone from Asplenium laciniatum. Indian J. Chem. 15B, 394 (1977). b) Gupta, R.B., R.N. Khanna, and V.P. Manchanda: Synthesis of 3,3’-Bi(2-methyl-1,4-naphthoquinone), a Naturally Occurring Binaphthoquinone Isolated from Asplenium laciniatum. Indian J. Chem. 18B, 217 (1979).Google Scholar
  86. 86.
    Hori, K., T. Satake, Y. Saiki, T. Murakami, and C.-M. Chen: Chemical and Chemotaxonomical Studies of Filices. LXIX. The Novel Coumarins of Macrothelypteris torresiana Ching var. calvata Holtt. (=M. oligophlebia Ching). J. Pharmac. Soc. Japan 107, 491 (1987).Google Scholar
  87. 87.
    Rohtagi, B.K., R.B. Gupta, and R.N. Khanna: Chemical Constituents of Asplenium indicum. J. Natural Products 47, 901 (1984).CrossRefGoogle Scholar
  88. 88.
    Thomson, R.H.: Naturally Occurring Quinones. 2nd. Edition, p. 201. London-New York: Academic Press. 1971.Google Scholar
  89. 89.
    Werbin, H., and E.T. Strom: Photochemistry of Electron-Transport Quinones. I. Model Studies with 2-Methyl-1,4-naphthoquinone (Vitamin K3). J. Am. Chem. Soc. 90, 7296 (1968).Google Scholar
  90. 90.
    Achari, B., K. Basu, C.R. Saha, and S.C. Pakrashi: A New Triterpene Ester, an Anthraquinone and Other Constituents of the Fern Lygodium flexuosum. Planta Medica 52, 330 (1986).CrossRefGoogle Scholar
  91. 91.
    Tanaka, N., M. Kudo, T. Taniguchi, T. Murakami, Y. Saiki, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen der Gattung Pteris und der verwandten Gattungen (Pteridaceae) XVIII. Chemische Untersuchungen der Inhaltsstoffe von Pteris ryukyuensis Tagawa und Pteris longipinna Hayata. Chem. Pharm. Bull. (Japan) 26, 1339 (1978).CrossRefGoogle Scholar
  92. 92.
    Satake, T., T. Murakami, Y. Saiki, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen von Filices. XXVI. Chemische Untersuchungen der Inhaltsstoffe von Lindsaea chienii Ching. Chem. Pharm. Bull. (Japan) 28, 1859 (1980).CrossRefGoogle Scholar
  93. 93.
    Satake, T., T. Murakami, Y. Saiki, and C.-M. Chen:Chemische und chemotaxonomische Untersuchungen der Gattung Pteris und der verwandten Gattungen (Pteridaceae). XX. Chemische Untersuchungen der Inhaltsstoffe von Lindsaea ensifolia Sw. Chem. Pharm. Bull. (Japan) 28 2600 (1978).Google Scholar
  94. 94.
    Murakami, T., N. Tanaka, T. Satake, Y. Saiki, and C.-M. Chen: Chemical and Chemotaxonomical Studies on Filices. LVII. Chemical Studies on the Constituents of Colysis hemionitidea (Wall) Presl. and Microsorium fortunei (Moore) Ching. J. Pharmac. Soc. Japan 105, 655 (1985).Google Scholar
  95. 95.
    Shimada, H., T. Sawada, M. Kozuka, and O. Kojima: A Constituent of Fern, Lindsaea cultrata. Japanese J. Pharmacognosy 22, 37 (1968).Google Scholar
  96. 96.
    Suzuki, K.: Über die Bestandteile von Polypodium hastatum Thunb. J. Pharmac. Soc. Japan 48, 712 (1928).Google Scholar
  97. 97.
    Ishikura, N.: 3-Desoxyanthocyanin and Other Phenolics in the Water Fern Azolla. Bot. Mag. Tokyo 95, 303 (1982).CrossRefGoogle Scholar
  98. 98.
    Fukushima, S., T. Nord, Y. Saiki, A. Ueno, and Y. Akahori: Studies on the Constituents of Leptorumohra miqueliana H. Ito. I. The Structures of Leptorumolin and Leptorumol. J. Pharmac. Soc. Japan 88, 1135 (1968).Google Scholar
  99. 99.
    Mukerjee, S.K., S. Raychaudhuri, and T.R. Seshadri: New Syntheses of Leptorumol. Indian J. Chem. 7, 1070 (1969).Google Scholar
  100. 100.
    Murakami, T., T. Kidd, K. Hori, T. Satake, Y. Saiki, and C.-M. Chen: Chemical and Chemotaxonomical Studies of Filices. LXVII. The Distribution of a Flavanone with a Modified B-Ring, Protofarrerol and Its Derivatives. J. Pharmac. Soc. Japan 107, 416 (1987).Google Scholar
  101. 101.
    Richardson, P.M.: The Taxonomic Significance of Xanthones in Ferns. Biochem. Syst. Ecol. 12, 1 (1984).CrossRefGoogle Scholar
  102. 102.
    Ueno, A.: Pharmaceutical Studies on Ferns. XVI. Components of Athyrium mesosorum Makino. (I). J. Pharmac. Soc. Japan 82, 1482 (1962).Google Scholar
  103. 103.
    Ueno, A:Pharmaceutical Studies on Ferns. XVII. Components of Athyrium mesosorum Makino. (2). J. Pharmac. Soc. Japan 82 1486 (1962).Google Scholar
  104. 104.
    Richardson, P.M., and E. Lorenz-Liburnau: C-Glycosylxanthones in the Fern Genus Athyrium. Biochem. Syst. Ecol. 11, 187 (1983).CrossRefGoogle Scholar
  105. 105.
    Murakami, T., N. Tanaka, H. Wada, Y. Saiki, and C.-M. Chen: Chemical and Chemotaxonomical Studies on Filices. LXIII. Xanthone Derivatives of Hypodematium fauriei Tagawa, H. crenatum Kuhn and Gymnocarpium robertianum Newm. (G. jessoense Koidz.). J. Pharmac. Soc. Japan 106, 378 (1986).Google Scholar
  106. 106.
    Richardson, P.M.: C-Glycosylxanthones in the Fern Genera Davallia, Humata and Nephrolepis. Phytochem. 22, 309 (1983).CrossRefGoogle Scholar
  107. 107.
    Han, G., and M. Wang: Chemical Constituents of Pyrrosia sheareri (Bak.) Ching. Nanjing Yaoxueyuan Xuebao 15, 40 (1984).Google Scholar
  108. 108.
    Richardson P.M., and E. Thaddeus: Mangiferin and Isomangiferin in Acystopteris, Cystopteris, Gymnocarpium and Woodsia. J. Natural Products 46 747 (1983).CrossRefGoogle Scholar
  109. 109.
    Markham, K.R., and A.D. Woolhouse: Dilatatin, the First Example of a C-Allosylated Natural Product. Phytochem. 22, 2827 (1983).CrossRefGoogle Scholar
  110. 110.
    Smith, D.M., and J.B. Harbdrne: Xanthones in the Appalachian Asplenium Complex. Phytochem. 10, 2117 (1971).CrossRefGoogle Scholar
  111. 111.
    Smith, D.M., and D.A. Levin: A Chromatographic Study of Reticulate Evolution in the Appalachian Asplenium Complex. Amer. J. Bot. 50, 952 (1963).CrossRefGoogle Scholar
  112. 112.
    Richardson, P.M., and E. Lorenz-Liburnau: C-Glycosylxanthones in the Asplenium adiantum-nigrum Complex. Amer. Fern J. 72, 103 (1982).CrossRefGoogle Scholar
  113. 113.
    Imperato, F.: A Xanthone-O-Glycoside from Asplenium adiantum-nigrum. Phytochem. 19, 2030 (1980).CrossRefGoogle Scholar
  114. 114.
    Tanaka, T., T. Sueyasu, G. Nonaka, and I. Nishioka: Isolation and Characterization of Galloyl and p-Hydroxybenzoyl Esters of Benzophenone and Xanthone C-Glucosides from Mangifera indica L. Chem. Pharm. Bull. (Japan) 32, 2676 (1984).CrossRefGoogle Scholar
  115. 115.
    Fujita, M., and T. Inoue: Further Studies on the Biosynthesis of Mangiferin in Anemarrhena asphodeloides: Hydroxylation of the Shikimate-Derived Ring. Phytochem. 20, 2183 (1981).CrossRefGoogle Scholar
  116. 116.
    Markham, K.R., and J.W. Wallace: C-Glycosylxanthone and Flavonoid Variation within the Filmy-Ferns (Hymenophyllaceae). Phytochem. 19, 415 (1980).CrossRefGoogle Scholar
  117. 117.
    Bohm, B.A.: Xanthones in the Fern Ctenitis decomposita. Phytochem. 14, 287 (1975).CrossRefGoogle Scholar
  118. 118.
    Wallace, J.W., K.R. Markham, D.E. Giannasi, J.T. Mickel, D.L. Yopp, L.D. Gomez, J.D. Pittillo, and R. Soeder: A Survey for 1,3,6,7-Tetrahydroxy-C-glycosylxanthones Emphasizing the “Primitive” Leptosporangiate Ferns and Their Allies. Amer. J. Bot. 69, 356 (1982).CrossRefGoogle Scholar
  119. 119.
    Scheele, C., and E. Wollenweber: New Flavonoids from Cheilanthoid Ferns. J. Natural Products 50, 181 (1987).CrossRefGoogle Scholar
  120. 120.
    Vdirin,B. and P. Lebreton: Chemotaxonomic Investigation of Vascular Plants. The Presence of 6-Methylchrysin in the Fern, Lonchitis tisserantii. Bull. soc. chim. biol. (Paris) 49 1402 (1967).Google Scholar
  121. 121.
    Wollenweber, E.: Einige Neufunde externer Flavonoide bei amerikanischen Farnen. Flora 168, 138 (1979).Google Scholar
  122. 122.
    Wollenweber, E.: Die Zusammensetzung des Flavonoid-Mehls bei einigen Farnen. Z. Pflanzenphysiol. 85, 71 (1977).Google Scholar
  123. 123.
    Wollenweber, E.: Flavonoid Exudations in Farinose Ferns. Phytochem. 15, 2013 (1976).CrossRefGoogle Scholar
  124. 124.
    Wollenweber, E.: Unusual Flavanones from a Rare American Fern. Z. Naturforsch. 36c, 604 (1981).Google Scholar
  125. 125.
    Wollenweber, E., V.H. Dietz, D. Schillo, and G. Schilling: A Series of Novel Flavanones from Fern Exudates. Z. Naturforsch. 35c, 685 (1980).Google Scholar
  126. 126.
    Sunder, R., K.N.N. Ayengar, and S. Rangaswami: Crystalline Chemical Components of Cheilanthes longissima. Phytochem. 13, 1610 (1974).CrossRefGoogle Scholar
  127. 127.
    Wollenweber, E., D.M. Smith, and T. Reeves: Flavonoid Patterns and Chemical Races in the California Cloak-Fern, Notholaena californica. Stud. Org. Chem. 11 (Flavonoids Bioflavonoids), 221 (1981).Google Scholar
  128. 128.
    Wollenweber, E.: Flavonoide Exkrete bei Goldfarnen und Silberfarnen. Z. Pflanzenphysiol. 78, 344 (1976).Google Scholar
  129. 129.
    Star, A.E., and T.J. Mabry: Flavonoid Frond Exudate from Two Jamaican Ferns, Pityrogramma tartarea and P. calomelanos. Phytochem. 10, 2817 (1971).CrossRefGoogle Scholar
  130. 130.
    Wada, H., H. Fujita, T. Murakami, Y. Saiki, and C.-M. Chen: Chemical and Chemotaxonomical Studies of Filices. LXXIII. New Flavonoids with Modified Bring from the Genus Pseudophegopteris (Thelypteridaceae). Chem. Pharm. Bull. (Japan) 35, 4757 (1987).CrossRefGoogle Scholar
  131. 131.
    Rangaswami, S., and R.T. Iyer: Flavonoids of Cheilanthes farinosa. Indian J. Chem. 7, 526 (1969).Google Scholar
  132. 132.
    Wollenweber, E., and V.H. Dietz: Flavonoid Patterns in the Farina of Goldenback and Silverback Ferns. Biochem. Syst. Ecol. 8, 21 (1980).CrossRefGoogle Scholar
  133. 133.
    Murakami, T., M. Hagiwara, K. Tanaka, and C.-M. Chen: Chemische Untersuchungen über die Inhaltsstoffe von Helminthostachys zeylanica (L) Hook. I. Chem. Pharm. Bull. (Japan) 21, 1849 (1973).CrossRefGoogle Scholar
  134. 134.
    Wollenweber, E.: On the Occurrence of Acylated Flavonoid Aglycones. Phytochem. 24, 1493 (1985).CrossRefGoogle Scholar
  135. 135.
    Wollenweber, E.: Flavonols from the Fronds of Pityrogramma chrysoconica. Phytochem. 11, 425 (1972).CrossRefGoogle Scholar
  136. 136.
    Smith, D.: Flavonoid Analysis of Pityrogramma triangularis Complex. Bull. Torrey Bot. Club 107, 134 (1980).CrossRefGoogle Scholar
  137. 137.
    Wollenweber, E., C. Scheele, and A.F. Tryon: Flavonoids and Spores of Platyzoma microphyllum, an Endemic Fern of Australia. Amer. Fern J. 77, 23 (1987).CrossRefGoogle Scholar
  138. 138.
    Arriaga-Giner, F.J., and E. Wollenweber: 6a-Acetoxy-163,22-dihydroxyhopan24-oic Acid, a Triterpene from the Fern Notholaena candida var. copelandii. Phytochem. 25, 735 (1986).CrossRefGoogle Scholar
  139. 139.
    Hitz, C., K. Mann, and E. Wollenweber: New Flavonoids from the Farina of Pityrogramma Species. Z. Naturforsch. 37c, 337 (1982).Google Scholar
  140. 140.
    Dietz, V.H., E. Wollenweber, J. Favre-Bonvin, and D.M. Smith: Two Flavonoids from the Frond Exudate of Pityrogramma triangularis var. triangularis. Phytochem. 20, 1181 (1981).Google Scholar
  141. 141.
    Wollenweber, E.: Exudate Flavonoids of Mexican Ferns as Chemotaxonomic Markers. Rev. Latinoamer Quim. 15, 3 (1984).Google Scholar
  142. 142.
