Dopaminergic modulation of neuropeptide gene expression in the rat striatum

  • V. Höllt
  • B. Morris
Conference paper
Part of the Key Topics in Brain Research book series (KEYTOPICS)


The advent of measuring specific mRNAs by molecular hybridization techniques has facilitated the study of neuropeptide gene regulation by pharmacological agents. In this report this approach was used to measure the levels or proenkephalin mRNA in the striatum of rats chronically treated with dopamine antagonists by in-situ hybridization. Chronic administration of haloperidol (2.4 mg/kg/day) for 7 days increased the levels of proenkephalin mRNA, whereas the specific D 1 antagonist SCH 23390 (2.4 mg/kg/day) decreased the proenkephalin mRNA in the striatum. These result suggest that there is a tonic suppression, via D 2 receptors, and a tonic enhancement, via D 1 receptors, of proenkephalin synthesis in the striatum.

In addition, recent data will be summarized showing that the meso-striatal dopamine system has no influence on the expression of striatal prodynorphin neurones, but causes a tonic enhancement on the neurones expressing protachykinins (the precursors for substance P and substance K).

In Parkinson’s disease the levels of proenkephalin-peptides in the striatopallidal pathway are reduced. In view of the enhancing influence of D 1 receptors on the expression of proenkephalin neurones the use of D 1 agonists in Parkinson’s disease might be considered.


