Dopaminergic neurotransmission and status of brain iron

  • M. B. H. Youdim
Part of the Key Topics in Brain Research book series (KEYTOPICS)


The highly characteristic uneven distribution of iron in the human and animal brains, with high iron content present in globus pallidus, substantia nigra, ventral pallidum, caudate nucleus, intra penduncular nuclei, red nucleus and dente gyrus, suggests a functional importance for this metal.Our studies have clearly demonstrated that the homeostasis of brain iron is important for normal functioning of this organ. Either increased or decreased availability of iron in the above specific regions significantly alters the GABA and dopamine neurotransmission.


Iron Deficiency Tyrosine Hydroxylase Caudate Nucleus Brain Iron Dopaminergic Neurotransmission 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashkenazi R, Ben-Shachar D, Youdim MBH (1982) Nutritional iron and dopamine binding sites in rat brain. Pharmacol Biochem Behav 17 [Suppl] 1: 43–47PubMedCrossRefGoogle Scholar
  2. Aziz N, Munro HN (1987) Iron regulates ferritin mRNA translation through a segment of its 5’ untranslated region. Proc Natl Acad Sci USA 84: 8478–8482PubMedCrossRefGoogle Scholar
  3. Barkey R, Ben-Shachar D, Amit T, Youdim MBH (1985) Increased hepatic and reduced prostatic prolactin binding in iron-deficient and neuroleptic treatment: correlation with changes in serum prolactin and testosterone. Eur J Pharmacol 109: 193–200PubMedCrossRefGoogle Scholar
  4. Ben-Shachar D, Finberg JPM, Youdim MBH (1985) The effects of chelating agents on dopamine D2 receptor. J Neurochem 45: 999–1005PubMedCrossRefGoogle Scholar
  5. Ben-Shachar D, Ashkenazi R, Youdim MBH (1986) Long term consequences of early iron-deficiency on dopaminergic neurotransmission. Int J Devel Neurosci 4: 81–88CrossRefGoogle Scholar
  6. Ben-Shachar D, Jacobowitz D, Youdim MBH (1987 a) Dopamine D2 receptor modulation by brain non-haem iron. Br J Pharmacol 90: 2 PGoogle Scholar
  7. Ben-Shachar D, Youdim MBH (1987 b) Neuroleptic induced dopamine receptor supersensitivity and tardive dyskinesia may involve altered brain iron metabolism. Br J Pharmacol 90: 95 PGoogle Scholar
  8. Ben-Shachar D, Yehuda S, Spanier I, Finberg JPM, Youdim MBH (1988) Selective alterations in blood brain barrier and insulin transport in iron-deficient rats. J Neurochem 50: 1434–1438PubMedCrossRefGoogle Scholar
  9. Birkmayer W, Birkmayer JGD (1986) Iron a new aid in the treatment of Parkinson’s patients. J Neural Transm 67: 287–292PubMedCrossRefGoogle Scholar
  10. Connor JR, Phillips TM, Lakshman MR, Barron KD, Fine RE, Csiza CK (1987) Regional variation in the levels of transferrin the CNS of normal and myelin-deficient rats. J Neurochem 49: 1523–1529PubMedCrossRefGoogle Scholar
  11. Czernansky JG, Holman CA, Bonnet KA, Grabowsky K, King R, Hollister LE (1983) Dopaminergic supersensitivity at distant sites following iron induced epileptic foci. Life Sci 32: 385–391CrossRefGoogle Scholar
  12. Edgerton VR, Ohira Y, Gardner GW (1982) Effect of iron-deficiency anaemia on voluntary activities of rats and human. In: Politt E, Leibel RL (eds) Iron deficiency, brain biochemistry and behavior. Raven Press, New York, pp 141–160Google Scholar
  13. Gabay S, Harris J, Ho BT (eds) Metals in neurology and neurobiology, vol 15. Alan R Liss, New YorkGoogle Scholar
  14. Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219: 1–17PubMedGoogle Scholar
  15. Halliwell B, Gutteridge JM (1985) Oxygen radicals and the nervous system. TINS 1: 22–26Google Scholar
  16. Hill JM, Switzer III RC (1984) The regional distribution and cellular localization of iron in the rat brain. Neuroscience 11: 595–602PubMedCrossRefGoogle Scholar
  17. Hill JM, Ruff MR, Weber RJ, Pert CB (1985) Transferrin receptors in rat brain: neuropeptide-like pattern and relationship to iron distribution. Proc Natl Acad Sci USA 82: 4553–4557PubMedCrossRefGoogle Scholar