    Wollenweber, E.:J. Favre-Bonvin, and M. Jay: Nouveaux esters flavoniques naturels. Bull. Liaison Groupe Polyphénols 8, 341 (1978).Google Scholar
  143. 143.
    Wollenweber, E.: A Novel Type of Flavonoids. Flavonol Esters from Fern Exudates. Z. Naturforsch. 33c, 831 (1978).Google Scholar
  144. 144.
    Wollenweber, E., and G. Yatskievych: Flavonoid Esters from the Fern, Notholaena neglecta. J. Natural Products 45, 216 (1982).CrossRefGoogle Scholar
  145. 145.
    Wollenweber, E., V.H. Dietz, G. Schilling, J. Favre-Bonvin, and D.M. Smith: Flavonoids from Chemotypes of the Goldback Fern, Pityrogramma triangularis. Phytochem. 24, 965 (1985).CrossRefGoogle Scholar
  146. 146.
    Seigler, D.S., and E. Wollenweber: Chemical Variation in Notholaena standleyi. Amer. J. Bot. 70, 790 (1983).CrossRefGoogle Scholar
  147. 147.
    Star, A.E., H. Rösler, T.J. Mabry, and D.M. Smith: Flavonoid and Ceroptin Pigments from Frond Exudates of Pityrogramma triangularis. Phytochem. 14, 2275 (1975).CrossRefGoogle Scholar
  148. 148.
    Voirin, B.: Recherches chimiotaxinomiques sur les plantes vasculaires. Distribution des flavonoïdes chez les Filicinées. C.R. Acad. Sci. Paris Ser. D 264, 665 (1967).Google Scholar
  149. 149.
    Imperato, F. Kaempferol 3-Sulphate in the Fern Adiantum capillus-veneris. Phytochem. 21, 2158 (1982).CrossRefGoogle Scholar
  150. 150.
    Erdtman, H., L. Novotny, and M. Romanuk: Flavonols from the Fern Cheilanthes farinosa (Forsk.) Kaulf. Tetrahedron, Suppl. 8, 71 (1966).CrossRefGoogle Scholar
  151. 151.
    Murakami, T., M. Hagiwara, K. Tanaka, and C.-M. Chen: Chemische Untersuchungen über die Inhaltsstoffe von Helminthostachys zeylanica (L) Hook. II. Chem. Pharm. Bull. (Japan) 21, 1851 (1973).CrossRefGoogle Scholar
  152. 152.
    Wollenweber, E., J. Favre-Bonvin, and P. Lebreton: Ein Butyryl-Flavonol aus dem Mehl von Notholaena affinis. Phytochem. 17, 1684 (1978).CrossRefGoogle Scholar
  153. 153.
    Voirin, B., and M. Jay: Sur la présence de méthyl-3 quercétine chez Asplenium viride. Phytochem. 13, 275 (1974).CrossRefGoogle Scholar
  154. 154.
    Jay, M., J. Favre-Bonvin, and E. Wollenweber: Dihydroxy-4’,5 tétraméthoxy2’,3,7,8 flavone, et hydroxy-5 pentaméthoxy-2’,3,4’,7,8 flavone, deux nouveaux composés naturels isolés de Notholaena affinis (Ptéridophytes). Canad. J. Chem. 57, 1901 (1979).CrossRefGoogle Scholar
  155. 155.
    Jay, M., M.-R. Viricel, J. Favre-Bonvin, B. Voirin, and E. Wollenweber: New Flavonol Acetates from the Frond Exudate of the Fern Notholaena aschenborniana. Z. Naturforsch. 37c, 721 (1982).Google Scholar
  156. 156.
    Jay, M., J. Favre-Bonvin, B. Voirin, M.-R. Viricel, and E. Wollenweber: A New Natural Flavone with a Tetrasubstituted B-Ring from the Fern Notholaena aschenborniana. Phytochem. 20, 2307 (1981).CrossRefGoogle Scholar
  157. 157.
    Iinuma M., N. Fang, T. Tanaka, M. Mizuno, T.J. Mabry, E. Wollenweber, J. Favre-Bonvin, and B. Voirin: Revised Structure of a Flavonoid from the Fern Notholaena aschenborniana. Phytochem. 25 1257 (1986).CrossRefGoogle Scholar
  158. 158.
    Wollenweber, E., C. Rehse, and V.H. Dietz: The Occurrence of Aurentiacin and Flavokawin B on Pityrogramma triangularis var. pallida and Didymocarpus Species. Phytochem. 20, 1167 (1981).CrossRefGoogle Scholar
  159. 159.
    Wu, T.-S., C.-S. Kuoh, S.-T. Ho, M.-S. Yang, and K.-K. Lee: Flavanone and Other Constituents from Onychium siliculosum. Phytochem. 20, 527 (1981).CrossRefGoogle Scholar
  160. 160.
    Wollenweber, E., J. Walter, and G. Schilling: New Flavanones and Chalcones from the Farinose Frond Exudate of Pityrogramma pallida. Z. Pflanzenphysiol. 104, 161 (1981).Google Scholar
  161. 161.
    Wollenweber, E., V.H. Dietz, C.D. Macneill, and G. Schilling: C-Methylflavanones as Farina on the Fronds of Pityrogramma pallida. Z. Pflanzenphysiol. 94, 241 (1979).Google Scholar
  162. 162.
    Star, A.E., T.J. Mabry, and D.M. Smith: Triangularin, a New Chalcone from Pityrogramma triangularis. Phytochem. 17, 586 (1978).CrossRefGoogle Scholar
  163. 163.
    Murakami, T., H. Wada, N. Tanaka, T. Kido, H. Iida, Y. Saiki, and C.-M. Chen: Chemical and Chemotaxonomical Studies of Filices. LXV. A Few New Flavonoid Glycosides. (2). J. Pharmac. Soc. Japan 106, 982 (1986).Google Scholar
  164. 164.
    Molnu, K., T. T.kemoto, and Y. Kondo: Studies on the Constituents of Matteuccia orientalis Trey. Structures of Two New Flavanones, Matteucin and Methoxymatteucin. J. Pharmac. Soc. Japan 102, 310 (1982).Google Scholar
  165. 165.
    Fujise, S., and T. Nishi: Studies on the Constituents of Matteuccia orientalis Trey. The Structure of Desmethoxymatteucinol. J. Chem. Soc. Japan 55, 1020 (1934).CrossRefGoogle Scholar
  166. 166.
    Wada, H., T. Murakami, N. Tanaka, Y. Saiki, and C.-M. Chen: Chemical and Chemotaxonomical Studies of Filices. LXXIV. Hariganetin, a Novel Flavonoid with the Unusual A-ring and Other Flavonoids from Wagneriopteris japonica Loeve et Loeve. Chem. Pharm. Bull. (Japan). In preparation.Google Scholar
  167. 167.
    Kishimoto, Y. Pharmaceutical Studies on the Ferns. IX. Flavonoids of Cyrtomium Species. (1). On the Flavonoid Aglycones. J. Pharmac. Soc. Japan 76, 246 (1956).Google Scholar
  168. 168.
    Kishimoto, Y. Pharmaceutical Studies on the Ferns. X. Flavonoids of Cyrtomium Species. (2). On the Flavonoid Glucosides. J. Pharmac. Soc. Japan 76, 250 (1956).Google Scholar
  169. 169.
    Kishimoto, Y. Pharmaceutical Studies on Ferns. XI. Flavonoids of Cyrtomium Species. (3). Constitution of Cyrtominetin and Cyrtopterinetin. Pharm. Bull. (Japan) 4, 24 (1956).Google Scholar
  170. 170.
    Markham, K.R., C. Vilain, E. Wollenweber, V.H. Dietz, and G. Schilling: Isoceroptene, a Novel Polyphenol from Pityrogramma triangularis. Z. Naturforsch. 40, 317 (1985).Google Scholar
  171. 171.
    Okuyama, T., Y. Ohta, and S. Shibata: The Constituents of Osmunda spp. (III). Studies on the Sporophyll of Osmunda japonica. Japanese J. Pharmacognosy 33, 185 (1979).Google Scholar
  172. 172.
    Wada, H., T. Satake, T. Murakami, T. Konma, Y. Saiki, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen der Pterophyten. LIX. Chemische Untersuchungen der Inhaltsstoffe von Alsophila spinulosa Tryon. Chem. Pharm. Bull. (Japan) 33, 4182 (1985).CrossRefGoogle Scholar
  173. 173.
    Wollenweber, E. Chalkone und Dihydrochalkone als Mehlbestandteile bei Farnen (Gattungen Cheilanthes und Notholaena). Z. Naturforsch. 32c, 1013 (1977).Google Scholar
  174. 174.
    Wollenweber, E. The Occurrence of Flavanones in the Farinose Exudate of the Fern Onychium siliculosum. Phytochem. 21, 1462 (1982).CrossRefGoogle Scholar
  175. 175.
    Ramakrishnan, G., A. Banerji, and M.S. Chadha: Chalcones from Onychium aura-turn. Phytochem. 13, 2317 (1974).CrossRefGoogle Scholar
  176. 176.
    Nilsson,M. Chalcones from the Fronds of Pityrogramma chrysophylla var. heyderi. Acta Chem. Scand. 15, 211 (1961).CrossRefGoogle Scholar
  177. 177.
    Bohm, B.A. Phenolic Compounds in Ferns-II. Indirect Evidence for the Existence of 2’,6’-Dihydroxy-4,4’-dimethoxychalcone in Pityrogramma calomelanos. Phytochem. 7, 1687 (1968).CrossRefGoogle Scholar
  178. 178.
    Wagner, H., O. Seligmann, M.V. Chari, E. Wollenweber, V.H. Dietz, D.M.X. Donnelly, M.J. Meegan, and B. O’Donnell: Strukturell neuartige 4-Phenylbenzopyran-2-one aus Pityrogramma calomelanos ( L.) Link. Tetrahedron Letters 1979, 4269.Google Scholar
  179. 179.
    Nilsson M. Dihydrochalcones from the Fronds of Pityrogramma chrysophylla var. marginata Domin. Acta Chem. Scand. 15, 154 (1961).CrossRefGoogle Scholar
  180. 180.
    Wollenweber, E., V.H. Dietz, D.M. Smith, and D.S. Seigler: A Novel C-Methylated Dihydrochalcone from Pityrogramma triangularis var. viscosa. Z. Naturforsch. 34c, 876 (1979).Google Scholar
  181. 181.
    Karl, C., P.A. Pedersen, and G. Müller: Dryopterin, ein neuartiges C17-Flavan aus Dryopteris filix-mas. Z. Naturforsch. 36c, 607 (1981).Google Scholar
  182. 182.
    Tanaka, N., Y. Komazawa, K. Obara, T. Murakami, Y. Saiki, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen von Filices. XXVIII. Chemische Untersuchungen der Inhaltsstoffe von Bolbitis subcordata (Copel.) Ching. Chem. Pharm. Bull. (Japan) 28, 1884 (1980).CrossRefGoogle Scholar
  183. 183.
    Tanaka, N., T. Murakami, Y. Saiki, and C.-M. Chen: Novel Trimeric Proanthocyanidins from Arachniodes pseudoaristata and A. aristata. 34th Annual Meeting of the Japanese Society of Pharmacognosy, Osaka, 1987, Abstracts of Papers. p. 142.Google Scholar
  184. 184.
    Noro, T., S. Fukushima, Y. Saiki, A. Ueno, and Y. Akahori: Studies On the Constituents of Leptorumohra miqueliana H. Ito. II. The Structure of Protofarrerol. J. Pharmac. Soc. Japan 89, 851 (1969).Google Scholar
  185. 185.
    Donnelly, D.M.X., N. Fukuda, E. Wollenweber, J. Polonsky, and T. Prangé: A Dihydrocinnamoyl Neoflavanoid from Pityrogramma calomelanos. Phytochem. 26, 1143 (1987).CrossRefGoogle Scholar
  186. 186.
    Iinuma M., K. Hamada, M. Mizuno, F. Asai, and E. Wollenweber: Complex Flavonoids from Pityrogramma Frond Exudates. Synthesis of Two Flavones with C-C-linked Dihydrocinnamoyl Substituents. Z. Naturforsch. 41c 681 (1986) and references cited therein.Google Scholar
  187. 187.
    Dietz, V.H., E. Wollenweber, J. Favre-Bonvin, and L.D. Gómez P. A Novel Class of Complex Flavonoids from the Frond Exudate of Pityrogramma trifoliata. Z. Naturforsch. 35c, 36 (1980).Google Scholar
  188. 188.
    Iinuma, M., S. Matsuura, and F. Asai: Synthesis of 5,7-Dihydroxy-8-cinnamoyl-4phenyldihydrocoumarins. Heterocycles 20, 1923 (1983).CrossRefGoogle Scholar
  189. 189.
    Favre-Bonvin, J., M. Jay, E. Wollenweber, and V.H. Dietz: Deux flavones extraites d’un exsudat de fougère (Pityrogramma calomelanos var. aureoflava). Phytochem. 19, 2043 (1980).CrossRefGoogle Scholar
  190. 190.
    Akabori, Y. Ph. D. Disertation, Tokyo Metropolitan University, 1976.Google Scholar
  191. 191.
    Murakami, T., H. Maehashi, N. Tanaka, T. Satake, T. Kuraishi, Y. Komazawa, Y. Saiki, and C.-M. Chen: Chemical and Chemotaxonomical Studies on Filices. LV. Studies on the Constituents of Several Species of Pteris. J. Pharmac. Soc. Japan 105, 640 (1985).Google Scholar
  192. 192.
    Tanaka, N., T. Murakami, Y. Saiki, C.-M. Chen, and L.D. Gómez P. Chemical and Chemotaxonomical Studies of Ferns. XXXVII. Chemical Studies on the Constituents of Costa Rican Ferns. (2). Chem. Pharm. Bull. (Japan) 29, 3455 (1981).CrossRefGoogle Scholar
  193. 193.
    Ueno, A. Pharmaceutical Studies on Ferns. XV. Flavonoids of Phegopteris polypodioides Fée. J. Pharmac. Soc. Japan 82, 1479 (1962).Google Scholar
  194. 194.
    Sunder, R., K.N.N. Ayengar, and S. Rangaswami: Chemical Examination of Cheilanthes longissima. Indian J. Chem. 14B 599 (1976).Google Scholar
  195. 195.
    Hiraoka, A. Flavonoid Patterns in Athyriaceae and Dryopteridaceae. Biochem. Syst. Ecol. 6, 171 (1978).CrossRefGoogle Scholar
  196. 196.