Dopaminergic Modulation Chronic Haloperidol Striatopallidal Pathway Striatonigral Pathway Enkephalinergic Neurone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agid Y, Javoy-Agid F (1985) Peptides and Parkinson’s disease. Trends Neurosci 9: 30–35CrossRefGoogle Scholar
  2. Angulo JS, Davis LG, Burkhart BA, Christoph GR (1986) Reduction of striatal dopaminergic neurotransmission elevates striatal proenkephalin mRNA. Eur J Pharmacol 130: 341–343PubMedCrossRefGoogle Scholar
  3. Bannon MJ, Lee JM, Giraud P, Young A, Affolter HU, Bonner T (1986) Dopamine antagonist haloperidol decreases substance P, substance K and preprotachykinin mRNAs in rat strionigral neurones. J Biol Chem 261: 6640–6642PubMedGoogle Scholar
  4. Girault JA, Spampinato U, Glowinski J, Besson MJ (1986) In vivo release of GABA in the rat neostriatum II oposing effects of D 1 and D 2 receptor stimulation in the dorsal caudate putamen. Neuroscience 19: 1109–1118PubMedCrossRefGoogle Scholar
  5. Graybiel AM (1986) Neuropeptides in the basal ganglia. In: Martin JB, Barchas JD (eds) Neuropeptides in neurologic and psychiatric disease. Raven Press, New York, pp 135–161Google Scholar
  6. Höllt V (1986) Opioid peptide processing and receptor selectivity. Ann Rev Pharmacol Toxicol 26: 59–77CrossRefGoogle Scholar
  7. Hong JS, Yang HYT, Fratta W, Costa E (1978) Rat striatal metenkephalin content after chronic treatment with cataleptogenic and noncataleptogenic drugs. J Pharmacol Exp Ther 205: 141–147PubMedGoogle Scholar
  8. Iorio LC, Barnett A, Leitz FH, Houser VP, Korduba CA (1983) SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems. J Pharmacol Exp Ther 226: 462–468PubMedGoogle Scholar
  9. Kley N, Loeffler JP, Pittius CW, Höllt V (1987) Involvement of ion channels in the induction of proenkephalin A gene expression by nicotine and cAMP in bovine chromaffin cells. J Biol Chem 262: 4083–4089PubMedGoogle Scholar
  10. Kubota Y, Inagaki S, Kito S, Tagaki H, Smith AD (1986) Ultrastructural evidence of dopaminergic input to enkephalinergic neurones in rat neo-striatum. Brain Res 367: 374–378PubMedCrossRefGoogle Scholar
  11. Li S, Siwam SP, Hong JS (1986) Regulation of concentration of dynorphin A (1–8) in the striatonigral pathway by the dopaminergic system. Brain Res 398: 390–392PubMedCrossRefGoogle Scholar
  12. Morris BJ, Haarmann I, Kempter B, Höllt V, Herz A (1986) Localization of prodynorphin messenger RNA in rat brain by in-situ hybridization using a synthetic oligonucleotide probe. Neurosci Lett 69: 104–198PubMedCrossRefGoogle Scholar
  13. Morris BJ, Höllt V, Herz A (1988a) Dopaminergic regulation of striatal proenkephalin mRNA and prodynorphin mRNA: contrasting effects of D 1 and D 2 antagonists. Neurosci 25: 525–532CrossRefGoogle Scholar
  14. Morris BJ, Herz A, Höllt V (1988b) Localization of striatal opioid gene expression and its modulation by the mesostriatal dopamine pathway: an insitu hybridization study. J Mol Neurosci (in press)Google Scholar
  15. Morris BJ, Reimer S, Höllt V, Herz A (1988c) Regulation of striatal prodynorphin mRNA levels by the raphé-striatal pathway. Mol Brain Res (in press)Google Scholar
  16. Nylander I, Terenius L (1986) Chronic haloperidol and clozapine differentially affect dynorphin peptides and substance P in basal ganglia of the rat. Brain Res 380: 34–41PubMedCrossRefGoogle Scholar
  17. Onali P, Olinas MC, Gessa GL (1984) Selective blockade of dopamine D 1 receptors by SCH 23390 discloses striatal dopamine 2 receptors mediating the inhibition of adenylate cyclase in rats. Eur J Pharmacol 99: 127–128PubMedCrossRefGoogle Scholar
  18. Quirion R, Gandrean P, Martel JC, St. Pierre S, Zamir N (1985) Possible interactions between dynorphin and dopaminergic systems in rat basal ganglia and substantia nigra. Brain Res 331: 358–362Google Scholar
  19. Romano GJ, Shivers BD, Harlan RE, Howells RD, Pfaff DW (1987) Haloperidol increases proenkephalin mRNA levels in the caudateputamen of the rat: a quantitative study at the cellular level using in-situ hybridization. Mol Brain Res 2: 33–41CrossRefGoogle Scholar
  20. Sabol S, Yoshikawa K, Hong JS (1983) Regulation ofinet-enkephalin precursor mRNA in rat striatum by haloperidol and lithium. Biochem Biophys Res Commun 113: 391–399PubMedCrossRefGoogle Scholar
  21. Shivers BD, Harlan RE, Romano GJ, Howells RD, Pfaff DW (1986) Cellular localization of proenkephalin mRNA in rat brain: gene expression in the caudate-putamen and cerebellar cortex. Proc Natl Acad Sci 83: 6221–6225PubMedCrossRefGoogle Scholar
  22. Sivam S, Strunk C, Smith DR, Hong JS (1986) Proenkephalin-A gene regulation in the rat striatum: Influence of lithium and haloperidol. Mol Pharmacol 30: 186–191PubMedGoogle Scholar
  23. Tandon R, Day R, Kelsey JE, Watson SJ, Akil H (1986) The effect of haloperidol on prodynorphin end products in the rat striatum and sub-stantia nigra. I.R.N.C. proceedings NIDA Monograph 75: 50Google Scholar
  24. Tang F, Costa E, Schwartz JP (1983) Increase of proenkephalin content of rat striatum after daily injection of haloperidol for 2 to 3 weeks. Proc Natl Acad Sci USA 80: 3841–3844PubMedCrossRefGoogle Scholar
  25. Taquet H, Javoy-Agid F, Givand P, Legrand JC, Agid Y, Cesselin F (1985) Dynorphin levels in parkinsonian patients: Leu-enkephalin production from either proenkephalin aA or prodynorphin in human brain. Brain Res 341: 390–392PubMedCrossRefGoogle Scholar
  26. Yoshikawa K, Williams C, Sabol SL (1984) Rat brain preproenkephalin mRNA. cDNA cloning, primary structure and distribution in the central nervous system. J Biol Chem 259: 14301–14308PubMedGoogle Scholar
  27. Young WS, Bonner TI, Brann MR (1986) Mesencephalic dopamine neurones regulate the expression of neuropeptide mRNAs in the rat forebrain. Proc Natl Acad Sci 33: 9827–9831CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1989

Authors and Affiliations

  • V. Höllt
    • 1
  • B. Morris
    • 2
  1. 1.Physiologisches InstitutUniversität MünchenMartinsriedFederal Republic of Germany
  2. 2.Max-Planck-Institut for PsychiatryMartinsriedFederal Republic of Germany

Personalised recommendations