  18. Lozoff B (1988) Behavioural alterations in iron-deficiency. Adv Pediat (in press)Google Scholar
  19. Pollitt E, Leibel RL (1976) Iron-deficiency and behavior. J Pediatr 88: 372–381PubMedCrossRefGoogle Scholar
  20. Pollitt E, Leibel RL (eds) (1982) Iron deficiency, brain biochemistry and behaviour. Raven Press, New YorkGoogle Scholar
  21. Prohaska JR (1987) Functions of trace elements in brain metabolism. Physiol Rev 67: 858–901PubMedGoogle Scholar
  22. Riederer P, Sofic E, Rausch W, Kruzik P, Youdim MBH (1985) Dopaminforschung heute and morgen. In: Riederer P, Umek H (Hrsg) L-DopaSubstitution der Parkinson-Krankheit. Springer, Wien New York, S 127–144Google Scholar
  23. Riederer P, Rausch WD, Schmidt B, Kruzik P, Konradi C, Sofic E, Danielczyk W, Fisher M, Ogris E (1988 a) Biochemical fundamentals of Parkinson’s disease. Mount Sinai J Med 55: 21–28Google Scholar
  24. Riederer P, Sofic E, Rausch WD, Schmidt B, Youdim MBH (1988 b) Transition metals, ferritin, glutathione and ascorbic acid in Parkinsonian brains. J Neurochem (in press)Google Scholar
  25. Sourkes TL, Quik M, Falardeau M (1974) Effects of iron and copper deficiences on monoamine metabolism. Adv Neurol 5: 253–258PubMedGoogle Scholar
  26. Taneja V, Mishra K, Agarwal KN (1986) Effect of early iron-deficiency in rat on the y-aminobutyric acid shunt in brain. J Neurochem 46: 1670–1674PubMedCrossRefGoogle Scholar
  27. Weiner N (1979) Tyrosine hydroxylase. In: Youdim MBH (ed) Aromatic amino acid hydroxylases and metal disease. Wiley, Chichester, pp 141–190Google Scholar
  28. Wilmore LJ, Sypert GW, Manson JV, Hurd RW (1978) Chronic focal epileptiform discharges induced by injection of iron into rat and cat cortex. Science 200: 1501–1503CrossRefGoogle Scholar
  29. Yehuda S, Youdim MBH, Mostofsky DI (1986) Brain iron deficiency causes reduced learning capacity in rats. Pharmacol Biochem Behav 25: 141PubMedCrossRefGoogle Scholar
  30. Yehuda S, Youdim MBH (1988) Brain iron-deficiency: biochemical and behavioural aspects. In: Youdim MBH (ed) Brain iron metabolism. Taylor and Francis, London (in press)Google Scholar
  31. Youdim MBH, Green AR (1977) Biogenic monoamine metabolism and function in iron-deficient rats: behavioural correlates. In: Porter RR (ed) Iron metabolism. Elsevier, Amsterdam, pp 201–225Google Scholar
  32. Youdim MBH, Green AR, Bloomfield MR, Michel BD, Heal D, Grahame-Smith DG (1980) The effects of iron-deficiency on brain biogenic monoamine biochemistry and function. Neuropharmacology 19: 259–267PubMedCrossRefGoogle Scholar
  33. Youdim MBH, Yehuda S, Ben Uriah Y (1981) Reversed circadian rhythm of dopaminergic-mediated behaviors and thermoregulation in rats produced by iron-deficiency. Eur J Pharmacol 84: 295–301CrossRefGoogle Scholar
  34. Youdim MBH, Ben-Shachar D, Yehuda S, Ashkenazi R (1983) Brain iron and dopamine receptor function. In: Mandel P, De Feudis FV (eds) CNS receptors from molecular pharmacology to behavior. Raven Press, New York, pp 309–322Google Scholar
  35. Youdim MBH (1985) Brain iron metabolism: biochemical and behavioural aspects in relation to dopamine neurotransmission. In: Lajtha A (ed) Handbook of neurochemistry, vol 10. Plenum, New York, pp 731–756Google Scholar
  36. Youdim MBH, Ben-Shachar D (1987) Minimal brain damage induced by early iron deficiency: modified dopaminergic neurotransmission. Israel J Med Sci 23: 19–25PubMedGoogle Scholar
  37. Youdim MBH (1988) Iron in the brain: implications for Parkinson’s and Alzheimer’s diseases. Mount Sinai J Med 55: 97–101Google Scholar
  38. Zang ZH, Qi Y, Wu XR, Zuo OH (1986) Ferrous induced seizures and changes in lipid peroxidation. GAD activity and GABA uptake in the epilepsy-prone versus epilepsy-resistant rats. Neuroscience (abstract)Google Scholar

Copyright information

© Springer-Verlag/Wien 1989

Authors and Affiliations

  • M. B. H. Youdim
    • 1
  1. 1.Department of Pharmacology, Rappaport Family Research InstituteFaculty of Medicine, TechnionHaifaIsrael

Personalised recommendations