    Hiraoka, A., and M. Maeda: A New Acylated Flavonol Glycoside from Cyathea contaminans Copel. and Its Distribution in the Pterophyta. Chem. Pharm. Bull. (Japan) 27, 3130 (1979).CrossRefGoogle Scholar
  197. 197.
    Hiraoka, A., and M. Hasegawa: Flavonoid Glycosides from Five Cyathea Species. Bot. Mag. Tokyo 88, 127 (1975).CrossRefGoogle Scholar
  198. 198.
    Soeder, R.W., and M.S. Babb: Flavonoids in Tree Ferns. Phytochem. 11, 3079 (1972).CrossRefGoogle Scholar
  199. 199.
    Wallace, J.W., D.L. Yopp, E. Besson, and J. Chopin: Apigenin di-C-glycosylflavones of Angiopteris (Marattiales). Phytochem. 20, 2701 (1981).CrossRefGoogle Scholar
  200. 200.
    Wallace, J.W., M. Chapman, J.E. Sullivan, and T.N. Bhardwaja: Polyphenolics of the Marsileaceae and Their Possible Phylogenetic Utility. Amer. J. Bot. 71, 660 (1984).CrossRefGoogle Scholar
  201. 201.
    Wallace, J.W., D.T. Story, E.Besson, and J. Chopin: Violanthin and Isoviolanthin from the Marattiaceous Fern, Angiopteris evecta. Phytochem. 18, 1077 (1979).CrossRefGoogle Scholar
  202. 202.
    Karl, C., G. Moller, and P.A. Pedersen: Ein neues Catechinglykosid aus Polypodium vulgare. Z. Naturforsch. 37c, 148 (1982).Google Scholar
  203. 203.
    Hasegawa, M., and Y. Akabori: Flavonoid Pattern in Pteridaceae. I. Flavonoid Glycosides Obtained from the Fronds of Adiantum aethiopicum and A. monochlamys. Bot. Mag. Tokyo 81, 469 (1968).Google Scholar
  204. 204.
    Akabori, Y., and M. Hasegawa: Flavonoid Pattern in the Pteridaceae. II. Flavonoid Constituents in the Fronds of Adiantum capillus-veneris and A. cuneatum. Bot. Mag. Tokyo 82, 294 (1969).Google Scholar
  205. 205.
    Imperato, F. New Phenolic Glycoside in the Fern Adiantum capillus-verneris L. Chem. and Ind. 1982, 957.Google Scholar
  206. 206.
    Imperato, F. New Sulphated Flavonol Glucosides in the Fern Cystopteris fragilis Bernh. Chem. and Ind. 1983 204.Google Scholar
  207. 207.
    Murakami, T., H. Wada, N. Tanaka, T. Kuraishi, Y. Saiki, and C.-M. CHEN: Chemical and Chemotaxonomical Studies on Filices. LVI. Studies on the Constituents of the Davalliaceous Ferns (1). J. Pharmac. Soc. Japan 105, 649 (1985).Google Scholar
  208. 208.
    Aicabori, Y., and M. Hasegawa: Flavonoid Pattern in the Pteridaceae. III. Flavonoid Constituents in the Fronds of Dennstaedtia wilfordii. Bot. Mag. Tokyo 83, 263 (1970).Google Scholar
  209. 209.
    Murakami, T., H. Wada, N. Tanaka, T. Yamagishi, Y. Saiki, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen von Filices. XXXII. Chemische Untersuchungen der Inhaltsstoffe von Plenasium banksiifolium (Pr.) Pr. Chem. Pharm. Bull. (Japan) 28, 3137 (1980).CrossRefGoogle Scholar
  210. 210.
    Wada, H., T. Murakami, N. Tanaka, M. Nakamura, Y. Saiki and C.-M. Chen: Chemical and Chemotaxonomical Studies of Filices. LXVI. Chemical Studies on the Constituents of Pseudocyclosorus subochthodes Ching and P. esquirolii Ching. J. Pharmac. Soc. Japan 106, 989 (1986).Google Scholar
  211. 211.
    Tanaka, N., T. Satake, A. Takahashi, M. Mochizuki, T. Murakami, Y. Saiki, J.-Z. Yang, and C.-M. Chen: Chemical and Chemotaxonomical Studies of Ferns. XXXIX. Chemical Studies on the Constituents of Pteris bella Tagawa and Pteridium aquilinum subsp. wightianum (Wall) Shieh. Chem. Pharm. Bull. (Japan) 30, 3640 (1982).CrossRefGoogle Scholar
  212. 212.
    Nakabayashi, T. The Isolation of Astragalin and Isoquercitrin from Bracken (Pteridium aquilinum). Bull. Agr. Chem. Soc. Japan 19, 104 (1955).Google Scholar
  213. 213.
    Murakami, T., T. Satake, C. Hirasawa, Y. Ikeno, Y. Saiki, and C.-M. Chen: Chemical and Chemotaxonomical Studies on Filices. XLVI. A Few New Flavonoidglycosides (1). J. Pharmac. Soc. Japan 104, 142 (1984).Google Scholar
  214. 214.
    Imperato, F. A New and Rare Flavonol Glucoside in the Fern Asplenium filixfoemina Bernh. Chem. and Ind. 1979, 525.Google Scholar
  215. 215.
    Imperato, F.:Two New Flavonol Glycosides from the Fern Ceterach officinarum Lam. et DC.Chem. and Ind. 1981 695.Google Scholar
  216. 216.
    Okuyama, T., K. Hosoyama, Y. Hiraga, G. Kurono, and T. Takemoto: The Constituents of Osmunda spp. II. A New Flavonol Glycoside of Osmunda asiatica. Chem. Pharm. Bull. (Japan) 26, 3071 (1978).CrossRefGoogle Scholar
  217. 217.
    Tanaka, N., T. Sada, T. Murakami, Y. Saiki, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen der Pterophyten. XLV. Chemische Untersuchungen der Inhaltsstoffe von Glaphyropteridopsis erubescens (Wall.) Ching. Chem. Pharm. Bull. (Japan) 32, 490 (1984).Google Scholar
  218. 218.
    Imperato, F. Flavonol Glycosides from Asplenium bulbiferum. Phytochem. 24, 2136 (1985).CrossRefGoogle Scholar
  219. 219.
    Harborne, J.B., C.A. Williams, and D.M. Smith: Species-Specific Kaempferol Derivatives in Ferns of the Appalachian Asplenium Complex. Biochem. Systematics 1, 51 (1973).CrossRefGoogle Scholar
  220. 220.
    Imperato, F. Two New Kaempferol 3,7-Diglycosides and Kaempferitrin in the Fern Asplenium trichomanes. Experientia 35, 1134 (1979).CrossRefGoogle Scholar
  221. 221.
    Wu, T.-S., M.-T. Chen, C.-S. Kugh, and J.-J. Yang: Constituents of Formosan Folk Medicines. X. Chemical Constituents of the Rhizoma of Onychium contiguum (Wall.) Hope. J. Chinese Chem. Soc. (Taipei) 28, 63 (1981).Google Scholar
  222. 222.
    Imperato, F. A New Sulphated Flavonol Glycoside in the Fern Asplenium fontanum Bernh. Chem. and Ind. 1980, 540.Google Scholar
  223. 223.
    Satake, T., T. Murakami, Y. Saiki, C.-M. Chen, and L.D. Gómez P. Chemical and Chemotaxonomical Studies on Filices. LI. Chemical Studies on the Constituents of Costa Rican Ferns. (3). Chem. Pharm. Bull. (Japan) 32, 4620 (1984).CrossRefGoogle Scholar
  224. 224.
    Karl, C., P.A. Pedersen, and G. Müller: Ein neues Kämpferolacylglycosid aus Phyllitis scolopendrium. Z. Naturforsch. 35c, 826 (1980).Google Scholar
  225. 225.
    Imperato, F. Two New Kaempferide 3,7-Diglycosides from the Fern Asplenium bulbiferum. Chem. and Ind. 1984, 186.Google Scholar
  226. 226.
    Imperato, F. A New Kaempferide 3,7-Diglycoside from the Fern Asplenium bulbiferum. Chem. and Ind. 1984, 667.Google Scholar
  227. 227.
    Imperato, F. An Unusual Glycosylation Pattern in a New Flavonoid from the Fern Asplenium nidus. Chem. and Ind. 1986, 555.Google Scholar
  228. 228.
    Wu, T.-S., and H. Furukawa: Flavonol Glycosides from Humata pectinata. Phytochem. 22, 1061 (1983).CrossRefGoogle Scholar
  229. 229.
    Imperato, F. A New Sulphated Flavonol Glucoside in the Fern Asplenium septentrionale. Chem. and Ind. 1983, 390.Google Scholar
  230. 230.
    Imperato, F. A New Acylated Flavonol Glycoside from the Fern Adiantum capillus-veneris L. Chem. and Ind. 1982, 604.Google Scholar
  231. 231.
    Tanaka, N., T. Murakami, Y. Saiki, C.-M. Chen, and L.D. Gómez P. Chemische und chemotaxonomische Untersuchungen der Gattung Pteris und der verwandten Gattungen (Pteridaceae). XXII. Chemische Untersuchungen von Pteris grandifolia L. Chem. Pharm. Bull. (Japan) 26, 3580 (1978).CrossRefGoogle Scholar
  232. 232.
    Bhardwaj, K.R., S.D. Lal, and P.K. Jaiwal: Occurrence of Rutin in Asplenium trichomanes L. Current Sci. (India) 51, 1036 (1982).Google Scholar
  233. 233.
    Lal, S.D., V.M. Gupta, and R.K. Garg: Quercetin 3-Rutinoside and Naringenin 7-Rhamnoglucoside in Marsilea sporocarps. Current Sci. (India) 52, 263 (1983).Google Scholar
  234. 234.
    Imperato, F. A New Flavonol Triglycoside from the Fern Cheilanthes fragrans. Chem. and Ind. 1985, 799.Google Scholar
  235. 235.
    Markham, K.R., T.J. Mabry, and B. Voirin: 3-O-Methylquercetin 7-O-Diglucoside 4’-O-Glucoside from the Fern, Ophioglossum vulgatum. Phytochem. 8, 469 (1969).CrossRefGoogle Scholar
  236. 236.
    Imperato, F. A New Flavonol 3,7-Diglycoside from the Fern Cheilanthes fragrans. Chem. and Ind. 1986, 878.Google Scholar
  237. 237.
    Imperato, F. A Flavanone Glycoside from the Fronds of Ceterach officinarum. Phytochem. 22, 312 (1983).CrossRefGoogle Scholar
  238. 238.
    Tanaka, N., T. Murakami, H.Wada, A.B. Gutierrez, Y. Saiki, and C.-M. Chen: Chemical and Chemotaxonomical Studies of Filices. LXI. Chemical Studies on the Constituents of Pronephrium triphyllum Hollt. Chem. Pharm. Bull. (Japan) 33, 5231 (1985).CrossRefGoogle Scholar
  239. 239.
    Srivastava, S.K., S.D. Srivastava, V.K. Saksena, and S.S. Nigam: A Flavanone Glycoside from Diplazium esculentum. Phytochem. 20, 862 (1981).CrossRefGoogle Scholar
  240. 240.
    Bhakuni, D.S., S. Gnecco, P.G. Sammes, and M. Silva: A New Triterpene and Catechin from Polypodium feullei Bertero. Rev. Latinoamer. Quim. 5, 109 (1974).Google Scholar
  241. 241.
    Weinges, K., and R. Wild: Die Konstitution des Polydins. Liebigs Ann. Chem. 734, 46 (1970).Google Scholar
  242. 242.
    Harborne, J.B. Comparative Biochemistry of Flavonoids. II. 3-Desoxyanthocyanins and Their Systematic Distribution in Ferns and Gesnerads. Phytochem. 5, 589 (1966).CrossRefGoogle Scholar
  243. 243.
    Holst, R.W. Antocyanins of Azolla. Amer. Fern J. 67, 99 (1977).CrossRefGoogle Scholar
  244. 244.
    Hauteville, M., J. Chopin, H. Geiger, and L. Schüler: Protogenkwanin 4’-Glucoside, a New Type of Natural Flavonoid with a Non Aromatic B-Ring. Tetrahedron Letters 21, 1227 (1980).CrossRefGoogle Scholar
  245. 245.
    Wollenweber, E. The Distribution and Chemical Constituents of the Farinose Exudates in Gymnogrammoid Ferns. Amer. Fern J. 68, 13 (1978).CrossRefGoogle Scholar
  246. 246.
    Wagner, H. Flavonoid-Glykoside. In: Progress in the Chemistry of Organic Natural Products (Herz, W., H. Grisebach, and G.W. Kirby, eds.), 31, p. 153. Wien-New York: Springer. 1974.CrossRefGoogle Scholar
  247. 247.
    Harborne, J.B., and C.A. Williams: Flavone and Flavonol Glycosides. In: The Flavonoids: Advances in Research (Harborne, J.B., and T.J. Mabry, eds.), p. 261. London-New York: Chapman and Hall. 1982.Google Scholar
  248. 248.
    Stahl, E., and W. Schild: Pharmazeutische Biologie 4. Drogenanalyse II: Inhaltsstoffe und Isolierungen. p. 438. Stuttgart- New York: Gustav Fischer Verlag. 1981.Google Scholar
  249. 249.
    Cooper-Driver, G.A. The Role of Flavonoids and Related Compounds in Fern Systematics. Bull. Torrey Bot. Club 107, 116 (1980).CrossRefGoogle Scholar
  250. 250.
    Bohm, B.A. The Minor Flavonoids. In: The Flavonoids: Advances in Research (Harborne, J.B., and T.J. Mabry, eds.), p. 384. London-New York: Chapman and Hall. 1982.Google Scholar
  251. 251.
    Czochanska, Z., L.Y. Foo, R.H. Newman, and L.J. Porter: Polymeric Proanthocyanidins. Stereochemistry, Structural Units, and Molecular Weight. J. Chem. Soc. Perkin I. 1980, 2278.Google Scholar
  252. 252.
    Vodun, B. Recherches chimiques, taxinomiques et physiologiques sur les flavonoides des Pteridophytes. Thése, Docteur-Science, L’Université de Lyon 1970.Google Scholar
  253. 253.
    Bate-Smith, E.C., and T. Swain: New Leucoanthocyanins in Grasses. Nature 213, 1033 (1967).CrossRefGoogle Scholar
  254. 254.
    Bate-Smith, E.C. Luteoforol (3’,4,4’,5,7-Pentahydroxyflavan) in Sorghum vulgare L. Phytochem. 8, 1803 (1969).CrossRefGoogle Scholar
  255. 255.
    Bate-Smith, E.C., and L.L. Creasey: Luteoforol in Strawberry Leaves. Phytochem. 8, 1811 (1969).CrossRefGoogle Scholar
  256. 256.
    Tanaka, N., H. Sakai, T. Murakami, Y. Saiki, C.-M. Chen, and Y. Iitaka: Chemische und chemotaxonomische Untersuchungen der Pterophyten. LXII. Chemische Untersuchungen der Inhaltsstoffe von Arachniodes maximowiczii Ohwi. Chem. Pharm. Bull. (Japan) 34, 1015 (1986).CrossRefGoogle Scholar
  257. 257.
    Hayashi, Y., M. Nishizawa, and T. Sakan: Structure of Hypacrone, a Novel secoIlludoid, Possible Biological Precursor of Pterosins in Hypolepis punctata Mett. Chemistry Letters 1973, 63.Google Scholar
  258. 258.
    Saito, K., T. Nagao, K. Koyama, and S. Natori: Mutagenic Compounds, Hypoloside A, B, and C, Isolated from Hypolepis punctata Mett. 107th Annual Meeting of the Pharmaceutical Society of Japan, Kyoto, Apr. 1987, Abstracts of Papers, p. 325.Google Scholar
  259. 259.
    Fukuoka, M., M. Kuroyanagi, K. Yoshihira, and S. Natori: Chemical and Toxicological Studies on Bracken Fern, Pteridium aquilinum var. latiusculum. II. Structures of Pterosins, Sesquiterpenes Having 1-Indanone Skeleton. Chem. Pharm. Bull. (Japan) 26, 2365 (1978).CrossRefGoogle Scholar
  260. 260.
    Hayashi, Y., M. Nishizawa, S. Harita, and T. Sakan: Structures and Syntheses of Hypolepin A, B and C, Sesquiterpenes from Hypolepis punctata Mett. Chemistry Letters 1972, 375.Google Scholar
  261. 261.
    Tanaka, N., A. Masuda, T. Murakami, Y. Saiki, and C.-M. Chen: Chemical and Chemotaxonomical Studies of Filices. LXXIX. Illudalane-Type Sesquiterpenes from Pteridaceous Ferns and a Plagiogyria Fern. J. Pharmac. Soc. Japan. In preparation.Google Scholar
  262. 262.
    Kuraishi, T., T. Murakami, T. Taniguchi, Y. Kobuki, H. Maehashi, N. Tanaka,Y. Saiki, and C.-M. Chen: Chemical and Chemotaxonomical Studies of Ferns. LIV. Pterosin Derivatives of the Genus Microlepia (Pteridaceae). Chem. Pharm. Bull. (Japan) 33, 2305 (1985).CrossRefGoogle Scholar
  263. 263.
    Bardouille, V, B S Mootoo, K. Hirotsu, and J. Clardy: Sesquiterpenes from Pityrogramma calomelanos. Phytochem. 17, 275 (1978).CrossRefGoogle Scholar
  264. 264.
    Murakami, T., M. Kudo, S. Taguchi, N. Tanaka, Y. Saiki, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen der Gattung Pteris und der verwandten Gattungen (Pteridaceae) XVII. Weitere Inhaltsstoffe aus Pteris inaequalis BAKER var. aequata (Miq.) Tagawa. Chem. Pharm. Bull. (Japan) 26, 643 (1978).CrossRefGoogle Scholar
  265. 265.
    Aoyama, K., N. Tanaka, N. Suzuki, T. Murakami, Y. Saiki, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen der Gattung Pteris und der verwandten Gattungen (Pteridaceae). XVI. Neue Pterosin-Derivate aus Pteris wallichiana Agardh. und P. semipinnata L. Chem. Pharm. Bull. (Japan) 25, 2461 (1977).CrossRefGoogle Scholar
  266. 266.
    Murakami, T., K. Aoyama, N. Tanaka, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen der Gattung Pteris und der verwandten Gattungen (Pteridaceae). X. Chemische Untersuchungen der Inhaltsstoffe von Pteris wallichiana Agardh. Chem. Pharm. Bull. (Japan) 24, 173 (1976).Google Scholar
  267. 267.
    Hiking, H., T. Takahashi, and T. Takemoto: Structure of Pteroside Z and D, Glycosides of Pteridium aquilinum var. latiusculum. Chem. Pharm. Bull. (Japan) 19, 2424 (1971).CrossRefGoogle Scholar
  268. 268.
    Kuroyanagi, M., M. Fukuoka, K. Yoshihira, and S. Natori: Chemical and Toxicological Studies on Bracken Fern, Pteridium aquilinum var. latiusculum. III. Further Characterization of Pterosins and Pterosides, Sesquiterpenes and the Glucosides Having 1-Indanone Skeleton, from the Rhizomes. Chem. Pharm. Bull. (Japan) 27, 592 (1979).CrossRefGoogle Scholar
  269. 269.
    Murakami, T., S. Taguchi, Y. Nomura, N. Tanaka, T. Satake, Y. Saiki, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen der Gattung Pteris und der verwandten Gattungen (Pteridaceae). XII. Weitere Indan-1-on Derivate der Gattung Pteris. Chem. Pharm. Bull. (Japan) 24, 1961 (1976).CrossRefGoogle Scholar
  270. 270.
    Murakami, T., S. Taguchi, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen der Gattung Pteris und der verwandten Gattungen (Pteridaceae). XIV. Chemische Untersuchungen der Inhaltsstoffe von Hypolepis punctata (Thunb.) Mett. Chem. Pharm. Bull. (Japan) 24, 2241 (1976).CrossRefGoogle Scholar
  271. 271.
    Murakami, T., H. Wada, N. Tanaka, Y. Saiki, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen von Filices. XXVII. Chemische Untersuchungen der Inhaltsstoffe von Dennstaedtia wilfordii (Moore) Christ. Chem. Pharm. Bull. (Japan) 28, 1869 (1980).CrossRefGoogle Scholar
  272. 272.
    Murakami, T., T. Satake, K. Ninomiya, H. Iida, K. Yamauchi, N. Tanaka, Y. Saiki, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen von Filices. XXV. Pterosin-Derivate aus der Familie Pteridaceae. Phytochem. 19, 1743 (1980).CrossRefGoogle Scholar
  273. 273.
    Banerji, A., G. Ramakrishnan, and M.S. Chadha: Onitin and Onitisin, New Phenolic Pterosins from the Fern Onychium auratum. Tetrahedron Letters 1974, 1369.Google Scholar
  274. 274.
    Murakami, T., K. Owashi, N. Tanaka, T. Satake, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen der Gattung Pteris und der verwandten Gattungen (Pteridaceae). VII. Chemische Untersuchungen der Inhaltsstoffe von Dennstaedtia scabra (Wall.) Moore. Chem. Pharm. Bull. (Japan) 23, 1630 (1975).CrossRefGoogle Scholar
  275. 275.
    Hayashi, Y., M. Nishizawa, M. Uemura, and T. Sakan: Studies on the Sesquiterpenoid Constituents of Hypolepis punctata Mett. 19th Symposium on the Chemistry of Natural Products, Hiroshima, Oct. 1975, Symposium Papers, p. 76.Google Scholar
  276. 276.
    Fukuoka, M., M. Kuroyanagi, M. Tohyama, K. Yoshihira, and S. Natori: Pterosins J, K, and L and Six Acylated Pterosins from Bracken, Pteridium aquilinum var. latiusculum. Chem. Pharm. Bull. (Japan) 20, 2282 (1972).CrossRefGoogle Scholar
  277. 277.
    Kuroyanagi, M., M. Fukuoka, K. Yoshihira, and S. Natori: The Absolute Configurations of Pterosins, 1-Indanone Derivatives from Bracken, Pteridium aquilinum var. latiusculum. Chem. Pharm. Bull. (Japan) 22, 723 (1974).CrossRefGoogle Scholar
  278. 278.
    Niwa, H., M. Ojika, K. Wakamatsu, K. Yamada, I. Hirono, and K. Matsushita: Ptaquiloside, a Novel Norsesquiterpene Glucoside from Bracken, Pteridium aquilinum var. latiusculum. Tetrahedron Letters 24, 4117 (1983).CrossRefGoogle Scholar
  279. 279.
    Niwa, H., M. Ojika, K. Wakamatsu, K. Yamada, S. Ohba, Y. Saito, I. Hirono, and K. Matsushita: Stereochemistry of Ptaquiloside, a Novel Norsesquiterpene Glucoside from Bracken, Pteridium aquilinum var. latiusculum. Tetrahedron Letters 24 5371 (1983).CrossRefGoogle Scholar
  280. 280.
    Hoeven, J.C.M., and F.E. Leeuven: Isolation of a Mutagenic Fraction from Bracken. Mutation Res. 79, 377 (1980).CrossRefGoogle Scholar
  281. 281.
    Hoeven, J.C.M., W.J. Lagerweij, M.A. Posthumus, A. Veldhuizen and H.A.J. Holterman: Aquilide A, a New Mutagenic Compound Isolated from Bracken Fern (Pteridium aquilinum (L.) Kuhn). Carcinogenesis 4, 1587 (1983).CrossRefGoogle Scholar
  282. 282.
    Saito, K., T. Nagao, E. Hirayama, M. Matoba, K. Koyama, S. Natori, T. Mura-Kami, Y. Saiki, and H. Ageta: Distribution of the Mutagenic and Carcinogenic Ptaquiloside-like Compounds in the Pteridaceous Ferns. 34th Annual Meeting of the Japanese Society of Pharmacognosy, Osaka, 1987, Abstracts of Papers, p. 105.Google Scholar
  283. 283.
    Hiking, H., T. Takahashi, S. Arihara, and T. Takemoto: Structure Of Pteroside B, Glycoside of Pteridium aquilinum var. latiusculum. Chem. Pharm. Bull. (Japan) 18, 1488 (1970).CrossRefGoogle Scholar
  284. 284.
    Ronaldson, J.W. The Elucidation of the Structure of a Substituted Indanone by the Use of Tris(dipivalomethanato)europium ( III ). Chem. and Ind. 1972, 764.Google Scholar
  285. 285.
    Kobayashi, A., H. Egawa, K. Koshimizu, and T. Mitsui: Antimicrobial Constituents in Pteris inaequalis Bak. A.ric. Biol. Chem. 39, 1851 (1975).CrossRefGoogle Scholar
  286. 286.
    Kuroyanagi, M., M. Fukuoka, K. Yoshihira, and S. Natori: Pterosin N and O, Phenylacetylpterosin C, and Pteroside P from Bracken, Pteridium aquilinum var. latiusculum. Chem. Pharm. Bull. (Japan) 22, 2762 (1974).CrossRefGoogle Scholar
  287. 287.
    Murakami, T., N. Tanaka, K. Tanaka, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen der Gattung Pteris und der verwandten Gattungen (Pteridaceae). V. Pterosin Q und Pterosid Q aus Pteris oshimensis Hieron. und Histiopteris incisa (Thunb.) J. Smith. Chem. Pharm. Bull. (Japan) 22, 2758 (1974).Google Scholar
  288. 288.
    Tanaka, N., M. Hata, T. Murakami, Y. Saiki, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen der Gattung Pteris und der verwandten Gattungen (Pteridaceae). XIII. Weitere Inhaltsstoffe von Pteris dispar Kunze. Chem. Pharm. Bull. (Japan) 24, 1965 (1976).CrossRefGoogle Scholar
  289. 289.
    Murakami, T., N. Tanaka, T. Tezuka, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen der Gattung Pteris und der verwandten Gattungen (Pteridaceae). VIII. Chemische Untersuchungen der Inhaltsstoffe von Pteris inaequalis Baker var. aequata (Miq.) Tagawa. Chem. Pharm. Bull. (Japan) 23, 1634 (1975).CrossRefGoogle Scholar
  290. 290.
    Wd, M., and S. Rangaswami: Indanone Derivatives from Pteris wallichiana. Indian J. Chem. 1977, 16.Google Scholar
  291. 291.
    Sengupta, P., M. Sen, and S.K. Niyogi: Isolation and Structure of Wallichoside, a Novel Pteroside from Pteris wallichiana. Phytochem. 15, 995 (1976).CrossRefGoogle Scholar
  292. 292.
    Murakami, T., N. Tanaka, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen der Gattung Pteris und der verwandten Gattungen (Pteridaceae). IX. Weitere Inhaltsstoffe aus Pteris oshimensis Hieron. Chem. Pharm. Bull. (Japan) 23, 1890 (1975).CrossRefGoogle Scholar
  293. 293.
    Hasegawa, M., Y. Akabori, and S. Akabori: New Indanone Compounds from Onychium japonicum. Phytochem. 13, 509 (1974).CrossRefGoogle Scholar
  294. 294.
    Akabori, S., Y. Akabori, and M. Hasegawa: Further Structural Studies of 1-Indan-one Derivatives obtained from Onychium japonicum. Chem. Pharm. Bull. (Japan) 28, 1311 (1980).CrossRefGoogle Scholar
  295. 295.
    Murakami, T., T. Satake, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen der Gattung Pteris und der verwandten Gattungen (Pteridaceae). VI. Chemische Untersuchungen der Inhaltsstoffe von Pteris kiuschiuensis Hieron. Chem. Pharm. Bull. (Japan) 23, 936 (1975).CrossRefGoogle Scholar
  296. 296.
    Satake, T., T. Murakami, N. Yokote, Y. Saiki, and C.-M. Chen: Chemical and Chemotaxonomical Studies on Filices. LVIII. Chemical Studies on the Constituents of Monachosorum arakii Tagawa (Pteridaceae). Chem. Pharm. Bull. (Japan) 33, 4175 (1985).CrossRefGoogle Scholar
  297. 297.
    Hori, K., T. Satake, M. Yabuuchi, Y. Saiki, T. Mrakami, and C.-M. Chen: Chemical and Chemotaxonomical Studies of Filices. LXVIII. The Distribution of Sesquiterpene Dimers Monachosorins’ and Its Chemotaxonomic Implication. J. Pharmac. Soc. Japan 107, 485 (1987).Google Scholar
  298. 298.
    Hori, K., T. Satake, Y. Saiki, T. Murakami, and C.-M. Chen: A Dimeric Pterosin Glucoside from a Mexican Fern, Dennstaedtia distenta Moore. 34th Annual Meeting of the Japanese Society of Pharmacognosy, Osaka, 1987, Abstracts of Papers, p. 126.Google Scholar
  299. 299.
    Tanaka, N., T. Kimura, T. Murakami, Y. Saiki, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen von Filices. XXIX. Chemische Untersuchungen der Inhaltsstoffe von Protowoodsia manchuriensis (Hook.) Ching. Chem. Pharm. Bull (Japan) 28, 2185 (1980).CrossRefGoogle Scholar
  300. 300.
    Murakami, T., T. Kimura, H. Wada, N. Tanaka, Y. Saiki, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen von Filices. XXXV. Chemische Untersuchungen der Inhaltsstoffe von Polystichum tripteron (Kunze) Pr. Chem. Pharm. Bull. (Japan) 29, 886 (1981).Google Scholar
  301. 301.
    Briggs, L.H. and M.D. Sutherland: A Terpene-type Essential Oil from a Fern (Paesia scaberula). Nature 160 333 (1947).CrossRefGoogle Scholar
  302. 302.
    Yoshihira, K., M. Fukuoka, M. Kuroyanagi, and S. Natori: 1-Indanone Derivatives from Bracken, Pteridium aquilinum var. latiusculum. Chem. Pharm. Bull. (Japan) 19, 1491 (1971).CrossRefGoogle Scholar
  303. 303.
    Syrchina, A.I., O.N. Gorenysheva, A.A. Semenov, V.N. Biyushkin, and T.I. Malinovskii: Isolation of Indanone from Equisetum arvense and Its Crystal and Molecular Structure. Khim Prir. Soedin. 1978, 508.Google Scholar
  304. 304.
    Semenov, A.A., A.I. Syrchina, O.N. Gorenysheva, V.N. Biyushkin, and T.I. Malinovsky: Crystalline and Molecular Structure of Indanone from Equisetum arvense L. 11th International Symposium on the Chemistry of Natural Products, 1978, Symposium Papers, 2, p. 375.Google Scholar
  305. 305.
    Yoshihira, K., M. Fukuoka, M. Kuroyanagi, and S. Natori: Further Characterization of 1-Indanone Derivatives from Bracken, Pteridium aquilinum var. latiusculum. Chem. Pharm. Bull. (Japan) 20, 426 (1972).CrossRefGoogle Scholar
  306. 306.
    Evans, I.A: Bracken Carcinogenicity. In: Chemical Carcinogens, Second Edition (Searle, C.E. ed.), 2, p. 1171. Washington, D.C. Amer. Chemical Society. 1984.Google Scholar
  307. 307.
    Clark, I.A., and C.K. Dimmock: The Toxicity of Cheilanthes sieberi to Cattle and Sheep. Australian Veterinary J. 47, 149 (1971).CrossRefGoogle Scholar
  308. 308.
    Evans, I.A., and J. Mason: Carcinogenic Activity of Bracken. Nature 208, 913 (1965).CrossRefGoogle Scholar
  309. 309.
    Pamukcu, A.M., and J.M. Price: Induction of Intestinal and Urinary Bladder Cancer in Rats by Feeding Bracken Fern (Pteris aquilina). J. Natl. Cancer Inst. 43, 275 (1969).Google Scholar
  310. 310.
    Hirono, I., C. Shibuya, K. Fushimi, and M. Haga: Studies on Carcinogenic Properties of Bracken, Pteridium aquilinum. J. Natl. Cancer Inst. 45, 179 (1970).Google Scholar
  311. 311.
    Fukuoka, M., M. Kuroyanagi, K. Yoshihira, S. Natori, M. Nagao, Y. Takahashi, and T. Sugimura: Chemical and Toxicological Studies on Bracken Fern, Pteridium aquilinum var. latiusculum. IV. Surveys on Bracken Constituents by Muta-gen Test. J. Pharm. Dyn. 1, 324 (1978).CrossRefGoogle Scholar
  312. 312.
    Yoshihira, K., M. Fukuoka, M. Kuroyanagi, S. Natori, M. Umeda, T. Morohoshi, M. Enomoto, and M. Saito: Chemical and Toxicological Studies on Bracken Fern, Pteridium aquilinum var. latiusculum. I. Introduction, Extraction and Fractionation of Constituents, and Toxicological Studies Including Carcinogenicity Tests. Chem. Pharm. Bull. (Japan) 26, 2346 (1978).Google Scholar
  313. 313.
    Hirono, I. Natural Carcinogenic Products of Plant Origin. CRC Critical Rev. Toxicol. 8, 235 (1981).CrossRefGoogle Scholar
  314. 314.
    Evans, W.C., T. Korn, S. Natori, K. Yoshihira, and M. Fukuoka: Chemical and Toxicological Studies on Bracken Fern, Pteridium aquilinum var. latiusculum. VIII. The Inability of Bracken Extracts Containing Pterosins to cause Cattle Bracken Poisoning. J. Pharm. Dyn. 6, 938 (1983).CrossRefGoogle Scholar
  315. 315.
    Hirono, I. Y. Kono, K. Takahashi, K. Yamada, H. Niwa, M. Ojika, H. Kigoshi, K. Niiyama, and Y. Uosaki: Reproduction of Acute Bracken Poisoning in a Calf with Ptaquiloside, a Bracken Constituent. Veterinary Record 115 375 (1984).CrossRefGoogle Scholar
  316. 316.
    Hirono, I., S. Also, T. Yamaji, H. Mori, K. Yamada, H. Niwa, M. Ojika, K. Wakamatsu, H. Kigoshi, K. Niiyama, and Y. Uosaki: Carcinogenicity in Rats of Ptaquiloside Isolated from Bracken. Gann 75, 833 (1984).Google Scholar
  317. 317.
    Matoba, M., E. Saito, K. Saito, K. Koyama, S. Natori, T. Matsushima, and M. Takimoto: Assay of Ptaquiloside, the Carcinogenic Principle of Bracken, Pteridium aquilinum by Mutagenicity Testing in Salmonella typhimurium TA98. Mutagene-sis. In press.Google Scholar
  318. 318.
    Hiking, H., T. Miyase, and T. Takemoto: Biosynthesis of Pteroside B in Pteridium aquilinum var. latiusculum, Proof of the Sesquiterpenoid Origin of the Pterosides. Phytochem. 15, 121 (1976).CrossRefGoogle Scholar
  319. 319.
    Ayer, W.A., and L.M. Browne: Terpenoid Metabolites of Mushrooms and Related Basidiomycetes. Tetrahedron, 37, 2199 (1981).Google Scholar
  320. 320.
    Turner, W.B., and D.C. Aldridge: Terpenes and Steroids. In: Fungal Metabolites II, p. 225. London-New York: Academic Press. 1983.Google Scholar
  321. 321.
    Hanssen, H.-P., E. Sprecher, and W.-R. Abraham: 6-Protoilludene, the Major Volatile Metabolite from Ceratocystis piceaea Liquid Cultures. Phytochem. 25, 1979 (1986).CrossRefGoogle Scholar
  322. 322.
    Ayer, W.A., and R.H. Mccaskill: The Cybrodins, a New Class of Sesquiterpenes. Canad. J. Chem. 59, 2150 (1981).CrossRefGoogle Scholar
  323. 323.
    Nambudiry, M.E.N., and G.S. Krishna Rao: Studies in Terpenoids. Part XXX. Synthesis of Pterosin E, a Sesquiterpenoid from Bracken. J. Chem. Soc. Perkin I 1974, 317.Google Scholar
  324. 324.
    Mcmorris, T.C., M. Liu, and R.H. White: Studies on the Pterosins and Other Indanones Related to the Illudins. Lloydia 40, 221 (1977).Google Scholar
  325. 325.
    Hayashi, Y., M. Nishizawa, and T. Sakan: Interconversion of Pterosins, Illudoid Sesquiterpenes. Synthesis of Onitin (4-Hydroxypterosin Z) and (±)-Pterosin D. Chemistry Letters 1974, 945.Google Scholar
  326. 326.
    Hayashi, Y., M. Nishizawa, and T. Sakan: The Synthesis of Hypacrone, a Novel Seco-Illudoid Sesquiterpene from Hypolepis punctata Mett. Chemistry Letters 1975, 387.Google Scholar
  327. 327.
    Wollenweber, E., P. Ruedi, and D.S. Seigler: Diterpenes of Cheilantes argentea, a Fern from Asia. Z. Naturforsch. 37c, 1283 (1982).Google Scholar
  328. 328.
    Koyama, K., F. Fuke, J. Kimura, and T. Okuyama: The Constituents of Osmunda spp. (I). Japanese J. Pharmacognosy 32, 126 (1978).Google Scholar
  329. 329.
    Ageta, H., and Y. Arai: Chmotaxonomy of Fern Plants. (I). Polypodium amamianum Tagawa. Japanese J. Pharmacognosy 38, 46 (1984).Google Scholar
  330. 330.
    Misra, R., R.C. Pandey, and S. Dev: The Absolute Stereochemistry of Hardwickiic Acid and Its Congeners. Tetrahedron Letters 1968, 2681.Google Scholar
  331. 331.
    Kuraishi, T., K. Ninomiya, T. Murakami, N. Tanaka, Y. Saiki, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen der Pterophyten. LII. Chemische Untersuchungen der Inhaltsstoffe von Scypholepia hookeriana J. Sm. Chem. Pharm. Bull. (Japan) 32, 4883 (1984).CrossRefGoogle Scholar
  332. 332.
    Kuraishi, T., H. Maehashi, T. Murakami, Y. Saiki, and C.-M. Chen: Chemical and Chemotaxonomical Studies of Ferns. LX. Chemical Studies on the Constituents of Microlepia tenera Christ. J. Pharmac. Soc. Japan 105, 937 (1985).Google Scholar
  333. 333.
    Kuraishi, T., T. Taniguchi, K. Hori, T. Murakami, N. Tanaka, Y. Saiki, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen der Pterophyten. XLIV. Chemische Untersuchungen der Inhaltsstoffe von Microlepia marginata (Panzer) C. Chr. (2). Chem. Pharm. Bull. (Japan) 31, 4409 (1983).Google Scholar
  334. 334.
    Chen, C.-M., and T. Murakami: Chemical and Chemotaxonomical Studies of the Genus Pteris and Related Genera (Pteridaceae). I. Chemical Studies on the Constituents of Pteris cretica L. Tetrahedron Letters 1971, 1121.Google Scholar
  335. 335.
    Chen, C.-M., and T. Murakami: Chemical and Chemotaxonomical Studies of the Genus Pteris and Related Genera (Pteridaceae). II. Structures of Creticosides A and B, Two New Diterpenoid Glucosides from Pteris cretica L. Chem. Pharm. Bull. (Japan) 19, 1495 (1971).CrossRefGoogle Scholar
  336. 336.
    Chen, C.-M., and T. Murakami: Chemische und chemotaxonomische Untersuchungen der Gattung Pteris und der verwandten Gattungen. (Pteridaceae) III. Chemische Untersuchungen über die Inhaltsstoffe von Pteris cretica L. Chem. Pharm. Bull. (Japan) 21, 455 (1973).CrossRefGoogle Scholar
  337. 337.
    Murakami, T., T. Satake, M. Tezuka, K. Tanaka, F. Tanaka, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen der Gattung Pteris und der verwandten Gattungen (Pteridaceae). IV. Chemische Untersuchungen der Inhaltsstoffe von Pters cretica L. Chem. Pharm. Bull. (Japan) 22, 1686 (1974).CrossRefGoogle Scholar
  338. 338.
    Kuraishi, T., T. Taniguchi, T. Murakami, N. Tanaka, Y. Saiki, und C.-M. Chen: Chemische und chemotaxonomische Untersuchungen von Filices. XL. C.emische Untersuchungen der Inhaltsstoffe von Microlepia marginata (Panzer) C. Chr. Chem. Pharm. Bull. (Japan) 31, 1494 (1983).Google Scholar
  339. 339.
    Murakami, T., H. Iida, N. Tanaka, Y. Saiki, C.-M. Chen, and Y. Iitaka: Chemische und chemotaxonomische Untersuchungen von Filices. XXXIII. Chemische Untersuchungen der Inhaltsstoffe von Pters longipes Don. Chem. Pharm. Bull. (Japan) 29, 657 (1981).CrossRefGoogle Scholar
  340. 340.
    Murakami, T., N. Tanaka, M. Hata, Y. Saiki, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen der Gattung Pteris und der verwandten Gattungen (Pteridaceae). XI. Chemische Untersuchungen der Inhaltsstoffe von Pteris dispar Kunze. Chem. Pharm. Bull. (Japan) 24, 549 (1976).CrossRefGoogle Scholar
  341. 341.
    Tanaka, N., T. Murakami, Y. Saiki, and C.-M. Chen: Chemical and Chemotaxonomical Studies of Filices. LIII. Chemical Studies on the Constituents of Dipteris conjugata Reinw. Chem. Pharm. Bull. (Japan) 33, 152 (1985).CrossRefGoogle Scholar
  342. 342.
    Tanaka, N., K. Nakatani, T. Murakami, Y. Saiki, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen der Gattung Pteris und der verwandten Gattungen (Pteridaceae). XXI. Chemische Untersuchungen der Inhaltsstoffe von Pteris plumbea Christ. Chem. Pharm. Bull. (Japan) 26, 3260 (1978).CrossRefGoogle Scholar
  343. 343.
    Wollenweber, E., D. Marx, J. Favre-Bonvin, and C. Brassy: ent-Kaurenoic Acid, a Diterpene as Frond Exudate on Ferns of the Genus Notholaena. Z. Naturforsch. 38c, 146 (1983).Google Scholar
  344. 344.
    Murakami, T., N. Tanaka, Y. Komazawa, Y. Saiki, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen von Filices. XLI. Weitere Inhaltsstoffe von Pteris purpureorachis Copel. Chem. Pharm. Bull. (Japan) 31, 1502 (1983).CrossRefGoogle Scholar
  345. 345.
    Tanaka, N., T. Murakami, Y. Saiki, C.-M. Chen, and Y. Iitaka: Chemische und chemotaxonomische Untersuchungen von Filices. XXXIV. Chemische Untersuchungen der Inhaltsstoffe von Pteris purpureorachis Copel. Chem. Pharm. Bull. (Japan) 29, 663 (1981).CrossRefGoogle Scholar
  346. 346.
    Nakanishi, K., M. Endo, U. Naf, and L.F. Johnson: Structure of the AntheridiumInducing Factor of the Fern Anemia phyllitidis. J. Amer. Chem. Soc. 93, 5579 (1971).Google Scholar
  347. 347.
    Corey, E.J., and A.G. Myers: Total Synthesis of (±)-Antheridium-Inducing Factor-(AAn, 2) of the Fern Anemia phyllitidis. Clarification of Stereochemistry. J. Amer. Chem. Soc. 107, 5574 (1985).CrossRefGoogle Scholar
  348. 348.
    Chen, C.-M., M.-Z. Xu, X.-Y. He, H.-Z. Zhou, T. Murakami, and Y. Saiki: Chemical Studies on the Constituents of Onychium japonicum Kze. 100th Annual Metting of the Pharmaceutical Society of Japan, Tokyo, April 1980, Abstracts of Papers, p. 199.Google Scholar
  349. 349.
    Turner, W.B. Terpenes and Steroids. In: Fungal Metabolites, p. 238. London-New York: Acad. Press. 1983.Google Scholar
  350. 350.
    Döpf, W. Eine die Antheridienbildung bei Farnen fördernde Substanz in den Prothallien von Pteridium aquilinum (L.) Kuhn. Ber. dtsch. bot. Ges. 63, 139 (1950).Google Scholar
  351. 351.
    Naf, U., K. Nakanishi, and M. Endo: On the Physiology and Chemistry of Fern Antheridiogens. Botanical Review 41, 315 (1975).CrossRefGoogle Scholar
  352. 352.
    Naf U. Control of Antheridium Formation in the Fern Species Anemia phyllitides. Nature, 184 798 (1959).CrossRefGoogle Scholar
  353. 353.
    Endo, M., and K. Nakanishi: Isolation of the Antheridiogen of Anemia phyllitidis. Physiol. Plant. 26, 183 (1972).Google Scholar
  354. 354.
    Naf U. On the Control of Antheridium Formation in the Fern Species Lygodium japonicum. Soc. Exp. Biol. & Med. 105 82 (1960).Google Scholar
  355. 355.
    Naf, U., J. Sullivan, and M. Cummins: New Antheridiogen from the Fern Onoclea sensibilis. Science, 163, 1357 (1969).CrossRefGoogle Scholar
  356. 356.
    Turner, W.B., and D.C. Aldrige: Terpenes and Steroids. In: Fungal Metabolites, p. 288. London-New York Acad. Press. 1971.Google Scholar
  357. 357.
    Iyer, R.T., K.N.N. Ayengar, and S. Rangaswami: Structure of Cheilarinosin, a New Sesterterpene from Cheilanthes farinosa. Indian J. Chem. 10, 482 (1972).Google Scholar
  358. 358.
    Kamaya, R., S. Ikegami, and H. Ageta: Fern Constituents. Sesterterpenoids from Cheilanthes kuhnii. 99th Annual Meeting of the Pharmaceutical Society of Japan, Sapporo, Aug. 1979, Abstracts of Papers, p. 187.Google Scholar
  359. 359.
    Khan, H., and A. Zaman: Cheilanthatriol, a New Fundamental Type in Sesterterpenes. Tetrahedron Letters 1971, 4443.Google Scholar
  360. 360.
    Nozoe, S., M. Morisaki, K. Tsuda, Y. Iitaka, N. Takahashi, S. Tamura, K. Ishibashi, and M. Shirasaka: The Structure of Ophiobolin, a C25 Terpenoid Having a Novel Skeleton. J. Amer. Chem. Soc. 87, 4968 (1965).CrossRefGoogle Scholar
  361. 361.
    Nozoe, S., M. Morisaki, K. Fukushima, and S. Okuda: The Isolation of an Acyclic C25-Isoprenoid Alcohol, Geranylnerolidol and a New Ophiobolin. Tetrahedron Letters 1968, 4457.Google Scholar
  362. 362.
    Ageta, H., K. Masuda, and Y. Tanaka: Fern Constituents. On the Origin of a Formosan Native Drug “Tie-yu-san” and its Triterpenoid Constituents. Japanese J. Pharmacognosy 35, 259 (1981).Google Scholar
  363. 363.
    Bottari, F., A. Marsili, I. Morelli, and M. Pacchiani: Aliphatic and Triterpenoid Hydrocarbons from Ferns. Phytochem. 11, 2519 (1972).CrossRefGoogle Scholar
  364. 364.
    Ageta, H., K. Shiojima, and K. Masuda: Fern Constituents. Onoceroid, a-Onoceradiene, Serratene and Onoceranoxide, Isolated from Lemmaphyllum microphyllum varieties. Chem. Pharm. Bull. (Japan) 30, 2272 (1982).CrossRefGoogle Scholar
  365. 365.
    Ageta, H., and Y. Arai: Fern Constituents. Pentacyclic Triterpenoids Isolated from Polypodium niponicum and P. formosanum. Phytochem. 22, 1801 (1983).CrossRefGoogle Scholar
  366. 366.
    Arai, Y., K. Masuda, and H. Ageta: Chemotaxonomy of Fern Plants (II). Polypodium someyae Yatabe. Japanese J. Pharmacognosy 38, 53 (1984).Google Scholar
  367. 367.
    Tanaka, Y., K. Tohara, K. Terasawa, M. Sawada, and H. Ageta: PharmaCOgnoStical Studies on “Ku-tsui-po” (II). Japanese J. Pharmacognosy 32, 260 (1978).Google Scholar
  368. 368.
    Berti, G., F. Bottari, A. Marsili, I. Morelli, and A. Mandelbaum: The Isolation of Serratene from Polypodium vulgare. Chem. Commun. 1967, 50.Google Scholar
  369. 369.
    Ekweozor, C.M., and J.I. Okugun: New C33 Aliphatic Ketone from Cyclosorusstriatus. Phytochem. 18, 1395 (1979).CrossRefGoogle Scholar
  370. 370.
    Dasgupta, A., and H.N. Khastgir: Chemical Constituents of Polypodium amoenum Wall. J. Indian Chem. Soc. 55, 198 (1978).Google Scholar
  371. 371.
    Kamaya, R., G. Wang, and H. Ageta: Fern Constituents. Triterpenoids from Oleandra wallichii. 97th Annual Meeting of the Pharmaceutical Society of Japan, Tokyo, Apr. 1977, Abstracts of Papers, p. 211.Google Scholar
  372. 372.
    Wu, T.-S., H. Furukawa, and C.-S. Kuoh: Triterpenoids from Humata pectinata. J. Natural Products 45, 721 (1982).CrossRefGoogle Scholar
  373. 373.
    Anderson, C., F. Fuller, and W.W. Epstein: Nonpolar Pentacyclic Triterpenes of the Medicinal Fern Polypodium subpetiolatum. J. Natural Products 42, 168 (1979).CrossRefGoogle Scholar
  374. 374.
    Sengupta, P., C.P. Dutta, M. Sen, K. Das, K. Miyahara, and T. Kawasaki: Triterpene Hydrocarbon from Dryopteris crenata (Forsk.). Indian J. Chem. 22B, 882 (1983).Google Scholar
  375. 375.
    Barton, D.H.R., G. Mellows, and D.A. Widdowson: Biosynthesis of Terpenes and Steroids. Part III. Squalene Cyclisation in the Biosynthesis of Terpenoids. The Biosynthesis of Fern-9-ene in Polypodium vulgare Linn. J. Chem. Soc. (C) 1971, 110.Google Scholar
  376. 376.
    Arai, Y., K. Masuda, and H. Ageta: Fern Constituents: Eupha-7,24-diene and (20 R)-Dammara-13(17),24-diene, Tetracyclic Triterpenoid Hydrocarbons Isolated from Polypodium Species. Chem. Pharm. Bull. (Japan) 30, 4219 (1982).CrossRefGoogle Scholar
  377. 377.
    Shiojima, K., Y. Ito, and H. Ageta: Fern Constituents. A New Triterpenoid from the Fresh Fronds of Adiantum flabellatum. 107th Annual Meeting of the Pharmaceutical Society of Japan, Kyoto, Apr. 1987, Abstracts of Papers, p. 341.Google Scholar
  378. 378.
    Berti, G. Triterpnoids from Ferns. Corsi Semin. Chim. 11, 66 (1968).Google Scholar
  379. 379.
    Tanaka, N., T. Noguchi, K. Kawashima, K. Kurihara, T. Matsudo, T. Mura-Kami, Y. Saiki, and C.-M. Chen: Chemical and Chemotaxonomical Studies of Filices. LXX. Chemical Studies on the Constituents of Plagiogyria formosana, P. adnata, P. dunnii and P. stenoptera. J. Pharmac. Soc. Japan 107 (1987).Google Scholar
  380. 380.
    Huneck, S. Die Inhaltsstoffe von Davallia canariensis and Gymnocarpium dryopteris. Phytochem. 10, 1935 (1971).CrossRefGoogle Scholar
  381. 381.
    Gonzalez, A.G., C. Betancor, R. Hernandez, and J.A. Salazar: 6ß,22-Dihydroxyhopane, a New Triterpene from the Fern Cheilanthes marantae. Phytochem. 15, 1996 (1976).CrossRefGoogle Scholar
  382. 382.
    Ageta, H., K. Shionma, Y. Arai, T. Kasama, and K. Kam: Fern Constituents. Dryocrassol and Dryocrassyl Acetate Isolated from the Leaves of Aspidiaceous Fern. Tetrahedron Letters 1975, 3297.Google Scholar
  383. 383.
    Ageta, H., and Y. Arai: Fern Constituents. Triterpenoids from Cyathea spinulosa and C. dealbata. 98th Annual Meeting of the Pharmaceutical Society of Japan, Okayama, Apr. 1978, Abstracts of Papers, p. 306.Google Scholar
  384. 384.
    Sunder, R., K.N.N. Ayengar, and S. Rangaswami: Structures of Four New Triter-penes from the Rhizomes of Polypodium juglandifolium. J. Chem. Soc. Perkin Trans. I 1976, 117.CrossRefGoogle Scholar
  385. 385.
    Pandey, G.N., and C.R. Mitra: Neriifoliol, a New Pentacyclic Triterpene Alcohol from Oleandra neriifolia. Tetrahedron Letters 1967, 1353.Google Scholar
  386. 386.
    Sunder, R., and S. Ragaswami: Further Triterpenoid Components of the Rhizomes of Polypodium juglandifolium H.B. Willd. Indian J. Chem. 15B, 541 (1977).Google Scholar
  387. 387.
    Horvath, A., J. DE Szöcs, F. Alvarado, and D.J.W. Grant: Triterpenes from Rhizomes of Polypodium leucotomos. Phytochem. 14, 1641 (1975).CrossRefGoogle Scholar
  388. 388.
    Ray, T.K., A. Dasgupta, A. Goswami, D.R. Mitra, and H.N. Khastgir: Chemical Investigation on Polypodium juglandifolium Don. J. Indian Chem. Soc. 55, 415 (1978).Google Scholar
  389. 389.
    Goswami, A., A. Dasgupta, A. Nath, T.K. Roy, and L.H.N. Khastgir: Reinvestigation on the Fern Oleandra neriifolia. Isolation of a New Triterpene 29-Ethoxyhopane. Tetrahedron Letters 1979, 287.Google Scholar
  390. 390.
    Tanaka, N., K. Yamauchi, T. Murakami, Y. Saiki, and C.-M. Chen: Chemische und chemotaxonomische Untersuchungen von Filices. XXXVIII. Chemische Untersuchungen der Inhaltsstoffe von Diplazium subsinuatum (Wall.) Tagawa. Chem. Pharm. Bull. (Japan) 30, 3632 (1982).CrossRefGoogle Scholar
  391. 391.
    Tanaka, N., H. Wada, M. Kojima, T. Murakami, Y. Saiki, C.-M. Chen, and Y. Iitaka: Chemical and Chemotaxonomical Studies of Filices. LXXI. Chemical Studies on the Constituents of Cheiropleuria bicuspis (B1.) Pr. Chem. Pharm. Bull. (Japan) 35, 4016 (1987).CrossRefGoogle Scholar
  392. 392.
    Murakami, T., and C.-M. Chen: Über die Bestandteile der Rhizome von Woodwardia orientalis Sw. Chem. Pharm. Bull. (Japan) 19, 25 (1971).CrossRefGoogle Scholar
  393. 393.
    Singh, J., M.N.A. Rao, and S.G. Hardikar: Chemical Constituents of Adiantum caudatum. Indian J. Pharm. 37, 64 (1975).Google Scholar
  394. 394.
    Rangaswami, S., and R.T. Iyer: Chemical Examination of Adiantum venustum. Current Sci. (India) 36, 88 (1967).Google Scholar
  395. 395.
    Ageta, H., and K. Iwata: Fern Constituents: Adipedatol, Filicenal and Other Triterpenoids Isolated from Adiantum pedatum. 10th Sympodium on the Chemistry of Natural Products, Tokyo, Oct. 1966, Symposium Papers, p. 253.Google Scholar
  396. 396.
    Ageta, H., K. Iwata, and T. Kasama: Fern Constituents, Filicenols A and B Tetrahymanol, and Isoadiantol B, Isolated from Adiantum monochlamys. 11th Symposium on the Chemistry of Natural Products, Kyoto, Oct. 1967, Symposium Papers, p. 306.Google Scholar
  397. 397.
    Ageta, H., K. Shiojima, and Y. Arai: Fern Constituents. Neohopene, Hopene-II, Neohopadiene, and Fernadiene Isolated from Adiantum Species. Chem. Commun. 1968, 1105.Google Scholar
  398. 398.
    Pandey, G.N., and C.R. Mitra: Triterpene Hydrocarbons from Oleandra wallichii. Tetrahedron Letters 1967, 4683.Google Scholar
  399. 399.
    Bottari, F., A. Marsili, I. Marelli, M. Pacchiani, and R. Ulivi: Constituents of Dicranopteris linearis var. linearis. Ann. chimie 61, 814 (1971).Google Scholar
  400. 400.
    Wollenweber, E., K.E. Malterud, and L.D. Gömez P. 9(11)-Fernene and Its 21-Epimer as an Epicuticular Layer on Ferns. Z. Naturforsch. 36c, 896 (1981).Google Scholar
  401. 401.
    Ageta, H., K. Shiojima, R. Kamaya, and K. Masuda: Fern Constituent. Naturally Occurring Adian-5-ene Ozonide in the Leaves of Adiantum monochlamys and Oleandra wallichii. Tetrahedron Letters 1978, 899.Google Scholar
  402. 402.
    Pandey, G.N., and C.R. Mitra: Constituents of Oleandra neriifolia. Phytochem. 8, 1607 (1969).CrossRefGoogle Scholar
  403. 403.
    Pandey, G.N., and C.R. Mitra: Constituents of Oleandra wallichii. Phytochem. 8, 327 (1969).CrossRefGoogle Scholar
  404. 404.
    Zander, J.M., and E. Caspi: The Presence of Tetrahymanol in Oleandra wallichii. Phytochem. 8, 2265 (1969).CrossRefGoogle Scholar
  405. 405.
    Masuda, K., K. Shiojima, and H. Ageta: Fern Constituents. Six Tetracyclic Triterpenoid Hydrocarbons Having Different Carbon Skeletons, Isolated from Lemmaphyllum microphyllum var. obovatum. Chem. Pharm. Bull. (Japan) 31, 2530 (1983).CrossRefGoogle Scholar
  406. 406.
    Wit, M., and S. Rangaswami: A Novel C31-Triterpene from Pleopeltis farinosa. Indian J. Chem. 13, 748 (1975).Google Scholar
  407. 407.
    Masuda, K., K. Shiojima, and H. Ageta: Fern Constituents. A New Triterpenoid Hydrocarbon, 19aH-lup-20(29)-ene, from Lemmaphyllum microphyllum. 107th Annual Meeting of the Pharmaceutical Society of Japan, Kyoto, Apr. 1987, Abstracts of Papers, p. 340.Google Scholar
  408. 408.
    Misra, D.R., D.B. Naskar, T.K. Ray, and H.N. Khastgir: Phytosterols in Plants. Phytochem. 12, 1819 (1973).CrossRefGoogle Scholar
  409. 409.
    Chakravarti, D., N.B.D. Nath, S.B. Mahato, and R.N. Chakravarti: Structure of Marsileagenin A, a New Hexahydroxy Triterpene from Marsilea minuta Linn. Tetrahedron 31, 1781 (1975).CrossRefGoogle Scholar
  410. 410.
    Tandon, R., G.K. Jain, R. Pal, and N.M. Khanna: Esculentic Acid, a New Triter-pene Acid from Diplazium esculentum (Retz) sq. ex. Schrad. Indian J. Chem. 19B, 819 (1980).Google Scholar
  411. 411.
    Shiojima, K., Y. Arai, K. Masuda, T. Kamada, and H. Ageta: Fern Constituents. Polypodatetraenes, Novel Bicyclic Triterpenoids, Isolated from Polypodiaceous and Aspidiaceous Plants. Tetrahedron Letters 1983, 5733.Google Scholar
  412. 412.
    Ageta, H., K. Masuda, M. Inoue, and T. Ishida: Fern Constituents. Colysanoxide, an Onoceroid Having a Novel Carbon Skeleton, Isolated from Colysis species. Tetrahedron Letters 1982, 4349.Google Scholar
  413. 413.
    Wan, A.S.C., R.T. Aexel, and H.J. Nicholas: Sterols and Triterpenes of Oleandra pistillaris. Phytochem. 11, 2882 (1972).CrossRefGoogle Scholar
  414. 414.
    Laonigro, G., M. Adinolfi, G. Barone, R. Lanzetta, and L. Mangoni: Constituents of Ferns. II. The 9ß,19-Cyclolanostane Components of Polypodium aculeatum (L.) Roth. Gazz. chim. ital. 112, 273 (1982).Google Scholar
  415. 415.
    Ageta, H., and Y. Arai: Fern Constituents. Cycloartane Triterpenoids and Allied Compounds from Polypodium formosanum and P. niponicum. Phytochem. 23, 2875 (1984).CrossRefGoogle Scholar
  416. 416.
    Devys, M., A. Alcaide, F. Pinte, and M. Barbier: Pollinastanol in the Fern, Polypodium vulgare, and Sarsaparilla, Smilax medica. C.R. Acad. Sci. Ser. D, 269, 2033 (1969).Google Scholar
  417. 417.
    Ghisalberti, E.L., N.J. De Souza, H.H. Rees, L.J.Goad, and T.W. Goodwin: Biosynthesis of Cyclolaudenol in Polypodium vulgare. J. Chem. Soc. (London) (D), 1401 (1969).Google Scholar
  418. 418.
    Berti, G., F. Bottari, B. Maechia, A. Marsili, and H. Piotrowska: Cyclolanostanic Triterpenes Isolated from Ferns. Bull. soc. chim. France 1964, 2359.Google Scholar
  419. 419.
    Ageta, H., and Y. Arai: Fern Costituents. New Cycloartane Triterpenoids, (24R)Cyclolaudenyl Acetate and (24R)-Cyclomargenyl Acetate, and their Corresponding Alcohols and Ketones, Isolated from Polypodium formosanum. Chemistry Letters 1982, 881.Google Scholar
  420. 420.
    Laonigro, G., F. Siervo, R. Lanzetta, M. Adinolfi, and L. Mangoni: Constituents of Ferns. I. Polysthicol, a 24-Ethyl-4,4-dimethylphytosterol from Polysticum aculeatum (L.) Roth. Tetrahedron Letters 21, 3109 (1980).CrossRefGoogle Scholar
  421. 421.
    Kariyone, T., and H. Ageta: Chemical Constituents of the Plants of Coniferae and Allied Orders. XXIII. Studies on Plant Waxes. 10. A Component from Leaflets of Diplopterygium glaucum. (2). J. Pharmac. Soc. Japan 79, 105 (1959).Google Scholar
  422. 422.
    Ageta, H., K. Iwata, and Y. Ohtake: A Fern Constituent: Diplopterol, a Triterpenoid Isolated form Diplopterygium glaucum Nakai. Chem. Pharm. Bull. (Japan). 11, 407 (1963).CrossRefGoogle Scholar
  423. 423.
    Ageta, H. Chemical and Chemosystematic Studies on Fern Triterpenoids. Japan-China Symposium on Naturally Occurring Drugs Tokyo, Nov. 1986, Symposium Papers, p. 29.Google Scholar
  424. 424.
    Shiojima, K., K. Masuda, and H. Ageta: A Fern Constituent, Adian-5-ene Ozonide in the Leaves of Adiantum monochlamys and Ozone-Oxidation Produts of Various Triterpenoid Monoenes of Hopane and Migrated Hopane Series. 21th Symposium on the Chemistryl of Natural Products, Sapporo, Aug. 1978, Symposium Papers, P. 576.Google Scholar
  425. 425.
    Torssell, K.B.G: Natural Product Chemistry, P. 197. Chichester: John Wiley & Sons Limited. 1983.Google Scholar
  426. 426.
    Torssell, K.B.G: Natural Product Chemistry, P. 206. Chichester: John Wiley & Sons Limited. 1983.Google Scholar
  427. 427.
    Manitto, P: Biosynthesis of Natural Products, P. 316. Chichester: Ellis Horwood Limited 1981.Google Scholar
  428. 428.
    Czeczuga, B. Carotenoids in Sixty-six Representatives of the Pteridophyta. Biochem. Syst. Ecol. 13, 221 (1985).CrossRefGoogle Scholar
  429. 429.
    Russell, G.B., D.R. Greenwood, G.A. Lane, J.W. Blunt: 2-Deoxy-3-epiecdysone from the Fern Blechnum vulcanicum. Phytochem. 20, 2407 (1981).CrossRefGoogle Scholar
  430. 430.
    Hiking, H., and Y. Hiking: Arthropod Molting Hormones. In: Fortschr. Chem. organ. Naturstoffe (Herz, W., H. Grisebach, A.I. Scott, eds.), 28, p. 256. Wien-New York Springer. 1970.CrossRefGoogle Scholar
  431. 431.
    Takemoto, T., T. Okuyama, H. Jin, T. Arai, M. Kawahara, C. Konno, S. Nabetani, S. Arihara, Y. Hiking, and H. Hiking: Isolation of Phytoecdysones from Japanese Ferns. I. Chem. Pharm. Bull. (Japan). 21, 2336 (1973).CrossRefGoogle Scholar
  432. 432.
    Hiking, H., K. Mohri, T. Okuyama, and K.-Y. Yen: Phytoecdysones from Plena-stunt banksiaefolium and Bolbitis subcordata. Planta Medica 31, 71 (1977).CrossRefGoogle Scholar
  433. 433.
    Mcmorrls, T.C., and B. Voeller: Ecdysones from Gametophytic Tissues of a Fern. Phytochem. 10, 3253 (1971).CrossRefGoogle Scholar
  434. 434.
    Takemoto, T., S. Ogawa, and Y. Nishimoto: Metamorphosis Hormones from Woodwardia orientalis. Japan 71, 11, 667 (Cl. C 07d), 25 Mar 1971, Appl. 03 Oct 1968.Google Scholar
  435. 435.
    Hiking, H., S. Arihara, and T. Takemoto: Ponasteroside A, a Glydoside of Insect Metamorphosing Substrance from Pteridium aquilinum var. latiusculum. Structure and Absolute Configuration. Tetrahedron 25, 3909 (1969).CrossRefGoogle Scholar
  436. 436.
    Hiking, H., T. Okuyama, S. Arihara, Y. Hiking, T. Takemoto, H. Mori, and K. Shibata: Shidasterone, an Insect Metamorphosing Substance from Blechnum niponicum. Structure. Chem. Pharm. Bull. (Japan). 23, 1458 (1975).CrossRefGoogle Scholar
  437. 437.
    Faux, A., M.N. Galbraith, D.H.S. Horn, E.J. Middleton and J.A. Thomson: The Structures of Two Ecdysone Analogues, Cheilanthones A and B, from the Fern Cheilanthes tenuifolia. Chem. Commun. 1970, 243.Google Scholar
  438. 438.
    Russell, G.B. Phytoecdysones from Phymatodes novae-zelanidiae. Phytochem. 11, 1496 (1972).CrossRefGoogle Scholar
  439. 439.
    Hiking, H. Steroids. XXVIII. Ecdysterone and Ecdysone from Polypodium virginian um. Lloydia 39, 246 (1976).Google Scholar
  440. 440.
    Jizba, J., L. Dolejs, and V. Herout: Polypodoaurein, a New Phytoecdysone form Polypodium aureum L. Phytochem. 13 1915 (1974).Google Scholar
  441. 441.
    Hiking, H., K. Mohri, T. Okuyama, T. Takemoto, and K.-Y. Yen: Steroids. XXX. Phytoecdysones from Diplazium donianum. Steroids 28, 649 (1976).CrossRefGoogle Scholar
  442. 442.
    Iyer, R.T., K.N.N. Ayengar, and S. Rangaswami: Occurrence of Cheilanthone-B in Cheilanthes mysurensis. Indian J. Chem. 11, 1336 (1973).Google Scholar
  443. 443.
    Jizba,J., L. Doleji, V. Herout, F. Sorm, H.-W. Fehlhaber, G. Snatzke, R. Tschesche, and G. Wulff: Polypodosaponin, ein neuer Saponintyp aus Polypodiumvulgare L. Chem. Ber. 104 837 (1971).CrossRefGoogle Scholar
  444. 444.
    Jizba, J., L. Doleji, V. Herout, and F. Sorm: The Structure of Osladin - The Sweet Principle of the Rhizomes of Polypodium vulgare L. Tetrahedron Letters 1971 1329.Google Scholar
  445. 445.
    Butenandt, A., and P. Karlson: Über die Isolierung eines Metamorphose-Hormones der Insekten in kristallisierter Form. Z. Naturforsch. 96, 389 (1954).Google Scholar
  446. 446.
    Nakanishi, K., M. Koreeda, S. Sasaki, M.L. Chang, and H.Y. Hsu: Insect Hormones. The Structure of Ponasterone A, an Insect-moulting Hormone from the Leaves of Podocarpus nakaii Hay. Chem. Commun. 1966, 915.Google Scholar
  447. 447.
    Takemoto, T., S. Ogawa, and N. Nishimoto: Isolation of the Moulting Hormones of Insects from Achyranthis Radix. J. Pharmac. Soc. Japan 87 325 (1967).Google Scholar
  448. 448.
    Naicanishi, K. The Ecdysones. Pure Appl. Chem. 25, 167 (1971).Google Scholar
  449. 449.
    Hiking, H., T. Okuyama, H. Jin, and T. Takemoto: Screening of Japanese Ferns for Phytoecdysones. I. Chem. Pharm. Bull. (Japan) 21 2292 (1973).CrossRefGoogle Scholar
  450. 450.
    Yen, K.-Y., L.-L. Yang, T. Okuyama, H. Hiking, and T. Takemoto: Screening of Formosan Ferns for Phytoecdysones. I. Chem. Pharm. Bull. (Japan) 22, 805 (1974).CrossRefGoogle Scholar
  451. 451.
    Russell, G.B., and P.G. Fenemore: Insect Molting Hormone Activity in some New Zealand Ferns. N.Z. J. Sci. 14, 31 (1971).Google Scholar
  452. 452.
    Ohtaki, T., R.D. Milkman, and C.M. Williams: Dynamics of Ecdysone Secretion and Action in the Fleshfly Sarcophaga peregrina. Biol. Bull. 135 332 (1968).CrossRefGoogle Scholar
  453. 453.
    Imai, S., E. Murata, S. Fujioka, and T. Matsuoka: Structures of Stachysterones C and D. Chem. Commun. 1970, 352.Google Scholar
  454. 454.
    Sato, Y., M. Sakai, S. Imai, and S. Fujioka: Ecdysone Activity of Plant Originated Molting Hormones Applied on the Body Surface of Lepidopterous Larvae. Appl. Ent. Zool. (Japan) 3, 49 (1968).Google Scholar
  455. 455.
    Imai S., T. Toyosato, M. Sakai, Y. Sato, S. Fujioka, E. Murata, and M. Goto: Screening Results of Plants for Phytoecdysones. Chem. Pharm. Bull. (Japan) 17 335 (1969).CrossRefGoogle Scholar
  456. 456.
    Isaac, R.E., H.H. Rees, and T.W. Goodwin: Isolation of 2-Deoxy-20-hydroxyecdysone and 3-Epi-2-deoxyecdysone from Eggs of the Desert Locust, Schistocerca gregaria, during Embryogenesis. J. Chem. Soc. Chem. Commun. 1981, 418.Google Scholar
  457. 457.
    Numata, A., K. Hokimoto, T. Takemura, T. Katsuno, and K. Yamanoto: Plant Constituents Biologically Active to Insects. V. Antifeedants for the Larvae of the Yellow Butterfly, Eurema hecabe mandarina, in Osmunda japonica. (1). Chem. Pharm. Bull. (Japan) 32, 2815 (1984).Google Scholar
  458. 458.
    Numata, A., K. Hokimoto, T. Takemura, and S. Fuxin: Feeding Inhibitors for the Larvae of the Yellow Butterfly, Eurema hecabe mandarina de l’Orza (Lepidoptera: Pieridae) in a Flowering Fern, Osmunda japonica Thunb. Appl. Entomol. Zool. (Japan) 18, 129 (1983).Google Scholar
  459. 459.
    Hollenbeak, K.H., and M.E. Kuehne: The Isolation and Structure Determination of the Fern Glycoside Osmundalin and the Synthesis of Its Aglycone Osmundalactone. Tetrahedron 30, 2307 (1974).CrossRefGoogle Scholar
  460. 460.
    Hseu, T.H. Structure of Angiopteroside (4–ο–β–D–Glucopyranosyl–L–threo–2–hexen5–olide) Monohydrate, a Fern Glycoside from Angiopteris lygodiifolia Ros. Acta Crystallogr. B37, 2095 (1981).CrossRefGoogle Scholar
  461. 461.
    Citen, C.-M. Unpublished Results.Google Scholar
  462. 462.
    Nakamura, H., K. Watanabe, and J. Mizutani: Organic Acids in Vegetable and Sansai (Taste Substances in Foods. Part V) Agric. Biol. Chem. 40, A2 (1976).Google Scholar
  463. 463.
    Evans, I.A., and M.A. Osman: Carcinogenicity of Bracken and Shikimic Acid. Nature 250, 348 (1974).CrossRefGoogle Scholar
  464. 464.
    Porc, M. Chemical Composition of Australian Mangroves. II Low Molecular Weight Carbohydrates. Z. Pflanzenphysiol. 113, 411 (1984).Google Scholar
  465. 465.
    Schlenk, H., and J.L. Gellerman: Arachidonic, 5,11,14,17-Eicosatetraenoic and Related Acids in Plants-Identification of Unsaturated Fatty Acids. J. Amer. Oil Chem. Soc. 42, 504 (1965).CrossRefGoogle Scholar
  466. 466.
    Sato, N., and M. Furuya: Isolation and Identification of Diacylglycery1-O-4’’(N,N,N-trimethyl)-homoserine from the Fern Adiantum capillus-veneris L. Plant & Cell Physiol. 24, 1113 (1983).Google Scholar
  467. 467.
    Sato, N., and M. Furuya: Distribution of Diacylglyceryltrimethylhomoserine in Selected Species of Vascular Plants. Phytochem. 23, 1625 (1984).CrossRefGoogle Scholar
  468. 468.
    Virtanen, A.I., and P. Linko: The Occurrence of Free Ornithine and Its N-Acetyl Derivative in Plants. Acta Chem. Scand. 9, 531 (1955).CrossRefGoogle Scholar
  469. 469.
    Murakami, N., and S.-I. Hatanaka: D-2-Aminopimelic Acid and trans-3,4-Dehydro-D-2-aminopimelic Acid from Asplenium unilaterale. Phytochem. 22, 2735 (1983).CrossRefGoogle Scholar
  470. 470.
    Murakami, N., J. Furukawa, S. Okuda, and S.-I. Hatanaka: Stereochemistry of 2-Aminopimelic Acid and Related Amino Acids in Three Species of Asplenium. Phytochem. 24, 2291 (1985).CrossRefGoogle Scholar
  471. 471.
    Virtanen, A.I., and A.-M. Berg: A New α-Aminodicarboxylic Acid, a-Aminopimelic Acid, in Green Plants. Acta Chem. Scand. 8, 1085 (1954).Google Scholar
  472. 472.
    Berg, A.-M., and A.I. Virtanen: Additional Notes on a-Aminopimelic Acid in Green Plants. Acta Chem. Scand. 8, 1725 (1954).CrossRefGoogle Scholar
  473. 473.
    Meier, L.K., and H. Sorensen: Diastereoisomeric 4-Substituted Acidic Amino Acids in Ferns. Phytochem. 18, 1173 (1979).CrossRefGoogle Scholar
  474. 474.
    Virtanen, A.I., E. Uksila, and E.J. Matikkala: A New Type of Monoaminodicarboxylic Acid, γ-Hydroxy-α-aminopimelic Acid and Its Lactone in Green Plants. Acta Chem. Scand. 8, 1091 (1954).CrossRefGoogle Scholar
  475. 475.
    Virtanen, A.I., and A.-M. Berg: New Aminodicarboxylic acids and Corresponding α-Keto Acids in Phyllitis scolopendrium. Acta Chem. Scand. 9, 553 (1955).CrossRefGoogle Scholar
  476. 476.
    Blake, J., and L. Fowden: y-Methyleneglutamic Acid and Related Compounds from Plants. Biochem. J. 92, 136 (1964).Google Scholar
  477. 477.
    Soeder, R.W. y-Hydroxy-y-methylglutamic Acid in Polystichum acrostichoides. Phytochem. 12, 2297 (1973).CrossRefGoogle Scholar
  478. 478.
    Steward, F.C., R.H. Wetmore, and J.K. Pollard: Nitrogen Components of the Shoot Apex of Adiantum pedatum. Amer. J. Botany 42, 946 (1955).CrossRefGoogle Scholar
  479. 479.
    Grobbelaar, N., J.K. Pollard, and F.C. Steward: Soluble Nitrogen Compounds in Plants. Nature 175, 703 (1955).CrossRefGoogle Scholar
  480. 480.
    Hatanaka, S.-I., Y. Murooka, K. Saito, Y. Ishida, and Y. Takeuchi: E-2 (5)Amino-3-methyl-3-pentenoic Acid from Coniogramme intermedia. Phytochem. 21, 453 (1982).Google Scholar
  481. 481.
    Corbin, J.L., B.H. Marsh, and G.A. Peters: N-γ-L-Glutamyl-β-D-aminophenylpropanoic Acid, a Dipeptide from the Aquatic Fern, Azolla croliniana. Phytochem. 25, 527 (1986).CrossRefGoogle Scholar
  482. 482.
    Kofod, H., and R. Eyjölfsson: Cyanogenesis in Species of the Fern Gerna Cystopterts and Davallia. Phytochem. 8, 1509 (1969).CrossRefGoogle Scholar
  483. 483.
    Eyjólfsson, R. Cyanogenic Plants. Dan. Tidsskr. Farm. 42, 301 (1968).Google Scholar
  484. 484.
    Kofod, H., and R. Eyjolfsson: The Isolation of the Cyanogenic Glycoside Prunasin from Pteridium aquilinum ( L.) Kuhn. Tetrahedron letters 1966, 1289.Google Scholar
  485. 485.
    Bennett, W.D. Isolation of the Cyanogenetic Glucoside Prunasin from Bracken Fern. Phytochem. 7, 151 (1968).CrossRefGoogle Scholar
  486. 486.
    Kuroki, G., P.A. Lizotte, and J.E. Poulton: Catabolism of (R)-Amygdalin and (R)-Vicianin by Partially Purified β-Glycosidases from Prunus serotina Ehrh. and Davallia trichomanoids. Z. Naturforsch. C. Biosci. 39C, 232 (1984).Google Scholar
  487. 487.
    Sasaki, S., H.C. Chiang, K. Habaguchi, T. Yamada, K. Nakanishi, S. Matsueda, H.-Y. Hsü, and W.-N. Wu: Studies on the Constituents of Medical Plants in Taiwan. J. Pharmac. Soc. Japan. 86, 869 (1966).Google Scholar
  488. 488.
    Takatori, K., S. Nakano, S. Nagata, K. Okumura, I. Hirono, and M. Shimizu: Pterolactam, a New Compound Isolated from Bracken. Chem. Pharm. Bull. (Japan). 20, 1087 (1972).CrossRefGoogle Scholar
  489. 489.
    Minamikawa, T., and S. Yoshida: Occurrence of Quinic Acid in the Ferns. Bot. Mag. Tokyo 85, 153 (1972).CrossRefGoogle Scholar
  490. 490.
    Kinzel, H., and A. Walland: Zum Vorkommen von Shikimisäure bei Moosen und Farnen. Z. Pflanzenphysiol. 54, 371 (1966).Google Scholar
  491. 491.
    Nichols, B.W., and A.T. James: Acyl Lipids and Fatty Acids of Photosynthetic Tissue. In: Progress in Phytochemistry (Reinhold, L., and Y. Liwschitz, eds.), 1, p. 1. London-New York-Sydney: Interscience Publishers. 1968.Google Scholar
  492. 492.
    Harwood, J.L. In: The Biochemistry of Plants. A Comprehensive Treatise (STUMPF, P.K., ed.), 4, p. 1. New York Academic Press. 1980.Google Scholar
  493. 493.
    Lytle, T.F., J.S. Lytle, and A. Caruso: Hydrocarbons and Fatty Acids of Ferns. Phytochem. 15, 965 (1976).CrossRefGoogle Scholar
  494. 494.
    Jamieson, G.R., and E.H. Reid: The Fatty Acid Composition of Fern Lipids. Phytochem. 14, 2229 (1975).CrossRefGoogle Scholar
  495. 495.
    Gemmrich, A.R. Fatty Acid Composition of Fern Spore Lipids. Phytochem. 16, 1044 (1977).CrossRefGoogle Scholar
  496. 496.
    Yamane, H., Y. Sato, N. Takahashi, K. Takeno, and M. Furuya: Endogenous Inhibitors for Spore Germination in Lygodium japonicum and Their Inhibitory Effects on Pollen Germinations in Camellia japonica and Camellia sinensis. Agric. Biol. Chem. 44, 1697 (1980).CrossRefGoogle Scholar
  497. 497.
    Sugai, T., and K. Mori: Both Enantiomers of 8-Hydroxyhexadecanoic Acid Inhibit the Spore Germination of Lygodium japonicum. Agric. Biol. Chem. 48, 2155 (1984).CrossRefGoogle Scholar
  498. 498.
    Radunz, A. Über die Lipide der Pteridophyten, II. Die Fettsäuren einiger Lipide aus Blättern von Dryopteris filix-mas. Z. physiol. Chem. 349, 303 (1968).Google Scholar
  499. 499.
    Peterson, P.J. Non-protein Amino Acid Distinctions between Aspleniaceae and Athyriaceae in New Zealand. New Zealand J. Botany 10, 3 (1972).Google Scholar
  500. 500.
    Tanaka, M., S. Nakamura, K. Nisizawa, and T. Miwa: Occurrence and Distribution of γ-Hydroxy-γ-methylglutamic Acid in Fern Plants. Bot. Mag. Tokyo 84, 41 (1971).Google Scholar
  501. 501.
    Harper, N.L., G.A. Cooper-Driver, and T. Swain: A Survey for Cyanogenesis in Ferns and Gymnosperms. Phytochem. 15, 1764 (1976).CrossRefGoogle Scholar
  502. 502.
    Conn, E.E. Cyanogenic Glycosides. In: The Biochemistry of Plants. A Comprehensive Treatise (Stumpf, P.K., and E.E. Conn, eds.), 7, Secondary Plant Products, p. 495. New York Academic Press. 1981.Google Scholar
  503. 503.
    Wallace, J.W., R.S. Pozner, and L.D. Gomez: A Phytochemical Approach to the Gleicheniaceae. Amer. J. Bot. 70, 207 (1983).CrossRefGoogle Scholar
  504. 504.
    Markham, K.R., and D.R. Given: The Flavonoids of Ferns in the Isolated Genera Loxsoma and Loxsomopsis. Biochem. Syst. Ecol. 7, 91 (1979).CrossRefGoogle Scholar
  505. 505.
    Wallace, J.W., and K.R. Markham: Flavonoids of the Primitive Ferns: Stromatopteris, Schizaea, Gleichenia, Hymenophyllum, and Cardiomanes. Amer. J. Bot. 65, 965 (1978).CrossRefGoogle Scholar
  506. 506.
    Cooper-Driver, G. Chemical Evidence for Separating the Psilotaceae from the Filicales. Science 198, 1260 (1977).CrossRefGoogle Scholar
  507. 507.
    Seigler, D.S., and E. Wollenweber: Chemical Variation in Notholaena standleyi. Amer. J. Bot. 70, 790 (1983).CrossRefGoogle Scholar
  508. 508.
    Murakami, T. CheXIVth International Botanical Congress, Berlin (West)mosystematics of Di-and Sesqui-terpenoids in Polypodiaceous Ferns. , July 1987, Abstracts of Papers, p. 272.Google Scholar
  509. 509.
    Diele, L. Polypodiaceae. In: Die natürlichen Pflanzenfamilien (Engler, A., and K. Prantl, eds.), 1, (4), p. 139. Leipzig: Engelmann. 1899.Google Scholar
  510. 510.
    Furukawa, J., S. Okuda, K. Saito, and S.-I. Hatanaka: 3,4-Dihydroxy-2-hydroxymethylpyrrolidine from Arachniodes standishii. Phytochem. 24, 593 (1985).CrossRefGoogle Scholar
  511. 511.
    Swain, T. The Importance of Flavonoids and Related Compounds in Fern Taxonomy and Ecology. Bull. Torrey Bot. Club 107, 113 (1980).Google Scholar
  512. 512.
    Mickel, J.T. The Classification and Phylogenetic Position of the Dennstaedtiaceae. In: The Phylogeny and Classification of the Ferns (Jermy, A.C., J.A. Crabbe, and B.A. Thomas, eds.), p. 135. London: Academic Press. 1973.Google Scholar
  513. 513.
    Tryon, R.M., and A.F. Tryon: Ferns and Allied Plants with Special Reference to Tropical America. p. 332. New York-Heidelberg-BerlIn: Springer-Verlag. 1982.Google Scholar
  514. 514.
    Cooper-Driver, G., and T. Swain: Phenolic Chemotaxonomy and Phytogeography of Adiantum. Bot. J. Linn. Soc. 74, 1 (1977).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1988

Authors and Affiliations

  • T. Murakami
    • 1
  • N. Tanaka
    • 1
  1. 1.Faculty of Pharmaceutical SciencesScience University of TokyoTokyoJapan

Personalised recommendations